

Environmental Subsurface Assessment

KELLY'S AUTO BODY

Bellevue, Washington

Prepared For:

CITY OF BELLEVUE

Project No. 20190396V001 November 19, 2019

Associated Earth Sciences, Inc. 911 5th Avenue Kirkland, WA 98033 P (425) 827 7701

November 19, 2019 Project No. 20190396V001

City of Bellevue 450 110th Avenue NE Bellevue, Washington 98004

Attention:

Mr. Gregory Lucas

Subject:

Environmental Subsurface Assessment

Kelly's Auto Body 1500 130th Avenue NE Bellevue, Washington

Dear Mr. Lucas:

Associated Earth Sciences, Inc. (AESI) is pleased to present the enclosed copy of the above-referenced report. This report summarizes the results of the Environmental Subsurface Assessment for the Kelly's Auto Body property located at 1500 130th Avenue NE in Bellevue, Washington. The scope of services was completed in general accordance with the proposal provided by AESI, dated October 1, 2019. The scope of work was authorized by the City of Bellevue by means of an e-mail dated October 11, 2019 between the City of Bellevue and AESI and a project release order (#1921616) issued by the City of Bellevue.

We have enjoyed working with you on this study and are confident that our findings will aid in the evaluation of the Kelly's Auto Body property. If you should have any questions regarding this report, or if we can be of additional help to you, please do not hesitate to call.

Sincerely,
ASSOCIATED EARTH SCIENCES, INC.
Kirkland, Washington

Timothy S. Brown, L.Hg. Associate Hydrogeologist

TSB/Id - 20190396V001-2

ENVIRONMENTAL SUBSURFACE ASSESSMENT

KELLY'S AUTO BODY

Bellevue, Washington

Prepared for:
City of Bellevue
450 110th Avenue NE
Bellevue, Washington 98004

Prepared by:

Associated Earth Sciences, Inc.
911 5th Avenue
Kirkland, Washington 98033
425-827-7701

November 19, 2019 Project No. 20190396V001

TABLE OF CONTENTS

	Page
1.0 INTRODU	CTION
	ect Background 1
	ose
2.0 ENVIRON	MENTAL SUBSURFACE ASSESSMENT2
	y Locates
	Sample Collection
	nnaissance Groundwater Sample Collection
	te Management
	5
	nnaissance Groundwater
	IONS
	DNS
6.0 CLOSURE.	
7.0 REFERENCE	CES 8
	LIST OF FIGURES
Figure 1.	Vicinity Map
Figure 2.	Site and Exploration Plan
	LIST OF TABLES
Table 1.	Summary of Soil Analytical Results - VOCs and TPHAttached
Table 2.	Summary of Soil Analytical Results - VOCsAttached
Table 3.	Summary of Soil Analytical Results - RCRA-8 MetalsAttached
Table 4.	Summary of Groundwater Analytical Results - VOCs and TPHAttached
Table 5.	Summary of Groundwater Analytical Results - VOCsAttached
Table 6.	Summary of Groundwater Analytical Results - RCRA-8 MetalsAttached
	LIST OF APPENDICES
Appendix A. Appendix B.	Exploration Logs Laboratory Reports and Chain-of-Custody Forms

1.0 INTRODUCTION

Associated Earth Sciences, Inc. (AESI) has prepared this report on behalf of the City of Bellevue to summarize the results of the Environmental Subsurface Assessment performed at the Kelly's Auto Body property (Site) located at 1500 130th Avenue NE in Bellevue, Washington (Figure 1). The Site consists of one King County tax parcel (No. 2825059058) totaling approximately 1.15 acres. The Site is an active auto body automotive repair shop (Kelly's Auto Body) and is currently developed with an approximately 10,500-square-foot service building built in 1962, several storage structures, paved parking areas, and a driveway. The topography of the Site is relatively flat; there is a slight slope to the south with an overall vertical relief of approximately 5 feet between the northern and southern property lines.

1.1 Project Background

Previous investigations of the Site include a Phase I Environmental Site Assessment (Phase I ESA) completed by Shannon & Wilson, Inc. (Shannon & Wilson) in 2015 (Shannon & Wilson, 2015), a Hazardous Materials Technical Report (Technical Report) completed by Parametrix in 2016 (Parametrix, 2016), and a Phase II ESA completed by Shannon & Wilson in 2016 (Shannon & Wilson, 2016).

The Phase I ESA indicated review of files from the Washington State Department of Ecology (Ecology) disclosed a 30-day notice for removal of a 5,000-gallon gasoline underground storage tank (UST) at the Site, but no further documentation regarding the environmental quality of soil and/or groundwater at the UST location. However, further review of the documents from Ecology indicate the tank was used to hold diesel fuel and was pumped dry and permanently out-of-service since 1976. The Technical Report indicated the UST was closed-in-place in 1996. During a Site visit on October 10, 2019, AESI spoke to Jym Silvan, the General Manager of Kelly's Auto Body. Mr. Silvan indicated the owner of the Site stated the UST was previously removed and was located on the east-northeast corner of the service building, but did not have documentation to support this statement. No additional information regarding the UST was available in reports by others or on Ecology's website.

According to Shannon & Wilson's Phase I ESA, the historical land use of the Site was a truck repair facility. Shannon & Wilson also identified a patched area on the floor of the service building as a former lube pit for servicing trucks during their Phase I ESA Site reconnaissance. Communications between AESI and the General Manager of Kelly's Auto Body on October 10, 2019 suggest the area called out in the Shannon & Wilson report as a lube pit was actually used to adjust the alignment on trucks using a computerized system.

The Phase II ESA completed by Shannon & Wilson indicates residual soil contamination (petroleum) and a deed restriction exists on the adjoining (and assumed upgradient) parcel to the northeast. Groundwater contamination was also noted; however, it was not observed in the well closest to the Site. Low levels of petroleum and volatile organic compounds (VOCs) were also recently detected in soil and/or groundwater on the adjoining north parcel.

ASSOCIATED EARTH SCIENCES, INC. Page 1 KMA/ld - 20190396V001-2

Based on previous reports by others and the historical use of a UST on Site, the potential chemicals of concern (COCs) for identified environmental media of concern (soil and groundwater) include total petroleum hydrocarbons (TPH) as gasoline-range petroleum hydrocarbons (GRPH), diesel-range petroleum hydrocarbons (DRPH), and oil-range petroleum hydrocarbons (ORPH), VOCs, and the Resource Recovery and Conservation Act (RCRA) monitored heavy metals (RCRA-8 metals).

1.2 Purpose

The purpose of this Environmental Subsurface Assessment was to assess for potential petroleum-impacted soil and groundwater from potential releases associated with the former 5,000-gallon UST, and historical and current day automotive repair operations.

2.0 ENVIRONMENTAL SUBSURFACE ASSESSMENT

The reporting and field activities for this Environmental Subsurface Assessment were performed as outlined in our proposal, dated October 1, 2019, and included the following:

- Preparation of a site-specific Health and Safety Plan (HASP).
- Public and private utility locates including a ground-penetrating radar (GPR) survey.
- Advancing seven Geoprobe® (GP) direct-push exploration borings.
- Collecting soil and reconnaissance groundwater samples.
- Submitting soil and reconnaissance groundwater samples to a subcontracted laboratory for potential chemical analysis.
- Evaluating analytical results from selected samples and comparing the results to the Washington State Model Toxics Control Act (MTCA) cleanup levels (CULs) for soil and groundwater.
- Preparing this report summarizing the results of the Environmental Subsurface Assessment.

2.1 Utility Locates

Prior to subsurface field activities, AESI notified the Washington One-Call Public Utility service for locating underground utilities on the Site. On October 10, 2019, Applied Professional Services (APS) conducted a GPR survey across the Site, including the presumed area of the former UST, to potentially locate the UST and/or associated piping. No UST or piping was identified during the GPR survey. APS conducted a private utility locate on October 12, 2019.

ASSOCIATED EARTH SCIENCES, INC. Page 2 KMA/ld - 20190396V001-2

APS identified one unknown line in the presumed area of the former UST. The line terminated approximately 50 feet south from the northern limits of the service building and extended past the property limits to the north.

2.2 Soil Sample Collection

Direct-push exploration borings GP-1 through GP-7 were completed on October 12, 2019. Geoprobe® direct-push drilling services were provided by Cascade Drilling, LP, of Woodinville, Washington. An AESI field representative observed drilling activities and collected soil and reconnaissance groundwater samples for potential laboratory analysis. The approximate locations of the exploration borings completed for this Environmental Subsurface Assessment are shown on Figure 2.

Direct-push borings were completed using a track-mounted 7822DT Direct Push and Rotary Rig utilized for Geoprobe® direct-push drilling. During the drilling process, the Geoprobe sampler was lined with disposable plastic sleeves that were removed and opened to reveal the sample for each 5-foot driven interval. Soil samples were collected directly from the plastic sleeve using stainless steel spoons and/or Environmental Protection Agency (EPA) Method 5035A sampling kits. Soil samples were placed directly into laboratory-prepared sample containers and labeled with unique sample identification. Sample containers were placed in a chilled cooler immediately following sampling, and subsequently transported to the analytical laboratory under standard chain-of-custody protocols. One soil sample was analyzed from each boring for GRPH by Northwest Total Petroleum Hydrocarbons (NWTPH) Method NWTPH-Gx, DRPH and ORPH by NWTPH Method NWTPH-Dx, VOCs by EPA Method 8260C, and RCRA-8 metals using EPA Method 6020B. Drilling equipment was cleaned using an Alconox® wash and potable water rinse prior to drilling and between each boring location. Sampling equipment was cleaned using an Alconox® wash and potable water rinse prior to collecting each soil sample from the plastic sleeve.

The soil samples were observed and logged by an AESI representative in general accordance with the Unified Soil Classification System (USCS). Soil samples were screened in the field for potential evidence of contamination. Field-screening methods included visual observations, notations of odor, and obtaining headspace vapor measurements using a photoionization detector (PID) to detect the presence of VOCs. The USCS symbol, visual, and olfactory notations for the samples, and PID readings were recorded on boring log forms, which are provided in Appendix A.

2.3 Reconnaissance Groundwater Sample Collection

Reconnaissance groundwater samples were collected from exploration borings GP-1 through GP-7 at the time of drilling using a peristaltic pump and low-density polyethylene tubing. The reconnaissance groundwater samples were collected by placing a 5-foot to 10-foot section of 1-inch-diameter polyvinyl chloride well screen below the depth of the first encountered shallow

ASSOCIATED EARTH SCIENCES, INC. Page 3 KMA/ld - 20190396V001-2

groundwater. Prior to sample collection, groundwater was purged from the temporary wells through 0.25-inch-diameter tubing using a peristatic pump. The temporary wells were purged until the groundwater appeared less turbid or a minimum of 0.5 gallons of water was removed. The temporary well screens and tubing were discarded as non-hazardous waste after collecting each reconnaissance groundwater sample.

Following the temporary well purging, reconnaissance groundwater samples were collected from the pump outlet tubing and placed directly into laboratory-prepared glass sample containers and labeled with unique sample identification. The groundwater was observed to be light brown and slightly turbid at the time of sample collection. No odor or sheen was observed. Sample containers were placed in a chilled cooler immediately following sampling, and subsequently transported to the analytical laboratory under standard chain-of-custody protocols. Reconnaissance groundwater samples were analyzed for GPRH by NWTPH Method NWTPH-Gx, DRPH and ORPH by NWTPH Method NWTPH-Dx, VOCs by EPA Method 8260C, and RCRA-8 metals (total metals) by EPA Method 6020B.

2.4 Waste Management

Soil cuttings and equipment decontamination and purge water generated during the October 12, 2019 field activities were placed in Department of Transportation (DOT)-approved, 16-gallon steel drums, closed, and appropriately labeled with project-specific information and initial accumulation date. Two drums containing soil cuttings and one drum containing purge/decontamination water were accumulated during field activities and remain at a designated off-site property owned by the City of Bellevue located off 124th Avenue NE and NE Spring Boulevard. AESI can provide recommendations for waste profiling and proper transport and disposal for the investigation-derived waste upon request.

3.0 RESULTS

This section summarizes observations of the subsurface conditions at the Site and the results for soil and reconnaissance groundwater samples analyzed for this Environmental Subsurface Assessment. The analytical results for TPH, VOCs, and RCRA-8 metals in soil are summarized in Tables 1 through 3, respectively. The analytical results for TPH, VOCs, and RCRA-8 metals in reconnaissance groundwater are summarized in Tables 4 through 6, respectively. Analytical laboratory reports and sample chain-of-custody forms are provided in Appendix B.

The assessment and cleanup of contaminated sites in Washington State is regulated by the MTCA cleanup regulation, Washington Administrative Code (WAC) 173-340. Concentrations of COCs from the selected soil samples and the reconnaissance groundwater samples analyzed were evaluated with respect to MTCA Method A CULs for unrestricted land use. A summary of field observations and analytical results for soil and reconnaissance groundwater samples analyzed is provided below.

ASSOCIATED EARTH SCIENCES, INC. Page 4 KMA/ld - 20190396V001-2

3.1 Soil

Subsurface conditions at the Site were based upon conditions observed in the field and explorations completed for this study. Due to the nature and limitations of subsurface exploratory work, extrapolation of subsurface conditions between field explorations is necessary. Differing subsurface conditions may be present between exploration locations as a result of natural deposition or the alteration of topography by past grading and/or filling. Soils interpreted to be Vashon recessional outwash, Vashon advance outwash, and pre-Fraser undifferentiated deposits were encountered at the Site, capped by existing fill material, as indicated on the exploration boring logs.

The existing fill was observed beneath surficial hardscape (asphalt paving/concrete slab) and ranged in thickness from approximately 1.5 to 5.5 feet in six of the seven exploration borings. No fill was observed in GP-1. The fill material generally consisted of fine to medium sands with variable amounts of silt and gravel.

Native deposits were encountered below the fill materials. Vashon recessional outwash was observed below the fill to a depth of 4- to 5-feet below ground surface (bgs) in exploration borings GP-1 through GP-3. These deposits consisted of fine to medium sand with trace silt and occasional gravel. Vashon advance outwash was observed underlying the Vashon recessional outwash in exploration borings GP-1 through GP-3 and underlying the fill in exploration borings GP-4 through GP-7. The Vashon advance outwash ranged from 1.5 to 11 feet thick and generally consisted of fine to medium sand with variable silt content and occasional silt lenses. The older pre-Fraser undifferentiated deposits were encountered below the Vashon advance outwash deposits to the total depth explored in exploration borings GP-1 through GP-7. The pre-Fraser undifferentiated deposits consisted of silt with varying amounts of fine to medium sand and ranged from laminated to massive in structure.

A total of seven soil samples were collected between 7 and 10 feet bgs and selected for laboratory analysis for TPH, VOCs, and RCRA-8 Metals. Concentrations of TPH and VOCs were not detected above the laboratory reporting limits in soil samples analyzed from GP-1 through GP-7. Four of the RCRA-8 metals, arsenic, barium, chromium, and lead, were detected at concentrations above laboratory reporting limits but below MTCA Method A CULs for soil in soil samples with the exception of arsenic in GP-3 and lead in GP-7, which were not detected above the laboratory reporting limits. Four of the RCRA-8 metals, cadmium, mercury, selenium, and silver, did not have concentrations detected above laboratory reporting limits in soil samples from GP-1 through GP-7.

3.2 Reconnaissance Groundwater

Groundwater was observed within the Vashon advance outwash at depths ranging from approximately 5 to 10 feet bgs at the time of drilling in borings GP-1 through GP-7. Groundwater was measured at depths ranging from approximately 5 to 7 feet bgs in borings

ASSOCIATED EARTH SCIENCES, INC. Page 5 KMA/ld - 20190396V001-2

GP-1 through GP-7 using an electronic water level indicator prior to collecting reconnaissance groundwater samples.

Seven reconnaissance groundwater samples were collected for laboratory analysis of TPH, VOCs, and total (RCRA-8) metals from borings GP-1 through GP-7. The reconnaissance groundwater sample collected from GP-2 detected DRPH at a concentration of 110 micrograms per Liter (μg/L), which is below the MTCA Method A CUL of 500 μg/L. This sample was flagged by the laboratory for their chromatographic pattern not representing the fuel standard used for quantitation. Concentrations of DRPH were not detected above the laboratory reporting limit from the reconnaissance groundwater samples collected from GP-1 and GP-3 through GP-7. Concentrations of GRPH, ORPH, and VOCs were not detected above the laboratory reporting limits from the reconnaissance groundwater samples collected from GP-1 through GP-7.

Total arsenic was detected at concentrations ranging from 5.58 to 45.7 μg/L in the reconnaissance groundwater samples collected from borings GP-1 through GP-7, which exceeds the MTCA Method A CUL of 5 µg/L. Total chromium was detected at concentrations ranging from 81.3 to 256 µg/L in the reconnaissance groundwater samples collected from borings GP-1, GP-2, and GP-4 through GP-7, which exceeds the MTCA Method A CUL of 50 μg/L. Total lead was detected at concentrations ranging from 23.1 to 49.6 µg/L in the reconnaissance groundwater samples collected from borings GP-1, GP-2, and GP-4 through GP-6, which exceeds the MTCA Method A CUL of 15 µg/L. Total barium was detected at concentrations ranging from 144 to 2,280 µg/L in the reconnaissance groundwater samples collected from borings GP-1 through GP-7, which is below the MTCA Method A CUL of 2,500 μg/L. Total cadmium was detected at concentrations of 1.21 μg/L, 1.27 μg/L, and 1.25 μg/L in the reconnaissance groundwater samples collected from borings GP-1, GP-5, and GP-6, respectively, which are below the MTCA Method A CUL of 5 μg/L.

4.0 CONCLUSIONS

The results from the Environmental Subsurface Assessment indicate the following:

- Field-screening methods performed by AESI did not indicate impacts to soil or groundwater at the seven boring locations during the field program.
- Concentrations of DRPH, ORPH, GRPH, VOCs, and RCRA 8 Metals were not detected in analyzed soil samples from GP-1 through GP-7 above the applicable MTCA CULs, indicating that soil in the vicinity of the borings does not require cleanup for these COCs.
- Concentrations of total metals including arsenic, chromium, and lead were detected in the reconnaissance groundwater samples exceeding the MTCA Method A CUL. The groundwater samples were grab samples, and appeared turbid at the time of collection, which indicates suspended particles. The metals exceedances are potentially from the collection methods, and do not resemble the dissolved phase (drinking water quality).

ASSOCIATED EARTH SCIENCES, INC. Page 6 KMA/ld - 20190396V001-2

The metals exceeded in groundwater were observed in native soil at concentrations that do not exceed CULs and it is likely the detections in the reconnaissance groundwater are background concentrations.

• One reconnaissance groundwater sample (GP-2-GW) had detectable concentrations of DRPH below the applicable MTCA CULs. Boring GP-2 is located east of the service building in the reported vicinity of the former UST. These results indicate a limited release of DRPH has likely occurred to the subsurface in the vicinity of GP-2; however, the extent of petroleum-impacted groundwater appears to be localized in the vicinity of boring GP-2. In addition, the remaining reconnaissance groundwater samples did not detect concentrations of DRPH, ORPH, GRPH, and VOCs above the applicable MTCA CULs, indicating the groundwater at the Site does not require cleanup at this time.

5.0 LIMITATIONS

This report has been prepared for the exclusive use of the City of Bellevue and their agents, for specific application to this project. The results contained in this report are based upon the information acquired during this assessment. Within the limitations of scope, schedule, and budget, our services have been performed in accordance with generally accepted environmental industry practices in effect in this area at the time our report was prepared. No other warranty, express or implied, is made.

6.0 CLOSURE

We are pleased to have had this opportunity to work with you and are confident that this report will aid in the evaluation of the Site. Should you have any questions, please do not hesitate to call.

Sincerely,

ASSOCIATED EARTH SCIENCES, INC. Kirkland, Washington

Hydrogeologist 1099 Geologist Timothy Scott Brown

Timothy S. Brown, L.Hg. Associate Hydrogeologist

Kellie M. Andrews, G.I.T. Senior Staff Geologist

7.0 REFERENCES

- Parametrix, 2016, 130th Avenue NE project Hazardous materials technical report: October 25, 2016.
- Shannon & Wilson, Inc., 2015, Phase I environmental site assessment Sound Transit ROW #EL 295 Kelly's Autobody 1500 130th Avenue NE Bellevue, Washington: June 16, 2015.
- Shannon & Wilson, Inc., 2016, Phase II environmental site assessment Sound Transit Right-of-Way EL 295 Kelly Autobody property 1500 130th Avenue NE Bellevue, Washington: June 16, 2015.

ASSOCIATED EARTH SCIENCES, INC. November 19, 2019 Page 8 KMA/ld - 20190396V001-2

FIGURES

LEGEND:

GP GEOPROBE BORING

SITE BOUNDARY

UNKNOWN UTILITY LINE IDENTIFIED BY PRIVATE UTILITY LOCATOR

NOTE: LOCATION AND DISTANCES SHOWN ARE APPROXIMATE.

NOTES:
1. BASE MAP REFERENCE: KING COUNTY PICTOMETRY 2017

BLACK AND WHITE REPRODUCTION OF THIS COLOR ORIGINAL MAY REDUCE ITS EFFECTIVENESS AND LEAD TO INCORRECT INTERPRETATION.

earth sciences

SITE AND EXPLORATION PLAN

KELLY'S AUTO BODY BELLEVUE, WASHINGTON

PROJ NO. 20190396V001

11/19

TABLES

Table 1 Summary of Soil Analytical Results Volatile Organic Compounds and Total Petroleum Hydrocarbons Kelly's Auto Body Bellevue, Washington

							Analytical Re	esults (mg/kg)			
					Volatile	Organic Comp	ounds ⁽¹⁾		Total Pet	roleum Hydro	carbons ⁽²⁾
Exploration / Well Location	Sample ID	Sample Date	Depth (feet)	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene	Gasoline Range Hydrocarbons	Diesel Range Hydrocarbons	Heavy Oil Range Hydrocarbons
GP-1	GP-1-10	10/12/2019	10	< 0.03	< 0.05	< 0.05	< 0.1	< 0.05	< 5	< 50	< 250
GP-2	GP-2-7.5	10/12/2019	7.5	< 0.03	< 0.05	< 0.05	< 0.1	< 0.05	< 5	< 50	< 250
GP-3	GP-3-10	10/12/2019	10	< 0.03	< 0.05	< 0.05	< 0.1	< 0.05	< 5	< 50	< 250
GP-4	GP-4-8	10/12/2019	8	< 0.03	< 0.05	< 0.05	< 0.1	< 0.05	< 5	< 50	< 250
GP-5	GP-5-7	10/12/2019	7	< 0.03	< 0.05	< 0.05	< 0.1	< 0.05	< 5	< 50	< 250
GP-6	GP-6-10	10/12/2019	10	< 0.03	< 0.05	< 0.05	< 0.1	< 0.05	< 5	< 50	< 250
GP-7	GP-7-10	10/12/2019	10	< 0.03	< 0.05	< 0.05	< 0.1	< 0.05	< 5	< 50	< 250
Model T	oxics Control	Act Cleanup Leve	el ⁽³⁾	0.03	7	6	9	5	30/100 (4)	2,000	2,000

NOTES:

- (1) Samples were analyzed by Friedman & Bruya, Inc. of Seattle, Washington using EPA Method 8260C.
- (2) Samples were analyzed by Friedman & Bruya, Inc. of Seattle, Washington using NWTPH Methods NWTPH-Gx and NWTPH-Dx.
- (3) MTCA Cleanup Regulation, Chapter 173-340-900 of WAC, Table 740-1 Method A Soil Cleanup Levels for Unrestricted Land Uses.
- (4) MTCA Method A Cleanup Level is 30 mg/kg when benzene is detected and 100 mg/kg when benzene is not detected.

< = not detected at concentration exceeding the laboratory reporting limit.

EPA = U.S. Environmental Protection Agency

mg/kg = milligrams per kilogram

MTCA = Washingston State Model Toxics Control Act

NWTPH = Northwest Total Petroleum Hydrocarbon

WAC = Washington Administrative Code

Table 2 Summary of Soil Analytical Results Volatile Organic Compounds Kelly's Auto Body Bellevue, Washington

	Exploration No.	GP-1	GP-2	GP-3	GP-4	GP-5	GP-6	GP-7	
	Depth (ft)	10	7.5	10	8	7	10	10	
	Sample Date	10/12/2019	10/12/2019	10/12/2019	10/12/2019	10/12/2019	10/12/2019	10/12/2019	
Analyte	Sample ID	GP-1-10	GP-2-7.5	GP-3-10	GP-4-8	GP-5-7	GP-6-10	GP-7-10	MTCA Cleanup Level ¹
Volatile Organic Compounds	Unit								_
Dichlorodifluoromethane	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	16,000 ⁽³⁾
Chloromethane	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NE
Vinyl chloride	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.67 (4)
Bromomethane	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	110 (3)
Chloroethane	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NE
Trichlorofluoromethane	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	24,000 (3)
Acetone	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	72,000 ⁽³⁾
1,1-Dichloroethene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	4,000 (3)
Hexane	mg/kg	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	4,800 (3)
Methylene chloride	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.02
Methyl t-butyl ether (MTBE)	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.1
trans-1,2-Dichloroethene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	1,600 (3)
1,1-Dichloroethane	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	180 (4)
2,2-Dichloropropane	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	NE
cis-1,2-Dichloroethene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	160 (3)
Chloroform	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	32 ⁽⁴⁾
2-Butanone (MEK)	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	48,000 ⁽³⁾
1,2-Dichloroethane (EDC)	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	11 (4)
1,1,1-Trichloroethane	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	2
1,1-Dichloropropene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	NE
Carbon tetrachloride	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	14 (4)
Benzene	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.03
Trichloroethene	mg/kg	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.03
1,2-Dichloropropane	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	27 (4)
Bromodichloromethane	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	16 (4)
Dibromomethane	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	800 (3)
4-Methyl-2-pentanone	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	6,400 ⁽³⁾
cis-1,3-Dichloropropene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	NE
Toluene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	7
trans-1,3-Dichloropropene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	10 (4)
1,1,2-Trichloroethane	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	18 (4)
2-Hexanone	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	400 (3)
1,3-Dichloropropane	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	NE
Tetrachloroethene	mg/kg	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	0.05
Dibromochloromethane	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	12
1,2-Dibromoethane (EDB)	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.005
Chlorobenzene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	1,000
Ethylbenzene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	6
1,1,1,2-Tetrachloroethane	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	38 (4)

Table 2 Summary of Soil Analytical Results Volatile Organic Compounds Kelly's Auto Body Bellevue, Washington

	Exploration No.	GP-1	GP-2	GP-3	GP-4	GP-5	GP-6	GP-7	
	Depth (ft)	10	7.5	10	8	7	10	10	
	Sample Date	10/12/2019	10/12/2019	10/12/2019	10/12/2019	10/12/2019	10/12/2019	10/12/2019	
Analyte	Sample ID	GP-1-10	GP-2-7.5	GP-3-10	GP-4-8	GP-5-7	GP-6-10	GP-7-10	MTCA Cleanup Level ¹
Volatile Organic Compounds	Unit								
m,p-Xylene	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	16,000 (3)
o-Xylene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	16,000 (3)
Styrene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	16,000 ⁽³⁾
Isopropylbenzene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	8,000 (3)
Bromoform	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	130 (4)
n-Propylbenzene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	8,000 (3)
Bromobenzene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	640 (3)
1,3,5-Trimethylbenzene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	800 (4)
1,1,2,2-Tetrachloroethane	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	5 (4)
1,2,3-Trichloropropane	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.033 (4)
2-Chlorotoluene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	1,600 (3)
4-Chlorotoluene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	NE
tert-Butylbenzene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	8,000 (3)
1,2,4-Trimethylbenzene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	800 (3)
sec-Butylbenzene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	8,000 (3)
p-Isopropyltoluene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	NE
1,3-Dichlorobenzene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	NE
1,4-Dichlorobenzene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	190 (4)
1,2-Dichlorobenzene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	7,200 ⁽³⁾
1,2-Dibromo-3-chloropropane	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.3
1,2,4-Trichlorobenzene	mg/kg	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	34 (4)
Hexachlorobutadiene	mg/kg	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	13 (4)
Naphthalene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	5
1,2,3-Trichlorobenzene	mg/kg	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	NE

Notes:

- $(1) \ \ \text{Samples were analyzed by Friedman \& Bruya, Inc. of Seattle, Washington using EPA Method 8260C.}$
- (2) MTCA Cleanup Regulation, Chapter 173-340-900 of WAC, Table 740-1 Method A Soil Cleanup Levels for Unrestricted Land Uses.
- (3) MTCA Cleanup Regulation, Chapter 173-340 of WAC, CLARC, Soil, Method B, Non-Carcinogen, Standard Formula Value, CLARC Website http://fortress.wa.gov/ecy/clarc/CLARCHome.aspx.
- (4) MTCA Cleanup Regulation, Chapter 173-340 of WAC, CLARC, Soil, Method B, Carcinogen, Standard Formula Value, CLARC Website http://fortress.wa.gov/ecy/clarc/CLARCHome.aspx.
- < = not detected at concentration exceeding the laboratory reporting limit.

EPA = U.S. Environmental Protection Agency

CLARC = Cleanup Levels and Risk Calculation

mg/kg = milligrams per kilogram

Table 3 Summary of Soil Analytical Results RCRA 8 Metals Kelly's Auto Body Bellevue, Washington

							Analytical Res				
Exploration / Well Location	Sample ID	Sample Date	Depth (feet)	Arsenic	Barium	Cadmium	Chromium	pear	Mercury	Selenium	Silver
GP-1	GP-1-10	10/12/2019	10	2.22	39.0	< 1	9.73	2.27	< 1	< 1	< 1
GP-2	GP-2-7.5	10/12/2019	7.5	4.63	40.9	< 1	6.54	1.94	< 1	< 1	< 1
GP-3	GP-3-10	10/12/2019	10	< 1	31.9	< 1	8.65	1.91	< 1	< 1	< 1
GP-4	GP-4-8	10/12/2019	8	2.66	43.6	< 1	7.83	2.39	< 1	< 1	< 1
GP-5	GP-5-7	10/12/2019	7	3.44	28.5	< 1	13.4	1.31	< 1	< 1	< 1
GP-6	GP-6-10	10/12/2019	10	1.69	26.8	< 1	15.0	1.74	< 1	< 1	< 1
GP-7	GP-7-10	10/12/2019	10	5.03	27.4	< 1	11.4	< 1	< 1	< 1	< 1
Model	Toxics Control A	ct Cleanup Level ⁽²⁾		20.0	16,000 ⁽³⁾	2.00	2,000	250	2.00	5.20 ⁽³⁾	400 (3)

NOTES:

- (1) Samples were analyzed by Friedman & Bruya, Inc. of Seattle, Washington using EPA Method 6020B.
- (2) MTCA Cleanup Regulation, Chapter 173-340-900 of WAC, Table 740-1 Method A Soil Cleanup Levels for Unrestricted Land Uses.
- (3)
 MTCA Cleanup Regulation, Chapter 173-340 of WAC, CLARC, Soil, Method B, Non-Carcinogen, Standard Formula Value, CLARC Website http://fortress.wa.gov/ecy/clarc/CLARCHome.aspx.

< = not detected at concentration exceeding the laboratory reporting limit.

EPA = U.S. Environmental Protection Agency

mg/kg = milligrams per kilogram

MTCA = Washingston State Model Toxics Control Act

RCRA = Resource Conservation and Recovery Act

WAC = Washington Administrative Code

Table 4 Summary of Groundwater Analytical Results

Volatile Organic Compounds and Total Petroleum Hydrocarbons Kelly's Auto Body Bellevue, Washington

						Ana	lytical Results	(μg/L)		
				١	/olatile Organi	c Compounds	(1)	Total Petr	oleum Hydroca	arbons ⁽²⁾
Exploration / Well Location	Sample ID	Sample Date	Screen Depth (feet)	Benzene	Toluene	Ethylbenzene	Total Xylenes	Gasoline Range Hydrocarbons	Diesel Range Hydrocarbons	Heavy Oil Range Hydrocarbons
GP-1	GP-1-GW	10/12/2019	10-15	< 0.35	< 1	< 1	< 2	< 100	< 60	< 300
GP-2	GP-2-GW	10/12/2019	5-15	< 0.35	< 1	< 1	< 2	< 100	110 x	< 250
GP-3	GP-3-GW	10/12/2019	10-15	< 0.35	< 1	< 1	< 2	< 100	< 50	< 250
GP-4	GP-4-GW	10/12/2019	7-12	< 0.35	< 1	< 1	< 2	< 100	< 50	< 250
GP-5	GP-5-GW	10/12/2019	7-12	< 0.35	< 1	< 1	< 2	< 100	< 50	< 250
GP-6	GP-6-GW	10/12/2019	8-13	< 0.35	< 1	< 1	< 2	< 100	< 60	< 300
GP-7	GP-7-GW	10/12/2019	10-15	< 0.35	< 1	< 1	< 2	< 100	< 50	< 250
Mod	el Toxics Control A	Act Cleanup Level (3)	5	1,000	700	1,000	800/1,000 (4)	500	500

NOTES:

- (1) Samples were analyzed by Friedman & Bruya, Inc. of Seattle, Washington using EPA Method 8260C.
- (2) Samples were analyzed by Friedman & Bruya, Inc. of Seattle, Washington using NWTPH Methods NWTPH-Gx and NWTPH-Dx.
- (3) MTCA Cleanup Regulation, Chapter 173-340-900 of WAC, Table 720-1 Method A Cleanup Levels for Ground Water.
- (4) MTCA Method A Cleanup Level is 800 μg/L when benzene is detected and 1,000 μg/L when benzene is not detected.
- < = not detected at a concentration exceeding the laboratory reporting limit.
- x = The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

EPA = U.S. Environmental Protection Agency

MTCA = Washingston State Model Toxics Control Act

NWTPH = Northwest Total Petroleum Hydrocarbons

μg/L = micrograms per Liter

WAC = Washington Administrative Code

Table 5 Summary of Groundwater Analytical Results Volatile Organic Compounds Kelly's Auto Body Bellevue, Washington

	Exploration No.	GP-1	GP-2	GP-3	GP-4	GP-5	GP-6	GP-7	
	Screen Depth (ft)	10-15	5-15	10-15	7-12	7-12	8-13	10-15	
	Sample Date	10/12/2019	10/12/2019	10/12/2019	10/12/2019	10/12/2019	10/12/2019	10/12/2019	
Analyte ⁽¹⁾	Sample ID	GP-1-GW	GP-2-GW	GP-3-GW	GP-4-GW	GP-5-GW	GP-6-GW	GP-7-GW	MTCA Cleanup Level ⁽²⁾
Volatile Organic Compounds	Unit								
Dichlorodifluoromethane	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	1,600 (3)
1,3-Dichloropropane	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	NE
Chloromethane	μg/L	< 10	< 10	< 10	< 10	< 10	< 10	< 10	NE
Tetrachloroethene (PCE)	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	5
Vinyl chloride	μg/L	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.2
Dibromochloromethane	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	0.52 (4)
Bromomethane	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	11 (3)
1,2-Dibromoethane (EDB)	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	0.01
Chloroethane	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	NE
Chlorobenzene	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	160 ⁽³⁾
Trichlorofluoromethane	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	2,400 (3)
Ethylbenzene	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	700
Acetone	μg/L	< 50	< 50	< 50	< 50	< 50	< 50	< 50	7,200 ⁽³⁾
1,1,1,2-Tetrachloroethane	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	1.7 (4)
1,1-Dichloroethene	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	400 (3)
m, p-Xylene	μg/L	< 2	< 2	< 2	< 2	< 2	< 2	< 2	1,600 (3)
Hexane	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	480 (3)
o-Xylene	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	1,600 (3)
Methylene chloride	μg/L	< 5	< 5	< 5	< 5	< 5	< 5	< 5	5
Styrene	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	1,600 (3)
Methyl t-butyl ether	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	20
Isopropylbenzene (Cumene)	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	800 (3)
trans-1,2-Dichloroethene	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	160 (3)
Bromoform	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	5.5 (4)
1.1-Dichloroethane	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	8 (4)
n-Propylbenzene	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	800 (4)
2,2-Dichloropropane	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	NE
Bromobenzene	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	64 (3)
cis-1,2-Dichloroethene	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	16 (3)
1,3,5-Trimethylbenzene	μg/L μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	80 (3)
Chloroform	μg/L μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	1.4
1,1,2,2-Tetrachloroethane	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	0.22 (4)
2-Butanone	μg/L	< 10	< 10	< 10	< 10	< 10	< 10	< 10	4,800 (3)
1,2,3-Trichloropropane	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	0.0015 (4)
1,2-Dichloroethane		< 1	< 1	< 1	< 1	< 1	< 1	< 1	5
2-Chlorotoluene	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	160 (3)
1,1,1-Trichloroethane	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	200
4-Chlorotoluene	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	NE
1,1-Dichloropropene	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	NE NE
' '	μg/L								800 ⁽³⁾
tert-Butylbenzene	μg/L			< 1			< 1	< 1	0.63
Carbon tetrachloride	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	0.03
1,2,4-Trimethylbenzene	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	80 5
Benzene	μg/L	< 0.35	< 0.35	< 0.35	< 0.35	< 0.35	< 0.35	< 0.35	800 (3)
sec-Butylbenzene	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	800
Trichloroethene	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	5 NF
p-Isopropyltoluene	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	NE

Table 5 Summary of Groundwater Analytical Results Volatile Organic Compounds Kelly's Auto Body Bellevue, Washington

1,2-Dichloropropane	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	1.2 (4)
1,3-Dichlorobenzene	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	NE
Dichlorobromomethane	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	0.710 (4)
1,4-Dichlorobenzene	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	8.1
Dibromomethane	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	80 (3)
1,2-Dichlorobenzene	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	720 (3)
Methyl isobutyl ketone	μg/L	< 10	< 10	< 10	< 10	< 10	< 10	< 10	640 (3)
1,2-Dibromo-3-chloropropane	μg/L	< 10	< 10	< 10	< 10	< 10	< 10	< 10	0.055 (4)
cis-1,3-Dichloropropene	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	NE
1,2,4-Trichlorobenzene	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	1.5 (4)
Toluene	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	1,000
Hexachlorobutadiene	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	0.56 (4)
trans-1,3-Dichloropropene	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	0.44
Naphthalene	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	160
1,1,2-Trichloroethane	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	0.77 (4)
1,2,3-Trichlorobenzene	μg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	NE
2-Hexanone	μg/L	< 10	< 10	< 10	< 10	< 10	< 10	< 10	40 (3)

NOTES:

- (1) Samples were analyzed by Friedman & Bruya, Inc. of Seattle, Washington using EPA Method 8260C.
- (2) MTCA Cleanup Regulation, Chapter 173-340-900 of WAC, Table 720-1 Method A Cleanup Levels for Ground Water.
- (3) MTCA Cleanup Regulation, Chapter 173-340 of WAC, CLARC, Ground Water, Method B, Non-Carcinogen, Standard Formula Value
- (4) MTCA Cleanup Regulation, Chapter 173-340 of WAC, CLARC, Ground Water, Method B, Carcinogen, Standard Formula Value

Bold = concentration below laboratory detection limit, but exceeding the MTCA cleanup level for groundwater.

< = not detected at concentration exceeding the laboratory practical quantitation limit.

CLARC = Cleanup Levels and Risk Calculation
EPA = U.S. Environmental Protection Agency
MTCA = Washingston State Model Toxics Control Act
NE = not established.

µg/L = micrograms per Liter
WAC = Washington Administrative Code

Table 6 Summary of Groundwater Analytical Results RCRA 8 Metals Kelly's Auto Body Bellevue, Washington

							Analytical Re				
Exploration / Well Location	Sample ID	Sample Date	Screen Depth (feet)	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
GP-1	GP-1-GW	10/12/2019	10-15	45.7	2,280	1.21	256	49.6	< 1	< 1	< 1
GP-2	GP-2-GW	10/12/2019	5-15	27.3	1,170	< 1	172	34.3	< 1	< 1	< 1
GP-3	GP-3-GW	10/12/2019	10-15	5.58	144	< 1	21.4	11.8	< 1	< 1	< 1
GP-4	GP-4-GW	10/12/2019	7-12	22.4	509	< 1	114	23.1	< 1	< 1	< 1
GP-5	GP-5-GW	10/12/2019	7-12	36.1	926	1.27	253	36.4	< 1	< 1	< 1
GP-6	GP-6-GW	10/12/2019	8-13	17.8	928	1.25	218	42.4	< 1	< 1	< 1
GP-7	GP-7-GW	10/12/2019	10-15	25.4	1,170	< 1	81.3	15.0	< 1	< 1	< 1
Mod	el Toxics Control A	Act Cleanup Level (2)	5	3,200 ⁽³⁾	5	50	15	2	80 (3)	80 (3)

NOTES:

- (1) Samples were analyzed by Friedman & Bruya, Inc. of Seattle, Washington usign EPA Method 6020B.
- (2) MTCA Cleanup Regulation, Chapter 173-340-900 of WAC, Table 740-1 Method A Cleanup Levels for Ground Water.
- (3) MTCA Cleanup Regulation, Chapter 173-340 of WAC, CLARC, Ground Water, Method B, Non-Carcinogen, Standard Formula Value.

Red = concentration exceeds MTCA cleanup level.

< = not detected at concentration exceeding the laboratory practical quantitation limit.

CLARC = Cleanup Levels and Risk Calculation

MTCA = Washingston State Model Toxics Control Act

RCRA = Resource Conservation and Recovery Act

μg/L = micrograms per Liter

WAC = Washington Administrative Code

APPENDIX A

Exploration Logs

\prod	7		arth	sciences	Project Number Exploration N	umber	<u> II</u>	ıg			Shee		
Project	Nar		n c o	Kelly's Auto	190396V001 GP-1	Grou	ınd	Sur	face El	evation	1 o	f 1 _~173	3
Location Driller/I	n		ot.	Bellevue, W	/A illing / Geoprobe Direct Push	Datur Date	m			_NA\	/D 8	3	
Hamm					ming / Geoprobe Direct Fush				ter (in)	_10/	12/19	,10/12	719
Depth (ft)	S	Samples	Graphic Symbol		DESCRIPTION	Well	Water Level	Blows/6"		Blow			Othor Tooto
			p 6 4		Concrete - 6 inches				10	20	30	40	1
			. 9 21 . 9		Vashon Recessional Outwash								
				Slightly moist, occasional grav	orangish brown, fine to medium SAND, some to trace silt; rel; slightly laminated (SP).								
		S-1			Vashon Advance Outwash								
_			1.1		gray, fine to medium SAND, trace silt; massive (SP).								
5				GP-1-4 (0.0 PP Slightly moist, o (SP-SM). GP-1-GW	vi) orangish brown, fine to medium SAND, some silt; stratified		□						
				Lens (6 inches	thick) of oxidized light brown, laminated silt with trace								
		S-2		organics. Slightly moist to trace silt; faintly	o moist, grayish brown, medium SAND, some fine sand, v stratified (SP).								
10				Becomes mois	to very moist. GP-1-10 (0.0 PPM) o of sampler.		Ī						
		S-3		Slightly moist, I laminated (ML) GP-1-12.5 (0.0	Pre-Fraser Undifferentiated Deposits ight brown to gray, SILT, trace sand; massive to faintly								
15	_			As above; som									
		S-4		Slightly moist to occasional orgalaminated (ML/	o moist, dark gray, sandy, SILT grading to silty, SAND; anics (dark brown to black material); massive to faintly SM).								
				Becomes fine t	o medium SAND, some silt (SP-SM). GP-1-19 (0.0 PPM)								
- 20				Hand auger equip Groundwater enco Groundwater me indicator Bold = Environme (### ppm) = Phot Temporary well so	tion boring at 19 feet ment used to advance 0 to 2.5 feet puntered at ~9.5 feet at time of drilling assured at ~5.15 feet in temporary well post drilling with water le ntal sample ID pionization detector measurement in parts per million reen placed from 10 to 15 feet I sample submitted for chemical analysis	vel							
Sa	_		pe (ST	-): Spoon Sampler (SPT)						ogged	 by:	KMA

		≥ ª		ociate d sciences	Project Number	xploration Exploration Nur	Bor	ir	ng			Sh	not		
	2			rporated	190396V001	GP-2	ibei						of 1		
Project Location		ame		Kelly's Auto Bellevue, W	Body /A		Grou Datur		Sur	face El		n (ft) VD 8		73	
Driller/	Έqι		nt nt/Drop	Cascade Dr	illing / Geoprobe Direct Push		Date	Sta		inish ter (in)				12/19	
I Iaiiiii		veigi		_IN/ <i>F</i> A			_	_		(111)					
Œ		es	o lic				Well	evel	9/		Die	ws/F			or to
Depth (ft)	S	Samples	Graphic Symbol				Wel	ater L	Blows/6"		DIU	/VS/F	σοι		T Jer
	ľ	S			DESCRIPTION		ြ	Š	Ш	10	20	30	40		Ę
			4 4 4		Concrete - 6 inches Fill ? / Vashon Recessional Outwash	2									
-				Slightly moist, o	orangish brown to brown, fine to medium										
-				occasional grav	vel; disturbed (SP).										
- 5	Н				Vashon Advance Outwash			Ā							
-				(SM).	oist, grayish brown to light brown, very s	ilty, fine SAND									x
				GP-2-GW				▼							
		S-1		silt; faintly strat	own to light brown, medium SAND, som ified (SP).	e fine sand, trace		_							x
-				GP-2-7.5 (0.0 p	pm)										
-															
- 10	Ш														
-		S-2			Pre-Fraser Undifferentiated Deposit	s									
-		3-2			SAND; stratified. GP-2-12 (0.0 ppm) gray to dark brownish gray, fine sandy, S	II T trace organics:									
				faintly stratified Oxidized zone	(ML).	, o.ga,									
				GP-2-15 (0.0 pp											
- 15			111111	Bottom of explora	tion boring at 15 feet ment used to advance 0 to 5 feet										
-				Groundwater enco	ountered at ~7 feet at time of drilling asured at ~5.15 feet in temporary well post	drilling with water level									
-				indicator Bold = Environme											
				Temporary well so	oionization detector measurement in parts per n creen placed from 5 to 15 feet al sample submitted for chemical analysis	illion									
				,	a cample cashing to the change and start										
-															
- 20															
-															
2															
2															
8															
Sa	_		pe (ST		CDT)									1/8.4.5	
	_			Spoon Sampler (S Spoon Sampler (I		loisture Vater Level ()						Logge Appro		KMA TSB:	
			Sampl		Shelby Tube Sample ✓ V		drillin	ıg (ATE))					

		P a		ciated sciences	Project Number	Exploration Exploration Nu	Bor	in	g	I		Sh	eet		
\leq	2			porated	190396V001	GP-3	linei						of 1		
Projec Location Driller/	on ⁄Equ	ipme			Body /A illing / Geoprobe Direct Push		Datur Date	n Sta	ırt/F		_NA _10	\VD	88	173 /12/19	 9
Hamm	ner V	Veigh	nt/Drop	N/A	· · · · · · · · · · · · · · · · · · ·		Hole	Dia	met	er (in)	_2_				
Depth (ft)	S	Samples	Graphic Symbol		DESCRIPTION		Well	Water Level	Blows/6"	10		ws/F			Other Tests
	+		2 6 4		Concrete - 6 inches						20	30	40		+
-				Slightly moist, occasional grav	Fill ? / Vashon Recessional Outwas brangish brown to brown, fine to mediu rel; disturbed (SP).										
- 5 -				Wet, light brow (SP). GP-3-5 (0	Vashon Advance Outwash n, fine to medium SAND, trace silt; occ. 0 ppm)	asional gravel		Ţ Ž							
-		S-1		(rootlets): mass	Pre-Fraser Undifferentiated Depos thick) of slightly moist, dark gray, silt w sive. lium SAND, some fine sand, trace silt;	ith trace organics									×
- 10 -				GP-3-10 (0.0 pp	om)										
-		S-2		Grades to purp As above; becc	le-dark gray. omes silty, fine to medium SAND (SM).										
- 15 - -				Bottom of explora Hand auger equip Groundwater enco Groundwater mea Bold = Environme (### ppm) = Phot Temporary well sx	om) tion boring at 15 feet ment used to advance 0 to 5 feet buntered at ~5.5 feet at time of drilling sured at ~6 feet in temporary well post drilling	with water level indicator									
- 20 -															
Sá [-	/pe (ST	·): Spoon Sampler (SPT)							Logge		KM	

	\geqslant	a e		sciences	Project Number	Exploration Exploration Nu	Bor	ir	ng	T		She	aat .		
~	2	į		porated 190396V001 GP-4									of 1		
Projec Location		me		Bellevue, W	Kelly's Auto Body Bellevue, WA					face El		n (ft) VD 8	<u>~1</u> 38	73	_
Driller/ Hamm					rilling / Geoprobe Direct Push		Date Hole			inish ter (in)	_10/	/12/1	9,10/	12/19	_
	П							<u></u>							T
Depth (ft)		Samples	Graphic Symbol				Well Completion	r Lev	Blows/6"		Blov	ws/F	oot		†
Dep	S T	San	Sy		DESCRIPTION		Com	Wate	Blo						1
	₩		p 6 4		Concrete - 6 inches				H	10	20	30	40		+
ŀ	Ш			Slightly majet h	Fill prown, fine to coarse SAND, trace sil	t: massive (SM)									
<u> </u>	Ш			Olightiy moist, t	brown, fille to coarse SAND, trace sil	., massive (Svv).									
	Ш	S-1													
-	Ш														
<u> </u>	Ш														
- 5	H			GP-4-5 (0.0 ppr	n)			⊽							
<u> </u> -	Ш			Lens (8 inches	Vashon Advance Outwash thick) of slightly moist, brown to gray	SII T: massive (ML)									
_	Ш			Echo (o moneo	anony or originaly moist, brown to gray	, OILT, MOONE (ML).) X
	Ш	S-2		GP-4-GW				¥							
	Ш			faintly stratified	n with zones of oxidation, fine SAND (SP).	, some to trace silt;		-							×
_	Ш			GP-4-8 (0.0 ppr											
10	H			Becomes line to	o medium SAND.										
-	Ш				Pre-Fraser Undifferentiated Dep	osits									
	Ш			Moist to very m	oist, dark gray to purple gray, fine sa ganics; massive (ML/SM).										
Ĺ	Ш	S-3			g,										
	Ш														
ŀ	Ш			CD 4 15 (0.0 pr	am)										
– 15	H		: 1.111		tion boring at 15 feet										
-				Groundwater enco Groundwater mea Bold = Environme	ountered at ~8 feet at time of drilling Isured at ~5 feet in temporary well post drillin Intal sample ID	ng with water level indicator									
-				(### ppm) = Phote Temporary well so	oionization detector measurement in parts pareen placed from 7 to 12 feet	er million									
_				X = Environmenta	al sample submitted for chemical analysis										
- 20															
-															
-															
_															
Sa	_ `	-	pe (ST					1							
	_			Spoon Sampler (· · · · · · · · · · · · · · · · · · ·	I - Moisture						Logge Appro	ed by: ved by:	KMA	
Sa [Split S Sampl	Spoon Sampler (I e	D & M)	Water Level () Water Level at time of	of drillin	g (ATE	D)			wy	- 135	

	\gtrsim	> a		ciated sciences	Project Number	Exploration Exploration Nur	Bor	ir	ng			Ch	oot			
\ll				porated	190396V001	GP-5						Sheet 1 of 1				
Project Location	n		-4	Kelly's Auto Body Bellevue, WA Cascade Drilling / Geoprobe Direct Push						face El	_NA	VD	38	173		
Driller/E Hamm					illing / Geoprobe Direct Pusit					ter (in)	_10	/12/1	9,10	/12/1	9	
Depth (ft)	S	Samples	Graphic Symbol		DESCRIPTION				Blows/6"		Blo	ws/F	oot		Other Teete	
_			p 5 4		DESCRIPTION Concrete - 6 inches		+	<u> </u>		10	20	30	40) 	+	
	,	S-1		Slightly moist, t (SW).	Fill Fill Fill Fill Fill Fill Fill Fill	i, trace gravel; massive										
- 5				GP-5-5 (0.0 ppr	n) Vashon Advance Outwash			Ā								
		S-2		Becomes wet.	orown, fine to medium SAND, some of GP-5-7 (0.0 ppm) ret, brown, fine to medium SAND, training trai			¥							x	
- - 10 -				Becomes oxidiz	zed. 10 to 15 feet; sampler stuck in rod.											
-	;	S-3		Slightly moist, of GP-5-15 (0.0 pp	Pre-Fraser Undifferentiated Depotential States of the Stat											
- 15 - -				Groundwater enco Groundwater mea Bold = Environme (### ppm) = Phot Temporary well so	tion boring at 15 feet buntered at ~7 feet at time of drilling surred at ~5.2 feet in temporary well post dri ntal sample ID bionization detector measurement in parts poreen placed from 7 to 12 feet analysis I sample submitted for chemical analysis		,									
- 20 																
Sa] 2'] 3'	' OD		r): Spoon Sampler (S Spoon Sampler (I		- Moisture Water Level ()							ed by:	KM y : TS		

Project Name Location Driller/Equipment Hammer Weight/Drop Asphalt - 2 inches Fill Slightly moist, gray brown, silty, fine to medium SAND, some gravel; massive (SM). Sample Sampl		\tilde{a}	a		sciences	Project Number	Exploration Exploration Nu	Bor	ir	ng			Sh	eet		
Description	\ll	2	ı		porated 190396V001 GP-6											
Description Asphalt - 2 inches Fill Sightly moist, gray brown, silty, fine to medium SAND, some gravet; S-1 GP-6-5 (0.0 ppm) Description S-2 Occasional gravel. GP-6-5 (0.0 ppm) GP-6-5 (0.0 ppm) GP-6-5 (0.0 ppm) GP-6-5 (0.0 ppm) GP-6-6 (0.0 ppm) GRAPH - 15 G			ame		Kelly's Auto Bellevue, W	Body /A				Sur	face El				73	—
DESCRIPTION Asphalt -2 Inches Fill Slightly moist, gray brown, silty, fine to medium SAND, some gravel; massive (SM). Vashon Advance Outwash Slightly moist, light brown, medium SAND (SP). GP-6-5 (0.0 ppm) GP-6-5 (0.0 ppm) Pro-Fraser Undifferentiated Deposits Moist, dark gray, medium SAND grading to fine sandy, SILT, trace organics (SP-M). Moist, dark gray, medium SAND grading to fine sandy, SILT, trace organics (SP-M). Bettom of exploration from grading to fine sandy, SILT, trace organics (SP-M). Bettom of exploration from grading to fine sandy, SILT, trace organics (SP-M). Bettom of exploration from grading to fine sandy, SILT, trace organics (SP-M). Bettom of exploration from grad 14 feet form organics (SP-M). Bettom of exploration from grading to fine sandy, SILT, trace organics (SP-M). Bettom of exploration from grad 14 feet form organics (SP-M). Bettom of exploration from grad 14 feet form organics (SP-M). Bettom of exploration from grad 14 feet form organics (SP-M). Bettom of exploration from grad 14 feet form organics (SP-M). Bettom of exploration from grad 14 feet form organics (SP-M). Bettom of exploration from grad 14 feet form should be grading to fine sandy. First organics (SP-M). As a province organics (SP-M). Pro-Fraser Undifferentiated Deposits Moist, dark gray, medium SAND grading to fine sandy, SILT, trace organics (SP-M). Pro-Fraser Undifferentiated Deposits Moist, dark gray, medium SAND grading to fine sandy, SILT, trace organics (SP-M). Pro-Fraser Undifferentiated Deposits Moist, dark gray, medium SAND grading to fine sandy, SILT, trace organics (SP-M). Pro-Fraser Undifferentiated Deposits Moist, dark gray, medium SAND grading to fine sandy, SILT, trace organics (SP-M). Pro-Fraser Undifferentiated Deposits Moist, dark gray, medium SAND grading to fine sandy, SILT, trace organics (SP-M). Pro-Fraser Undifferentiated Deposits Moist, dark gray, medium SAND grading to fine sandy, SILT, trace organics (SP-M). Pro-Fraser Undifferentiated Deposits Moist, dark gray, m					Cascade Dr	rilling / Geoprobe Direct Push						_10	/12/1	9,10/	12/19	_
Asphalt - 2 inches Fill Slightly moist, gray brown, silty, fine to medium SAND, some gravel; massive (SM). Vashon Advance Outwash Slightly moist, light brown, medium SAND (SP). GP-6-5 (0.0 ppm) GP-6-GW Becomes very moist to wet. GP-6-10 (0.0 ppm) Wet at top of sampler. S-3 Pre-Fraser Undifferentiated Deposits Moist, dark gray, medium SAND grading to fine sandy, SILT, trace organics (SP-ML). GP-6-14 (0.0 ppm) Groundwater measured at -7.1 feet in temporary well post drilling Groundwater measured at -7.1 feet in temporary well post drilling Groundwater measured at -7.1 feet in temporary well post drilling Groundwater measured at -7.1 feet in temporary well post drilling Groundwater measured at -7.1 feet in temporary well post drilling Groundwater measured at -7.1 feet in temporary well post drilling Groundwater measured at -7.1 feet in temporary well post drilling Groundwater measured at -7.1 feet in temporary well post drilling Groundwater measured at -7.1 feet in temporary well post drilling Groundwater measured at -7.1 feet in temporary well post drilling Groundwater measured at -7.1 feet in temporary well post drilling Groundwater measured at -7.1 feet in temporary well post drilling Groundwater measured at -7.1 feet in temporary well post drilling Groundwater measured at -7.1 feet in temporary well post drilling Groundwater measured at -7.1 feet in temporary well post drilling Groundwater measured at -7.1 feet in temporary well post drilling Groundwater measured at -7.1 feet in temporary well post drilling Groundwater measured at -7.1 feet in temporary well post drilling Groundwater measured at -7.1 feet in temporary well post drilling Groundwater measured at -7.1 feet in temporary well post drilling Groundwater measured at -7.1 feet in temporary well post drilling Groundwater measured at -7.1 feet in temporary well post drilling Groundwater measured at -7.1 feet in temporary well post drilling Groundwater measured at -7.1 feet in temporary well post drilling Groundwater measured at -7.1 feet in temporar					1071				_		()					T
Asphalt - 2 inches Fill Slightly moist, gray brown, silty, fine to medium SAND, some gravel; massive (SM). Vashon Advance Outwash Slightly moist, light brown, medium SAND (SP). GP-6-5 (0.0 ppm) GP-6-GW Becomes very moist to wet. GP-6-10 (0.0 ppm) Wet at top of sampler. Pre-Fraser Undifferentiated Deposits Moist, dark gray, medium SAND grading to fine sandy, SILT, trace organics (SP-ML). GP-6-14 (0.0 ppm) Groundwater measured at ~1 feet at time of drilling Groundwater measured at ~1 feet at time of drilling Groundwater measured at ~1 feet at time of drilling Groundwater measured at ~1 feet in temporary well post drilling with water level indicator Bold = Environmental sample D (miss ppm) = Photoionization detector measurement in parts per million X = Environmental sample submitted for chemical analysis) (ft)		səlc	ohic Ibol				etion	Leve	9/s		Blo	ws/F	oot		Toote
Asphalt - 2 inches Fill Slightly moist, gray brown, silty, fine to medium SAND, some gravel; massive (SM). Vashon Advance Outwash Slightly moist, light brown, medium SAND (SP). GP-6-5 (0.0 ppm) GP-6-GW Becomes very moist to wet. GP-6-10 (0.0 ppm) Wet at top of sampler. Pre-Fraser Undifferentiated Deposits Moist, dark gray, medium SAND grading to fine sandy, SILT, trace organics (SP-ML). GP-6-14 (0.0 ppm) Groundwater measured at ~1 feet at time of drilling Groundwater measured at ~1 feet at time of drilling Groundwater measured at ~1 feet at time of drilling Groundwater measured at ~1 feet in temporary well post drilling with water level indicator Bold = Environmental sample D (miss ppm) = Photoionization detector measurement in parts per million X = Environmental sample submitted for chemical analysis	Depti	S T	Samp	Grap				Wel	/ater	Blow						, re-
Sightly moist, gray brown, silty, fine to medium SAND, some gravel; massive (SM). Vashon Advance Outwash Slightly moist, light brown, medium SAND (SP). GP-6-5 (0.0 ppm) Occasional gravel. GP-6-GW Becomes very moist to wet. GP-6-10 (0.0 ppm) Wet at top of sampler. Pre-Fraser Undifferentiated Deposits Moist, dark gray, medium SAND grading to fine sandy, SiLT, trace organics (SP-ML). GP-6-14 (0.0 ppm) Bottom of exploration boring at 14 feet Groundwater encountered at ~7.1 feet in temporary well post drilling Groundwate measured at ~7.1 feet in temporary well post drilling Groundwate measured at ~7.1 feet in temporary well post drilling with water level indicator (### ppm) = Photoionization detector measurement in parts per million Temporary well screen placed from 8 to 13 feet X = Environmental sample submitted for chemical analysis									>		10	20	30	40		_
S-1 S-2 GP-6-5 (0.0 ppm) GP-6-5 (0.0 ppm) Occasional gravel. GP-6-GW Becomes very moist to wet. GP-6-10 (0.0 ppm) Wet at top of sampler. Pre-Fraser Undifferentiated Deposits Moist, dark gray, medium SAND grading to fine sandy, SILT, trace organics (SP-ML). GP-6-10.0 ppm) Bottom of exploration bring at 14 feet Groundwater encountered at -10 feet at time of drilling Groundwater measured at -71 feet in temporary well post drilling with water level indicator (### ppm) = Photionization detector measurement in parts per million Temporary well screen placed from 8 to 13 feet X = Environmental sample submitted for chemical analysis					Slightly majet	Fill	ID, some gravel:									
S-1 Slightly moist, light brown, medium SAND (SP). GP-6-5 (0.0 ppm) Occasional gravel. GP-6-GW Becomes very moist to wet. GP-6-10 (0.0 ppm) Wet at top of sampler. Pre-Fraser Undifferentiated Deposits Moist, dark gray, medium SAND grading to fine sandy, SiLT, trace organics (SP-NL). GP-6-14 (0.0 ppm) Bottom of exploration boring at 14 feet Groundwater enacurated at -7.1 feet at time of drilling Groundwater encountered at -10 feet at time of drilling Groundwater encountered at -10 feet at time of drilling Groundwater encountered at -10 feet at time of drilling Groundwater encountered at -10 feet at time of drilling Groundwater encountered at -10 feet at time of drilling Groundwater encountered at -10 feet at time of drilling Groundwater encountered at -10 feet at time of drilling Groundwater encountered at -10 feet at time of drilling Groundwater encountered at -10 feet at time of drilling Groundwater encountered at -10 feet at time of drilling Groundwater encountered at -10 feet at time of drilling Groundwater encountered at -10 feet at time of drilling Groundwater encountered at -10 feet at time of drilling Groundwater encountered at -10 feet at time of drilling Groundwater encountered at -10 feet at time of drilling Groundwater encountered at -10 feet at time of drilling Groundwater encountered at -10 feet at time of drilling Groundwater encountered at -10 feet at time of drilling Groundwater encountered at -11 feet at time of drilling Groundwater encountered at -11 feet at time of drilling Groundwater encountered at -11 feet at time of drilling Groundwater encountered at -11 feet at time of drilling Groundwater encountered at -11 feet at time of drilling Groundwater encountered at -11 feet at time of drilling Groundwater encountered at -11 feet at time of drilling Groundwater encountered at -11 feet at time of drilling Groundwater encountered at -11 feet at time of drilling Groundwater encountered at -11 feet at time of drilling Groundwater encountered at -11 feet at time of drilling Groundwater enc					_ massive (SM).			4								
GP-6-5 (0.0 ppm) GP-6-6 (0.0 ppm) GP-6-GW Becomes very moist to wet. GP-6-10 (0.0 ppm) Wet at top of sampler. Pre-Fraser Undifferentiated Deposits Moist, dark gray, medium SAND grading to fine sandy, SILT, trace organics (SP-ML). Bettom of explorent boring at 14 feet. Groundwater encountered at 1-71 feet at time of drilling. Groundwater encountered at 1-71 feet temporary well post drilling with water level indicator Bold = Environmental sample ID. (### ppm) = Photolonization detector measurement in parts per million Temporary well screen placed from 8 to 13 feet. X = Environmental sample submitted for chemical analysis			S-1		Slightly moist, I											
S-2 Occasional gravel. GP-6-GW Becomes very moist to wet. GP-6-10 (0.0 ppm) Wet at top of sampler. Pre-Fraser Undifferentiated Deposits Moist, dark gray, medium SAND grading to fine sandy, SILT, trace organics (SP-ML). Groundwater encountered at -10 feet at time of drilling Groundwater encountered at -10 feet at time of drilling Groundwater measured at -7.1 feet in temporary well post drilling with water level indicator Bold = Environmental sample ID If ### ppm) = Photoionization detector measurement in parts per million Temporary well screen placed from 8 to 13 feet X = Environmental sample submitted for chemical analysis	_															
S-2 Occasional gravel. GP-6-GW Becomes very moist to wet. GP-6-10 (0.0 ppm) Wet at top of sampler. Pre-Fraser Undifferentiated Deposits Moist, dark gray, medium SAND grading to fine sandy, SILT, trace organics (SP-ML). Groundwater encountered at -10 feet at time of drilling Groundwater encountered at -10 feet at time of drilling Groundwater measured at -7.1 feet in temporary well post drilling with water level indicator Bold = Environmental sample ID If ### ppm) = Photoionization detector measurement in parts per million Temporary well screen placed from 8 to 13 feet X = Environmental sample submitted for chemical analysis	_															
S-2 Occasional gravel. GP-6-GW Becomes very moist to wet. GP-6-10 (0.0 ppm) Wet at top of sampler. Pre-Fraser Undifferentiated Deposits Moist, dark gray, medium SAND grading to fine sandy, SILT, trace organics (SP-ML), GP-6-14 (0.0 ppm) Bottom of exploration boring at 14 feet Groundwater encountered at ~10 feet at time of drilling Groundwater measured at ~1. feet in temporary well post drilling with water level indicator Bodd = Environmental sample ID (### ppm) = Photoionization detector measurement in parts per million Temporary well screen placed from 8 to 13 feet X = Environmental sample submitted for chemical analysis	- 5	L			GP-6-5 (0.0 ppr	n)										
GP-6-GW Becomes very moist to wet. GP-6-10 (0.0 ppm) Wet at top of sampler. Pre-Fraser Undifferentiated Deposits Moist, dark gray, medium SAND grading to fine sandy, SILT, trace organics (SP-ML). GP-6-14 (0.0 ppm) Bottom of exploration boring at 14 feet Groundwater encountered at ~10 feet at time of drilling Groundwater encountered at ~10 feet at time of drilli																
GP-6-GW Becomes very moist to wet. GP-6-10 (0.0 ppm) Wet at top of sampler. Pre-Fraser Undifferentiated Deposits Moist, dark gray, medium SAND grading to fine sandy, SILT, trace organics (SP-ML). GP-6-14 (0.0 ppm) Bottom of exploration boring at 14 feet Groundwater encountered at ~10 feet at time of drilling Groundwater encountered at ~10 feet at time of drillin																
GP-6-GW Becomes very moist to wet. GP-6-10 (0.0 ppm) Wet at top of sampler. Pre-Fraser Undifferentiated Deposits Moist, dark gray, medium SAND grading to fine sandy, SILT, trace organics (SP-ML). GP-6-14 (0.0 ppm) Bottom of exploration boring at 14 feet Groundwater encountered at ~10 feet at time of drilling Groundwater measured at ~7.1 feet in temporary well post drilling with water level indicator Bold = Environmental sample ID (### ppm) = Photoionization detector measurement in parts per million Temporary well screen placed from 8 to 13 feet X = Environmental sample submitted for chemical analysis	_		6.2		Occasional gra	vel.			⊻							
Becomes very moist to wet. GP-6-10 (0.0 ppm) Wet at top of sampler. Pre-Fraser Undifferentiated Deposits Moist, dark gray, medium SAND grading to fine sandy, SILT, trace organics (SP-ML). GP-6-14 (0.0 ppm) Bottom of exploration boring at 14 feet Groundwater encountered at ~10 feet at time of drilling Groundwater encountered at ~1.1 feet in temporary well post drilling with water level indicator Bold = Environmental sample ID (### ppm) = Photoionization detector measurement in parts per million Temporary well screen placed from 8 to 13 feet X = Environmental sample submitted for chemical analysis	_		3-2													
Wet at top of sampler. Pre-Fraser Undifferentiated Deposits Moist, dark gray, medium SAND grading to fine sandy, SILT, trace organics (SP-ML). GP-6-14 (0.0 ppm) Bottom of exploration boring at 14 feet Groundwater encountered at ~10 feet at time of drilling Groundwater encountered at ~10 feet at time of drilling with water level indicator Bold = Environmental sample ID (### ppm) = Photoionization detector measurement in parts per million Temporary well screen placed from 8 to 13 feet X = Environmental sample submitted for chemical analysis					GP-6-GW											X
Pre-Fraser Undifferentiated Deposits Moist, dark gray, medium SAND grading to fine sandy, SILT, trace organics (SP-ML). GP-6-14 (0.0 ppm) Bottom of exploration boring at 14 feet Groundwater encountered at ~10 feet at time of drilling Groundwater measured at ~7.1 feet in temporary well post drilling with water level indicator Bold = Environmental sample ID (### ppm) = Photoionization detector measurement in parts per million Temporary well screen placed from 8 to 13 feet X = Environmental sample submitted for chemical analysis	10								_▼	,						×
Pre-Fraser Undifferentiated Deposits Moist, dark gray, medium SAND grading to fine sandy, SILT, trace organics (SP-ML). GP-6-14 (0.0 ppm) Bottom of exploration boring at 14 feet Groundwater encountered at ~10 feet at time of drilling Groundwater measured at ~7.1 feet in temporary well post drilling with water level indicator Bold = Environmental sample ID (### ppm) = Photoionization detector measurement in parts per million Temporary well screen placed from 8 to 13 feet X = Environmental sample submitted for chemical analysis	_ 10				Wet at top of sa	ampler.			-							
Pre-Fraser Undifferentiated Deposits Moist, dark gray, medium SAND grading to fine sandy, SILT, trace organics (SP-ML). GP-6-14 (0.0 ppm) Bottom of exploration boring at 14 feet Groundwater encountered at ~10 feet at time of drilling Groundwater measured at ~7.1 feet in temporary well post drilling with water level indicator Bold = Environmental sample ID (### ppm) = Photoionization detector measurement in parts per million Temporary well screen placed from 8 to 13 feet X = Environmental sample submitted for chemical analysis																
Moist, dark gray, medium SAND grading to fine sandy, SILT, trace organics (SP-ML). GP-6-14 (0.0 ppm) Bottom of exploration boring at 14 feet Groundwater encountered at ~10 feet at time of drilling Groundwater measured at ~7.1 feet in temporary well post drilling with water level indicator Bold = Environmental sample ID (### ppm) = Photoionization detector measurement in parts per million Temporary well screen placed from 8 to 13 feet X = Environmental sample submitted for chemical analysis	_		S-3													
organics (SP-ML). GP-6-14 (0.0 ppm) Bottom of exploration boring at 14 feet Groundwater encountered at ~10 feet at time of drilling Groundwater measured at ~7.1 feet in temporary well post drilling with water level indicator Bold = Environmental sample ID (### ppm) = Photoionization detector measurement in parts per million Temporary well screen placed from 8 to 13 feet X = Environmental sample submitted for chemical analysis	_				Moist dark gra											
Bottom of exploration boring at 14 feet Groundwater encountered at ~10 feet at time of drilling Groundwater measured at ~7.1 feet in temporary well post drilling with water level indicator Bold = Environmental sample ID (### ppm) = Photoionization detector measurement in parts per million Temporary well screen placed from 8 to 13 feet X = Environmental sample submitted for chemical analysis	-				organics (SP-M GP-6-14 (0.0 pr	IL). om)	ay, 0121, 11400									
Bold = Environmental sample ID (### ppm) = Photoionization detector measurement in parts per million Temporary well screen placed from 8 to 13 feet X = Environmental sample submitted for chemical analysis					Bottom of explora Groundwater enco	tion boring at 14 feet ountered at ~10 feet at time of drilling	W									
Temporary well screen placed from 8 to 13 feet X = Environmental sample submitted for chemical analysis	- 15				Bold = Environme	ntal sample ID	•	r								
					Temporary well so	creen placed from 8 to 13 feet										
	_															
	- 20															
	-															
	_															
Sampler Type (ST):	Sa	mp	l ler Ty	/pe (ST	<u> </u>											
2" OD Split Spoon Sampler (SPT) No Recovery M - Moisture Logged by: KMA		<u> </u>	2" OE	Split 9	Spoon Sampler (
☐ 3" OD Split Spoon Sampler (D & M) ☐ Ring Sample ☐ Water Level () Approved by: TSB ☐ Grab Sample ☐ Shelby Tube Sample ☐ Water Level at time of drilling (ATD)	Saa						Water Level () Water Level at time of	f drillin	na (ΆΤΙ))		Appro	ved by	: TSB	

) å		ciated	Decised Members	Exploration	Bor	ir	ıg			Ols	-4			
			porated	i e n c e s Project Number Exploration Number 190396V001 GP-7						Sheet 1 of 1					
Project Na Location Driller/Equ Hammer V	iipme		Kelly's Auto Body Bellevue, WA Cascade Drilling / Geoprobe Direct Push					art/F	face El inish ter (in)	Elevation (ft)~172 _NAVD 88 10/12/19 10/12/19					
Depth (ft)	Samples	Graphic Symbol					Water Level	Blows/6"		Blows/Foot					
			7	DESCRIPTION Asphalt - 2 inches			_		10	20	30	40	_	Ş	
- - - 5 -	S-1		massive (SM). Slightly moist, I Becomes very	Fill gray brown, silty, fine to medium SAN ight brown, fine to medium SAND, tra silty (SM). Fill ? / Vashon Advance Outwas brown, medium SAND, some fine san	ce silt (SP).										
- - - - 10 -	S-2		Becomes very GP-7-GW	moist to wet and oxidized. GP-7-10 (0 .	0 ppm)		Ā							×	
- - -	S-3		SAND (SP-SM/ GP-7-13 (0.0 pp												
- 15 - - - - 20			Groundwater enco Groundwater mea Bold = Environme (### ppm) = Photo Temporary well so	tion boring at 15 feet puntered at -9.5 feet at time of drilling sured at ~6.8 feet in temporary well post drill ntal sample ID joinization detector measurement in parts pe reen placed from 10 to 15 feet Il sample submitted for chemical analysis		r									
31 m	-	/pe (ST	·): Spoon Sampler (SPT) No Recovery M	- Moisture						Logge	d by: ved by:	KMA		

APPENDIX B

Laboratory Reports and Chain-of-Custody Forms

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 22, 2019

Kellie Andrews, Project Manager Associated Earth Sciences, Inc. 911 5th Avenue, Suite 100 Kirkland, WA 98033

Dear Ms Andrews:

Included are the results from the testing of material submitted on October 14, 2019 from the Kelly's Auto Body 190396V001, F&BI 910283 project. There are 31 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures AE11022R.DOC

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 14, 2019 by Friedman & Bruya, Inc. from the Associated Earth Sciences Kelly's Auto Body 190396V001, F&BI 910283 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Associated Earth Sciences
910283 -01	GP-1-GW
910283 -02	GP-2-GW
910283 -03	GP-3-GW
910283 -04	GP-4-GW
910283 -05	GP-5-GW
910283 -06	GP-6-GW
910283 -07	GP-7-GW

A 6020B internal standard failed the acceptance criteria for several soil samples. The samples were diluted and reanalyzed with acceptable results. Both data sets were reported.

All other quality control requirements were acceptable.

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

Date of Report: 10/22/19 Date Received: 10/14/19

Project: Kelly's Auto Body 190396V001, F&BI 910283

Date Extracted: 10/21/19 Date Analyzed: 10/21/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 51-134)
GP-1-GW 910283-01	<100	86
GP-2-GW 910283-02	<100	85
GP-3-GW 910283-03	<100	87
GP-4-GW 910283-04	<100	84
GP-5-GW 910283-05	<100	86
GP-6-GW 910283-06	<100	87
GP-7-GW 910283-07	<100	85
Method Blank 09-2513 MB	<100	92

ENVIRONMENTAL CHEMISTS

Date of Report: 10/22/19 Date Received: 10/14/19

Project: Kelly's Auto Body 190396V001, F&BI 910283

Date Extracted: 10/15/19 Date Analyzed: 10/15/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 47-140)
GP-1-GW 910283-01 1/1.2	<60	<300	101
GP-2-GW 910283-02	110 x	<250	102
GP-3-GW 910283-03	<50	<250	95
GP-4-GW 910283-04	<50	<250	98
GP-5-GW 910283-05	<50	<250	104
GP-6-GW 910283-06 1/1.2	<60	<300	87
GP-7-GW 910283-07	<50	<250	98
Method Blank 09-2524 MB2	<50	<250	105

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	GP-1-GW	Client:	Associated Earth Sciences
Date Received:	10/14/19	Project:	Kelly's Auto Body 190396V001
Date Extracted:	10/15/19	Lab ID:	910283-01
Date Analyzed:	10/15/19	Data File:	910283-01.104
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP

Analyte:	Concentration ug/L (ppb)
Arsenic	45.7
Barium	2,060 ve
Cadmium	1.21
Chromium	$107 \mathrm{J}$
Lead	49.6
Mercury	<1
Selenium	<1
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: GP-1-GW Client: Associated Earth Sciences
Date Received: 10/14/19 Project: Kelly's Auto Body 190396V001

 Date Extracted:
 10/15/19
 Lab ID:
 910283-01 x10

 Date Analyzed:
 10/15/19
 Data File:
 910283-01 x10.177

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Barium 2,280 Chromium 256

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	GP-2-GW	Client:	Associated Earth Sciences
Date Received:	10/14/19	Project:	Kelly's Auto Body 190396V001
Date Extracted:	10/15/19	Lab ID:	910283-02
Date Analyzed:	10/15/19	Data File:	910283-02.105
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP

<1

Analyte:	Concentration ug/L (ppb)
Arsenic	27.3
Barium	1,030 ve
Cadmium	<1
Chromium	$76.5~\mathrm{J}$
Lead	34.3
Mercury	<1
Selenium	<1

Silver

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: GP-2-GW Client: Associated Earth Sciences
Date Received: 10/14/19 Project: Kelly's Auto Body 190396V001

 Date Extracted:
 10/15/19
 Lab ID:
 910283-02 x10

 Date Analyzed:
 10/15/19
 Data File:
 910283-02 x10.178

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Barium 1,170 Chromium 172

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	GP-3-GW	Client:	Associated Earth Sciences
Date Received:	10/14/19	Project:	Kelly's Auto Body 190396V001
Date Extracted:	10/15/19	Lab ID:	910283-03
Date Analyzed:	10/15/19	Data File:	910283-03.106
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP

Analyte:	Concentration ug/L (ppb)
Arsenic	5.58
Barium	144
Cadmium	<1
Chromium	21.4
Lead	11.8
Mercury	<1
Selenium	<1
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	GP-4-GW	Client:	Associated Earth Sciences
Date Received:	10/14/19	Project:	Kelly's Auto Body 190396V001
Date Extracted:	10/15/19	Lab ID:	910283-04
Date Analyzed:	10/15/19	Data File:	910283-04.107
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP

Analyte:	Concentration ug/L (ppb)
Arsenic	22.4
Barium	509
Cadmium	<1
Chromium	$56.1~\mathrm{J}$
Lead	23.1
Mercury	<1
Selenium	<1
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: GP-4-GW Client: Associated Earth Sciences
Date Received: 10/14/19 Project: Kelly's Auto Body 190396V001

 Date Extracted:
 10/15/19
 Lab ID:
 910283-04 x10

 Date Analyzed:
 10/15/19
 Data File:
 910283-04 x10.179

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Chromium 114

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	GP-5-GW	Client:	Associated Earth Sciences
Date Received:	10/14/19	Project:	Kelly's Auto Body 190396V001
Date Extracted:	10/15/19	Lab ID:	910283-05
Date Analyzed:	10/15/19	Data File:	910283-05.108
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP

Arsenic 36.1 Barium 926 Cadmium 1.27 Chromium 115 J Lead 36.4 Mercury <1 Selenium <1
Cadmium 1.27 Chromium 115 J Lead 36.4 Mercury <1
Chromium 115 J Lead 36.4 Mercury <1
Lead 36.4 Mercury <1
Mercury <1
Selenium <1
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: GP-5-GW Client: Associated Earth Sciences
Date Received: 10/14/19 Project: Kelly's Auto Body 190396V001

 Date Extracted:
 10/15/19
 Lab ID:
 910283-05 x10

 Date Analyzed:
 10/15/19
 Data File:
 910283-05 x10.180

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Chromium 253

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	GP-6-GW	Client:	Associated Earth Sciences
Date Received:	10/14/19	Project:	Kelly's Auto Body 190396V001
Date Extracted:	10/15/19	Lab ID:	910283-06
Date Analyzed:	10/15/19	Data File:	910283-06.109
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP

Analyte:	Concentration ug/L (ppb)
Arsenic	17.8
Barium	928
Cadmium	1.25
Chromium	$107~\mathrm{J}$
Lead	42.4
Mercury	<1
Selenium	<1
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: GP-6-GW Client: Associated Earth Sciences
Date Received: 10/14/19 Project: Kelly's Auto Body 190396V001

 Date Extracted:
 10/15/19
 Lab ID:
 910283-06 x10

 Date Analyzed:
 10/15/19
 Data File:
 910283-06 x10.181

Concentration

Analyte: ug/L (ppb)

Chromium 218

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	GP-7-GW	Client:	Associated Earth Sciences
Date Received:	10/14/19	Project:	Kelly's Auto Body 190396V001
Date Extracted:	10/15/19	Lab ID:	910283-07
Date Analyzed:	10/15/19	Data File:	910283-07.110
Matrix:	Water	Instrument:	ICPMS2

<1 <1 Operator:

SP

Analyte:	Concentration ug/L (ppb)
Arsenic	25.4
Barium	1,080 ve
Cadmium	<1
Chromium	$42.3~\mathrm{J}$
Lead	15.0
Mercury	<1
Selenium	<1

ug/L (ppb)

Units:

Silver

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: GP-7-GW Client: Associated Earth Sciences
Date Received: 10/14/19 Project: Kelly's Auto Body 190396V001

 Date Extracted:
 10/15/19
 Lab ID:
 910283-07 x10

 Date Analyzed:
 10/15/19
 Data File:
 910283-07 x10.182

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Barium 1,170 Chromium 81.3

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	Method Blank	Client:	Associated Earth Sciences
Date Received:	NA	Project:	Kelly's Auto Body 190396V001

 Date Extracted:
 10/15/19
 Lab ID:
 19-649 mb2

 Date Analyzed:
 10/15/19
 Data File:
 19-649 mb2.090

<1

Analyte:	Concentration ug/L (ppb)
Arsenic	<1
Barium	<1
Cadmium	<1
Chromium	<1
Lead	<1

Selenium <1 Silver <1

Mercury

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	GP-1-GW	Client:	Associated Earth Sciences
Date Received:	10/14/19	Project:	Kelly's Auto Body 190396V001
Data Extracted:	10/17/19	Lah ID:	910983-01

Lab ID: Date Extracted: 10/17/19 910283-01 Date Analyzed: 10/17/19 Data File: 101729.DMatrix: Water Instrument: GCMS4 ug/L (ppb) Units: MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	98	63	127
4-Bromofluorobenzene	98	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	GP-2-GW	Client:	Associated Earth Sciences
Date Received:	10/14/19	Project:	Kelly's Auto Body 190396V001
D-4- E-44-1.	10/17/10	Lab ID.	010000 00

	_	Lower	$_{ m Upper}$
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	98	63	127
4-Bromofluorobenzene	97	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	GP-3-GW	Client:	Associated Earth Sciences
Date Received:	10/14/19	Project:	Kelly's Auto Body 190396V001
Date Extracted:	10/17/19	Lab ID:	910283-03

Date Extracted:10/17/19Lab ID:910283-03Date Analyzed:10/17/19Data File:101731.DMatrix:WaterInstrument:GCMS4Units:ug/L (ppb)Operator:MS/AEN

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	57	121
Toluene-d8	94	63	127
4-Bromofluorobenzene	91	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	GP-4-GW	Client:	Associated Earth Sciences
Date Received:	10/14/19	Project:	Kelly's Auto Body 190396V001
Data Extracted:	10/17/10	Lob ID:	010983 04

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	97	63	127
4-Bromofluorobenzene	98	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	GP-5-GW	Client:	Associated Earth Sciences
Date Received:	10/14/19	Project:	Kelly's Auto Body 190396V001
Data Extracted:	10/17/19	Lah ID:	910283-05

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	94	63	127
4-Bromofluorobenzene	88	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	GP-6-GW	Client:	Associated Earth Sciences
Date Received:	10/14/19	Project:	Kelly's Auto Body 190396V001
Data Extracted:	10/17/19	Lah ID:	910283-06

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	57	121
Toluene-d8	94	63	127
4-Bromofluorobenzene	92	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	GP-7-GW	Client:	Associated Earth Sciences
Date Received:	10/14/19	Project:	Kelly's Auto Body 190396V001
Data Extracted	10/17/10	Lab ID:	910983-07

Date Extracted:10/17/19Lab ID:910283-07Date Analyzed:10/18/19Data File:101751.DMatrix:WaterInstrument:GCMS4Units:ug/L (ppb)Operator:MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	94	63	127
4-Bromofluorobenzene	88	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Associated Earth Sciences
Date Received: Not Applicable Project: Kelly's Auto Body 190396V001

10/17/19 Lab ID: 09-2553 mbDate Extracted: Date Analyzed: 10/17/19 Data File: 101728.DMatrix: Water Instrument: GCMS4 Units: ug/L (ppb) MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	97	63	127
4-Bromofluorobenzene	97	60	133

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Date of Report: 10/22/19 Date Received: 10/14/19

Project: Kelly's Auto Body 190396V001, F&BI 910283

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 910283-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	ug/L (ppb)	1,000	88	69-134	

ENVIRONMENTAL CHEMISTS

Date of Report: 10/22/19 Date Received: 10/14/19

Project: Kelly's Auto Body 190396V001, F&BI 910283

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	92	88	58-134	4

ENVIRONMENTAL CHEMISTS

Date of Report: 10/22/19 Date Received: 10/14/19

Project: Kelly's Auto Body 190396V001, F&BI 910283

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 910218-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	<1	92	90	75-125	2
Barium	ug/L (ppb)	50	31.9	112	111	75 - 125	1
Cadmium	ug/L (ppb)	5	<1	102	101	75 - 125	1
Chromium	ug/L (ppb)	20	<1	100	100	75 - 125	0
Lead	ug/L (ppb)	10	<1	83	83	75 - 125	0
Mercury	ug/L (ppb)	5	<1	86	87	75 - 125	1
Selenium	ug/L (ppb)	5	<1	93	90	75 - 125	3
Silver	ug/L (ppb)	5	<1	73 vo	74 vo	75 - 125	1

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	101	80-120
Barium	ug/L (ppb)	50	100	80-120
Cadmium	ug/L (ppb)	5	99	80-120
Chromium	ug/L (ppb)	20	97	80-120
Lead	ug/L (ppb)	10	100	80-120
Mercury	ug/L (ppb)	5	94	80-120
Selenium	ug/L (ppb)	5	103	80-120
Silver	ug/L (ppb)	5	100	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 10/22/19 Date Received: 10/14/19

Project: Kelly's Auto Body 190396V001, F&BI 910283

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

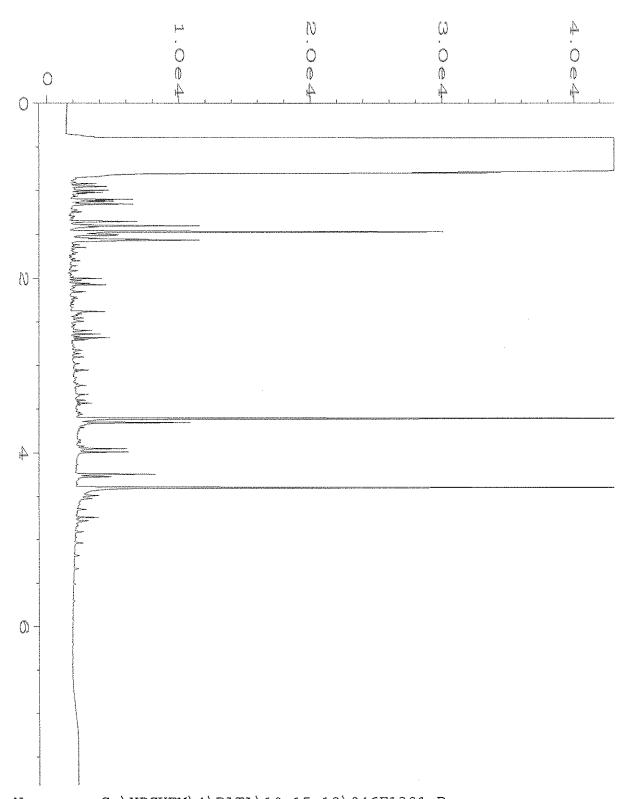
Laboratory Code: 910283-02 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	50	<1	84	10-172
Chloromethane	ug/L (ppb)	50	<10	109	25-166
Vinyl chloride	ug/L (ppb)	50	< 0.2	104	36-166
Bromomethane	ug/L (ppb)	50	<1	104	47-169
Chloroethane	ug/L (ppb)	50	<1	102	46-160
Trichlorofluoromethane Acetone	ug/L (ppb)	$\frac{50}{250}$	<1 <50	105 83	44-165 10-182
1.1-Dichloroethene	ug/L (ppb) ug/L (ppb)	50 50	<1	100	60-136
Hexane	ug/L (ppb)	50 50	<1	88	52-150
Methylene chloride	ug/L (ppb)	50	< ₅	103	67-132
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	103	74-127
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	103	72-129
1,1-Dichloroethane	ug/L (ppb)	50	<1	100	70-128
2,2-Dichloropropane	ug/L (ppb)	50	<1	97	36-154
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	99	71-127
Chloroform	ug/L (ppb)	50	<1	99	65-132
2-Butanone (MEK)	ug/L (ppb)	250	<10	83	10-129
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	91	48-149
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	101	60-146
1,1-Dichloropropene	ug/L (ppb)	50	<1	93	69-133
Carbon tetrachloride	ug/L (ppb)	50	<1	104	56-152
Benzene Trichloroethene	ug/L (ppb)	50 50	< 0.35	90 88	76-125
	ug/L (ppb)	50 50	<1 <1	88 90	66-135
1,2-Dichloropropane Bromodichloromethane	ug/L (ppb) ug/L (ppb)	50 50	<1	96	78-125 61-150
Dibromomethane	ug/L (ppb)	50	<1	88	66-141
4-Methyl-2-pentanone	ug/L (ppb)	250	<10	92	10-185
cis-1,3-Dichloropropene	ug/L (ppb)	50	<1	90	72-132
Toluene	ug/L (ppb)	50	<1	94	76-122
trans-1,3-Dichloropropene	ug/L (ppb)	50	<1	91	76-130
1,1,2-Trichloroethane	ug/L (ppb)	50	<1	91	68-131
2-Hexanone	ug/L (ppb)	250	<10	86	10-185
1,3-Dichloropropane	ug/L (ppb)	50	<1	86	71-128
Tetrachloroethene	ug/L (ppb)	50	<1	91	10-226
Dibromochloromethane	ug/L (ppb)	50	<1	94	70-139
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	90	69-134
Chlorobenzene	ug/L (ppb)	50	<1	93	77-122
Ethylbenzene	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	95	69-135
1,1,1,2-Tetrachloroethane m,p-Xylene	ug/L (ppb) ug/L (ppb)	100	<1 <2	111 97	73-137 69-135
o-Xylene	ug/L (ppb)	50	<1	100	60-140
Styrene	ug/L (ppb)	50	<1	96	71-133
Isopropylbenzene	ug/L (ppb)	50	<1	100	65-142
Bromoform	ug/L (ppb)	50	<1	100	65-142
n-Propylbenzene	ug/L (ppb)	50	<1	95	58-144
Bromobenzene	ug/L (ppb)	50	<1	91	75-124
1,3,5-Trimethylbenzene	ug/L (ppb)	50	<1	97	66-137
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	<1	99	51-154
1,2,3-Trichloropropane	ug/L (ppb)	50	<1	93	53-150
2-Chlorotoluene	ug/L (ppb)	50	<1	95	66-127
4-Chlorotoluene	ug/L (ppb)	50	<1	94	65-130
tert-Butylbenzene	ug/L (ppb)	50	<1	98	65-137
1,2,4-Trimethylbenzene	ug/L (ppb)	50	<1	95	59-146
sec-Butylbenzene p-Isopropyltoluene	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	98 97	64-140 65-141
1,3-Dichlorobenzene	ug/L (ppb)	50 50	<1	97 97	72-123
1,4-Dichlorobenzene	ug/L (ppb)	50 50	<1	95	69-126
1.2-Dichlorobenzene	ug/L (ppb)	50 50	<1	100	69-128
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	<10	102	32-164
1,2,4-Trichlorobenzene	ug/L (ppb)	50	<1	101	66-136
Hexachlorobutadiene	ug/L (ppb)	50	<1	93	60-143
Naphthalene	ug/L (ppb)	50	<1	103	44-164
1,2,3-Trichlorobenzene	ug/L (ppb)	50	<1	99	69-148
	/				

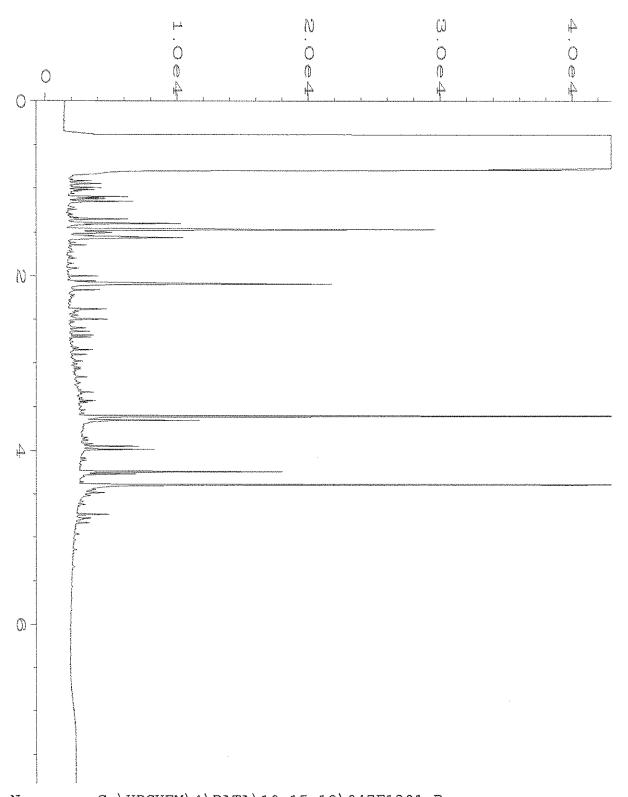
ENVIRONMENTAL CHEMISTS

Date of Report: 10/22/19 Date Received: 10/14/19

Project: Kelly's Auto Body 190396V001, F&BI 910283

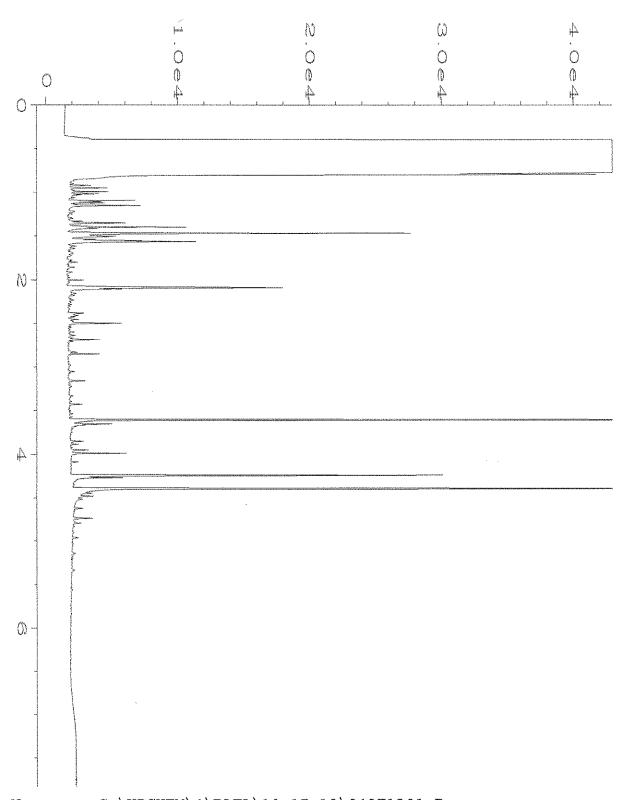

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Zazeratory educt Zazeratory e	one of Early		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	96	91	25-158	5
Chloromethane	ug/L (ppb)	50	109	102	45-156	7
Vinyl chloride	ug/L (ppb)	50	103	98	50-154	5
Bromomethane	ug/L (ppb)	50	103	97	55-143	6
Chloroethane	ug/L (ppb)	50	99	95	58-146	4
Trichlorofluoromethane	ug/L (ppb)	250	103	99	50-150	4
Acetone	ug/L (ppb)	250	93	90 96	53-131	3
1,1-Dichloroethene Hexane	ug/L (ppb) ug/L (ppb)	50 50	101 98	96 94	67-136 57-137	5 4
Methylene chloride	ug/L (ppb) ug/L (ppb)	50	104	97	39-148	7
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	105	100	64-147	5
trans-1,2-Dichloroethene	ug/L (ppb)	50	104	98	68-128	6
1,1-Dichloroethane	ug/L (ppb)	50	103	98	79-121	5
2,2-Dichloropropane	ug/L (ppb)	50	103	99	55-143	4
cis-1,2-Dichloroethene	ug/L (ppb)	50	101	95	80-123	6
Chloroform	ug/L (ppb)	50	102	97	80-121	5
2-Butanone (MEK) 1,2-Dichloroethane (EDC)	ug/L (ppb) ug/L (ppb)	250 50	98 100	97 97	57-149 73-132	1 3
1.1.1-Trichloroethane	ug/L (ppb) ug/L (ppb)	50 50	103	97	81-125	6
1,1-Dichloropropene	ug/L (ppb)	50	101	95	77-129	6
Carbon tetrachloride	ug/L (ppb)	50	107	103	75-158	4
Benzene	ug/L (ppb)	50	97	93	69-134	4
Trichloroethene	ug/L (ppb)	50	97	93	79-113	4
1,2-Dichloropropane	ug/L (ppb)	50	101	98	77-123	3
Bromodichloromethane	ug/L (ppb)	50	107	103	81-133	4
Dibromomethane	ug/L (ppb)	50	99	96	82-125	3
4-Methyl-2-pentanone cis-1,3-Dichloropropene	ug/L (ppb) ug/L (ppb)	250 50	103 109	100 106	65-138 82-132	3
Toluene	ug/L (ppb)	50	102	98	72-122	4
trans-1,3-Dichloropropene	ug/L (ppb)	50	110	106	80-136	4
1,1,2-Trichloroethane	ug/L (ppb)	50	103	100	75-124	3
2-Hexanone	ug/L (ppb)	250	102	99	60-136	3
1,3-Dichloropropane	ug/L (ppb)	50	100	97	76-126	3
Tetrachloroethene	ug/L (ppb)	50	99	96	76-121	3
Dibromochloromethane	ug/L (ppb)	50	104	101	84-133	3
1,2-Dibromoethane (EDB) Chlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	102 102	99 97	82-115 83-114	3 5
Ethylbenzene	ug/L (ppb)	50	102	98	77-124	4
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	115	109	84-127	5
m,p-Xylene	ug/L (ppb)	100	103	99	81-112	4
o-Xylene	ug/L (ppb)	50	104	99	81-121	5
Styrene	ug/L (ppb)	50	104	100	84-119	4
Isopropylbenzene	ug/L (ppb)	50	103	98	80-117	5
Bromoform n-Propylbenzene	ug/L (ppb)	50 50	108 104	105 102	74-136 74-126	3 2
n-Propyllenzene Bromobenzene	ug/L (ppb) ug/L (ppb)	50 50	104	99	80-121	3
1,3,5-Trimethylbenzene	ug/L (ppb)	50	103	101	78-123	2
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	109	108	66-126	1
1,2,3-Trichloropropane	ug/L (ppb)	50	103	102	67-124	1
2-Chlorotoluene	ug/L (ppb)	50	102	101	77-127	1
4-Chlorotoluene	ug/L (ppb)	50	103	101	78-128	2
tert-Butylbenzene	ug/L (ppb)	50	104	101	80-123	3
1,2,4-Trimethylbenzene	ug/L (ppb)	50	101	99	79-122	2
sec-Butylbenzene p-Isopropyltoluene	ug/L (ppb) ug/L (ppb)	50 50	103 102	102 100	80-116 81-123	$\frac{1}{2}$
1,3-Dichlorobenzene	ug/L (ppb)	50	103	99	83-113	4
1,4-Dichlorobenzene	ug/L (ppb)	50	101	98	83-107	3
1,2-Dichlorobenzene	ug/L (ppb)	50	103	100	84-112	3
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	107	105	57-141	2
1,2,4-Trichlorobenzene	ug/L (ppb)	50	105	104	72-130	1
Hexachlorobutadiene	ug/L (ppb)	50	94	94	53-141	0
Naphthalene	ug/L (ppb)	50	107	104	64-133	3
1,2,3-Trichlorobenzene	ug/L (ppb)	50	104	101	65-136	3

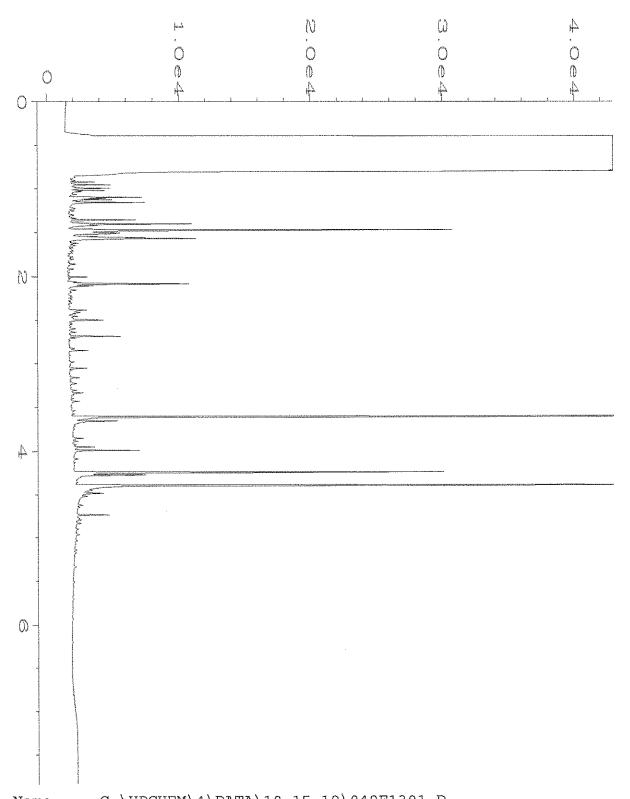

ENVIRONMENTAL CHEMISTS

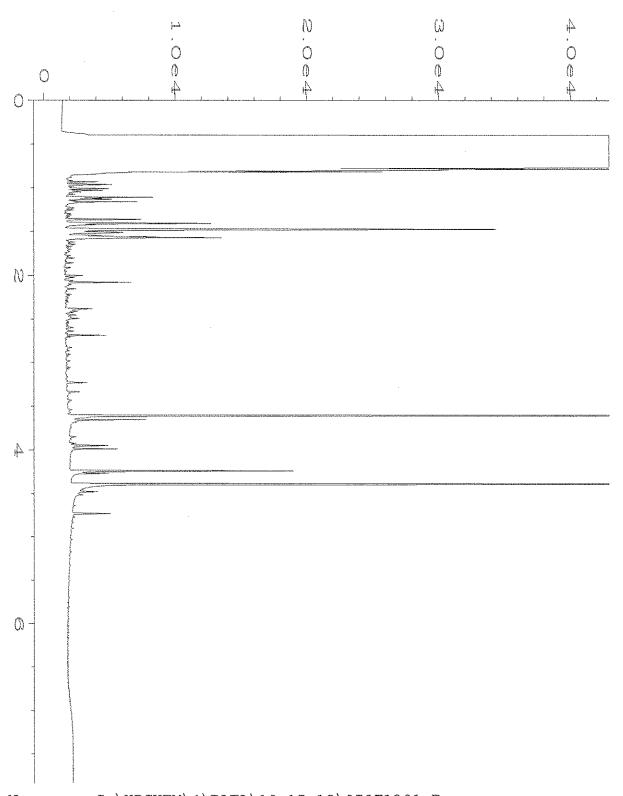
Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

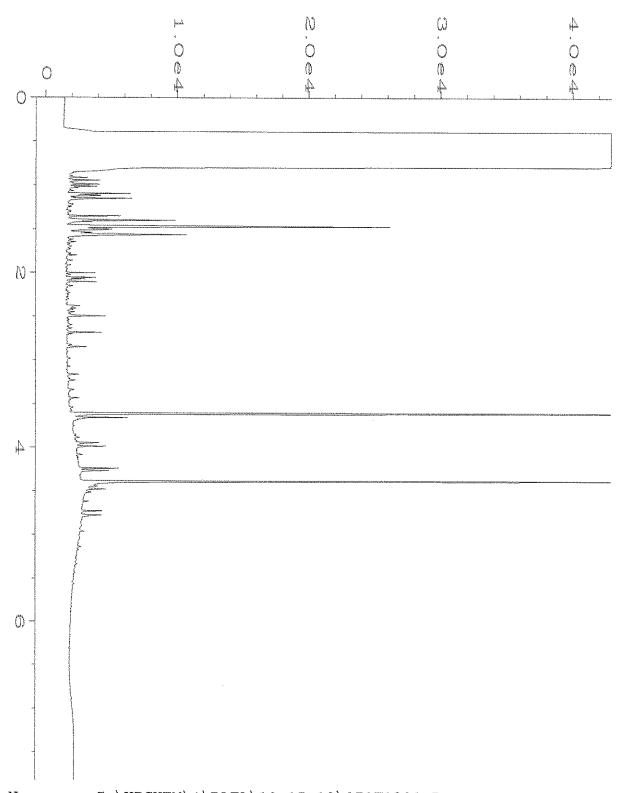


Report Created on: 16 Oct 19 12:25 PM Analysis Method : DEFAULT.MTH

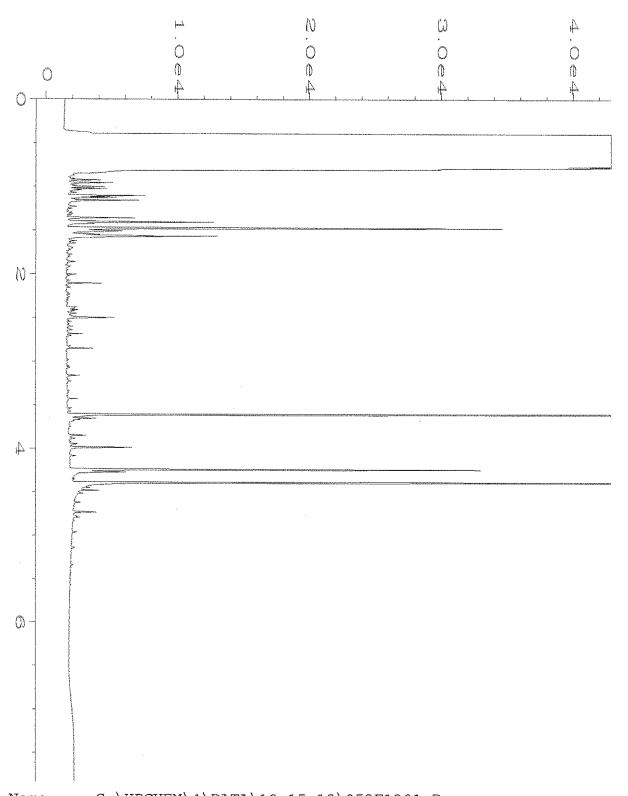


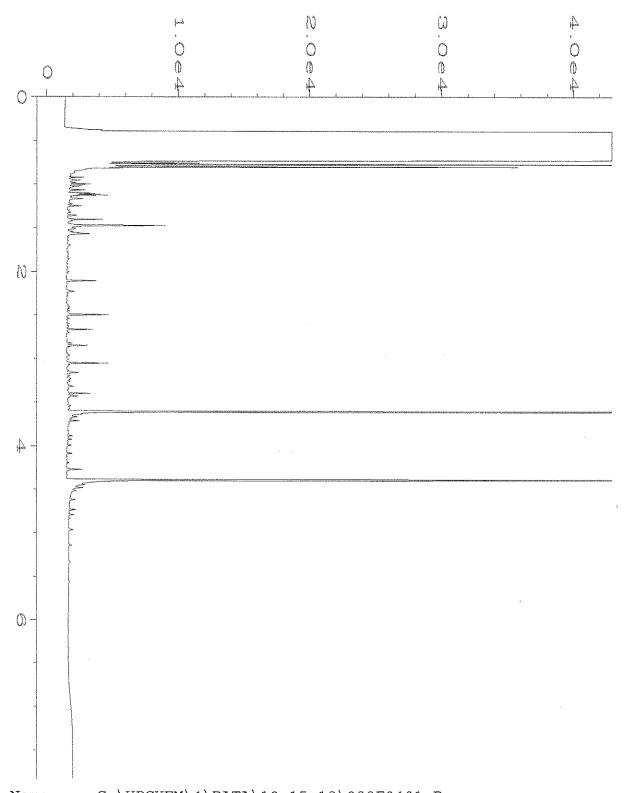

: C:\HPCHEM\4\DATA\10-15-19\047F1301.D Data File Name Operator : TL Page Number Vial Number Instrument : GC#4 Injection Number: 1 Sample Name : 910283-02 Sequence Line : 13 Run Time Bar Code: Acquired on : 15 Oct 19 10:44 PM Instrument Method: DX.MTH

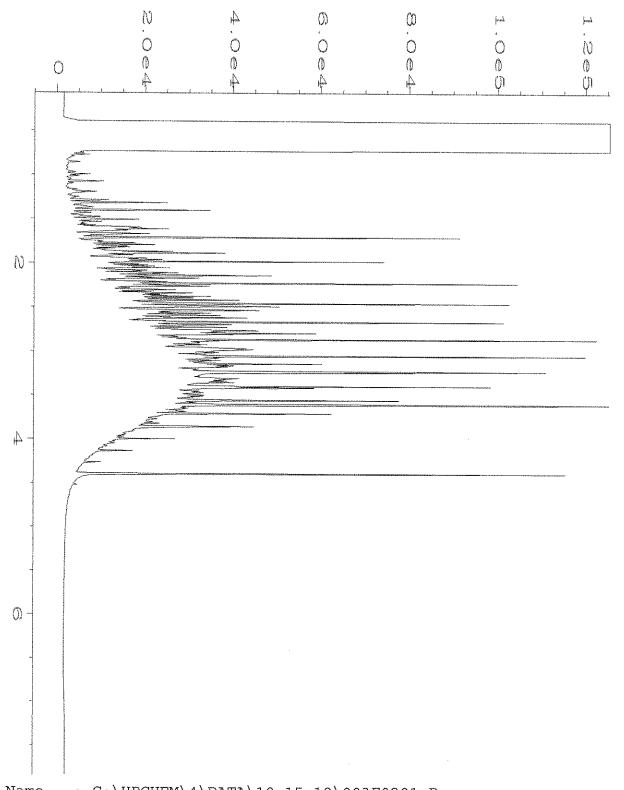
Report Created on: 16 Oct 19 12:25 PM Analysis Method : DEFAULT.MTH




```
Data File Name
                  : C:\HPCHEM\4\DATA\10-15-19\048F1301.D
                                                    Page Number : 1
Vial Number : 48
Operator
                  : TL
Instrument
                  : GC#4
                                                    Injection Number: 1
Sequence Line: 13
Sample Name
                  : 910283-03
Run Time Bar Code:
                                                    Instrument Method: DX.MTH
Acquired on
                  : 15 Oct 19 10:56 PM
Report Created on: 16 Oct 19 12:25 PM
                                                    Analysis Method : DEFAULT.MTH
```




```
Data File Name
                 : C:\HPCHEM\4\DATA\10-15-19\050F1301.D
                                                   Page Number : 1
Vial Number : 50
Operator
                  : TL
Instrument
                  : GC#4
                                                   Injection Number : 1
Sequence Line : 13
Sample Name
                  : 910283-05
Run Time Bar Code:
Acquired on
                                                   Instrument Method: DX.MTH
             : 15 Oct 19 11:21 PM
Report Created on: 16 Oct 19 12:26 PM
                                                   Analysis Method : DEFAULT.MTH
```




```
: C:\HPCHEM\4\DATA\10-15-19\051F1301.D
Data File Name
Operator
                                              Page Number
                                                              : 1
                                              Vial Number
Instrument
                : GC#4
               : 910283-06
                                              Injection Number: 1
Sample Name
Run Time Bar Code:
                                              Sequence Line : 13
Acquired on
                : 15 Oct 19 11:33 PM
                                              Instrument Method: DX.MTH
Report Created on: 16 Oct 19 12:26 PM
                                              Analysis Method : DEFAULT.MTH
```



```
Data File Name
                  : C:\HPCHEM\4\DATA\10-15-19\052F1301.D
                                                    Page Number
Vial Number
Operator
                  : TL
                                                                       : 1
Instrument
                  : GC#4
                                                    Injection Number: 1
Sequence Line: 13
Sample Name
                  : 910283-07
Run Time Bar Code:
                                                                     : 13
                                                    Instrument Method: DX.MTH
Acquired on
                  : 15 Oct 19
                               11:45 PM
Report Created on: 16 Oct 19 12:26 PM
                                                    Analysis Method : DEFAULT.MTH
```



```
Data File Name : C:\HPCHEM\4\DATA\10-15-19\003F0201.D

Operator : TL Page Number : 1

Instrument : GC#4 Vial Number : 3

Sample Name : 500 Dx 58-62F Injection Number : 1

Run Time Bar Code: Sequence Line : 2

Acquired on : 15 Oct 19 06:20 AM Instrument Method: DX.MTH

Report Created on: 16 Oct 19 11:50 AM Analysis Method : DEFAULT.MTH
```

Report To Kille Andrews

Company AES

Address 911 5 Ave

City, State, ZIP ENCHONGI WA 98.033

Email_

□ Other_

☐ Disposé after 30 days ☐ Archive Samples

SAMPLE DISPOSAL

\mathbf{v}	SAMPLE CHAIN OF CUSTODY	ME 10-
	SAMPLERS (signature))	
1	Add Or	
	PROJECT NAME	PO#
1	Kelly's ture Body	190391EV00)
ı	REMARKS	INVOICE TO
1		

TURNAROUND TIME

					W-7-6W	Gp-6-6N	GP-5-0W	SP-4- GW	61P-3-61W	672-6W	GP-1-6W	Sample ID	
SIG					2	86	8.	04	63	2	O[A-410-12-19	Lab ID	
SIGNATURE				akatt aris	(and an including a series of Toronto				į.	Date ' - Sampled	
					1515	1345	1300	1205	<u>-</u>	1030.	02-150 150	Time Sampled	
			and the first of the same and in facilities the same of		4-					3	8 S:E	Sample Type	
PRINT NAME					∞	Ç.	∞	∞	000	æ	æ	# of Jars	
Z T		14		-								TPH-HCID	
ME		1		1	\leq	\geq	\leq			X	×	TPH-Diesel	
***************************************		Z	~~		\succeq		2<	\succeq	\succeq	×	\succeq	TPH-Gasoline	
***************************************		M	<u> </u>	+		_					<u>×</u>	BTEX by 8021B	Αľ
		11/1		1				<u> </u>				VOCs by 8260C	IALS
		\mathbb{H}^{1}	-	+								SVOCs by 8270D	SES
CO		H	_	+					X			PAHS 8270D SIM RCRA 8 Meter	ANALYSES REQUESTED
COMPANY		\parallel	-	\vdash								4000 7000 Servis	JUES
AN		 		_		<u> </u>						Total por KAT	TED
		{		-			ļ						
			 	+								·	
DATE	V										-	Notes	
III				V								tes	
TIME										,			

Seattle, WA 98119-2029

Relinquished by

Received by:

Ph. (206) 285-8282

3012 16th Avenue West

Received by:

WES HERRIN

RUG

DIT S

0880

10 74-13

940

10/14/19

1330

18 C.B

Samples received at

2,77

Webber.

KIN training

Friedman & Bruya, Inc.

Relinquishelby: M.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 22, 2019

Kellie Andrews, Project Manager Associated Earth Sciences, Inc. 911 5th Avenue, Suite 100 Kirkland, WA 98033

Dear Ms Andrews:

Included are the results from the testing of material submitted on October 14, 2019 from the Kelly's Auto Body 190396V001, F&BI 910284 project. There are 27 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures AE11022R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 14, 2019 by Friedman & Bruya, Inc. from the Associated Earth Sciences Kelly's Auto Body 190396V001, F&BI 910284 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Associated Earth Sciences
910284 -01	GP-1-4
910284 -02	GP-1-10
910284 -03	GP-1-12.5
910284 -04	GP-1-19
910284 -05	GP-2-7.5
910284 -06	GP-2-12
910284 -07	GP-2-15
910284 -08	GP-3-5
910284 -09	GP-3-10
910284 -10	GP-3-15
910284 -11	GP-4-5
910284 -12	GP-4-8
910284 -13	GP-4-15
910284 -14	GP-5-5
910284 -15	GP-5-7
910284 -16	GP-5-10
910284 -17	GP-5-15
910284 -18	GP-6-5
910284 -19	GP-6-10
910284 -20	GP-6-14
910284 -21	GP-7-5
910284 -22	GP-7-10
910284 -23	GP-7-13

A 6020B internal standard failed the acceptance criteria for samples GP-6-10 and GP-7-10. The samples were diluted and reanalyzed with acceptable results. Both data sets were reported.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 10/22/19 Date Received: 10/14/19

Project: Kelly's Auto Body 190396V001, F&BI 910284

Date Extracted: 10/17/19 Date Analyzed: 10/17/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 58-139)
GP-1-10 910284-02	<5	82
GP-2-7.5 910284-05	<5	81
GP-3-10 910284-09	<5	79
GP-4-8 910284-12	<5	79
GP-5-7 910284-15	<5	80
GP-6-10 910284-19	<5	81
GP-7-10 910284-22	<5	80
Method Blank 09-2510 MB	<5	82

ENVIRONMENTAL CHEMISTS

Date of Report: 10/22/19 Date Received: 10/14/19

Project: Kelly's Auto Body 190396V001, F&BI 910284

Date Extracted: 10/17/19 Date Analyzed: 10/17/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(\text{C}_{10}\text{-C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 56-165)
GP-1-10 910284-02	<50	<250	95
GP-2-7.5 910284-05	<50	<250	90
GP-3-10 910284-09	<50	<250	97
GP-4-8 910284-12	<50	<250	102
GP-5-7 910284-15	<50	<250	92
GP-6-10 910284-19	<50	<250	99
GP-7-10 910284-22	<50	<250	90
Method Blank 09-2581 MB2	<50	<250	92

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	GP-1-10	Client:	Associated Earth Sciences
Date Received:	10/14/19	Project:	Kelly's Auto Body 190396V001
D + D + + 1	10/10/10	T 1 TD	010004.00

 Date Extracted:
 10/16/19
 Lab ID:
 910284-02

 Date Analyzed:
 10/16/19
 Data File:
 910284-02.056

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte:	Concentration mg/kg (ppm)
Arsenic	2.22
Barium	39.0
Cadmium	<1
Chromium	9.73
Lead	2.27
Mercury	<1
Selenium	<1
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	GP-2-7.5	Client:	Associated Earth Sciences
Date Received:	10/14/19	Project:	Kelly's Auto Body 190396V001
Date Extracted:	10/16/19	Lab ID:	910284-05

 Date Extracted:
 10/16/19
 Lab ID:
 910284-05

 Date Analyzed:
 10/16/19
 Data File:
 910284-05.057

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

	0	0 11	, , ,
Analyte:			Concentration mg/kg (ppm)
Arsenic			4.63
Barium			40.9
Cadmium			<1
Chromium			6.54
Lead			1.94
Mercury			<1
Selenium			<1
Silver			<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	GP-3-10	Client:	Associated Earth Sciences
Date Received:	10/14/19	Project:	Kelly's Auto Body 190396V001
D . D 1	10/10/10	T 1 TD	01000100

 Date Extracted:
 10/16/19
 Lab ID:
 910284-09

 Date Analyzed:
 10/16/19
 Data File:
 910284-09.058

 Matrix:
 Soil
 Instrument:
 ICPMS2

<1

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte:	Concentration mg/kg (ppm)
Arsenic	<1
Barium	31.9
Cadmium	<1
Chromium	8.65
Lead	1.91
Mercury	<1
Selenium	<1

Silver

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	GP-4-8	Client:	Associated Earth Sciences
Date Received:	10/14/19	Project:	Kelly's Auto Body 190396V001

 Date Extracted:
 10/16/19
 Lab ID:
 910284-12

 Date Analyzed:
 10/16/19
 Data File:
 910284-12.059

 Matrix:
 Soil
 Instrument:
 ICPMS2

<1

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte:	Concentration mg/kg (ppm)
Arsenic	2.66
Barium	43.6
Cadmium	<1
Chromium	7.83
Lead	2.39
Mercury	<1
Selenium	<1

Silver

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	GP-5-7	Client:	Associated Earth Sciences
Date Received:	10/14/19	Project:	Kelly's Auto Body 190396V001

Lab ID: Date Extracted: 10/16/19 910284-15Date Analyzed: 10/16/19 Data File: 910284-15.062 Matrix: Soil Instrument: ICPMS2

mg/kg (ppm) Dry Weight Units: SPOperator:

Analyte:	Concentration mg/kg (ppm)
Arsenic	3.44
Barium	28.5
Cadmium	<1
Chromium	13.4
Lead	1.31
Mercury	<1
Selenium	<1
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	GP-6-10	Client:	Associated Earth Sciences
Date Received:	10/14/19	Project:	Kelly's Auto Body 190396V001

 Date Extracted:
 10/16/19
 Lab ID:
 910284-19

 Date Analyzed:
 10/16/19
 Data File:
 910284-19.063

 Matrix:
 Soil
 Instrument:
 ICPMS2

<1

Units: mg/kg (ppm) Dry Weight Operator: SP

ConcentrationAnalyte: mg/kg (ppm) Arsenic 1.69 Barium 26.8 Cadmium <1 Chromium 13.8 JLead 1.74Mercury <1 Selenium <1

Silver

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: GP-6-10 Client: Associated Earth Sciences
Date Received: 10/14/19 Project: Kelly's Auto Body 190396V001

 Date Extracted:
 10/16/19
 Lab ID:
 910284-19 x5

 Date Analyzed:
 10/16/19
 Data File:
 910284-19 x5.137

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Chromium 15.0

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	GP-7-10	Client:	Associated Earth Sciences
Date Received:	10/14/19	Project:	Kelly's Auto Body 190396V001
T T T T T		T 1 TT	

 Date Extracted:
 10/16/19
 Lab ID:
 910284-22

 Date Analyzed:
 10/16/19
 Data File:
 910284-22.064

 Matrix:
 Soil
 Instrument:
 ICPMS2

<1

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte:	Concentration mg/kg (ppm)
Arsenic	5.03
Barium	27.4
Cadmium	<1
Chromium	$10.2~\mathrm{J}$
Lead	<1
Mercury	<1
Selenium	<1

Silver

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: GP-7-10 Client: Associated Earth Sciences
Date Received: 10/14/19 Project: Kelly's Auto Body 190396V001

 Date Extracted:
 10/16/19
 Lab ID:
 910284-22 x5

 Date Analyzed:
 10/16/19
 Data File:
 910284-22 x5.138

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Chromium 11.4

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	Method Blank	Client:	Associated Earth Sciences
Date Received:	NA	Project:	Kelly's Auto Body 190396V001

Date Extracted: 10/16/19 Lab ID: I9-656 mb
Date Analyzed: 10/16/19 Data File: I9-656 mb.034
Matrix: Soil Instrument: ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

Arsenic <1 Barium <1 Cadmium <1 Chromium <1 Lead <1 Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: GP-1-10 Client: Associated Earth Sciences
Date Received: 10/14/19 Project: Kelly's Auto Body 190396V001

10/17/19 Lab ID: 910284-02 Date Extracted: Date Analyzed: 10/18/19 Data File: 101816.DMatrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	93	107
Toluene-d8	99	87	110
4-Bromofluorobenzene	92	85	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: GP-2-7.5 Client: Associated Earth Sciences
Date Received: 10/14/19 Project: Kelly's Auto Body 190396V001

10/17/19 Lab ID: 910284-05 Date Extracted: Date Analyzed: 10/18/19 Data File: 101817.D Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	93	107
Toluene-d8	99	87	110
4-Bromofluorobenzene	94	85	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: GP-3-10 Client: Associated Earth Sciences
Date Received: 10/14/19 Project: Kelly's Auto Body 190396V001

10/17/19 Lab ID: 910284-09 Date Extracted: Date Analyzed: 10/18/19 Data File: 101818.D Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	93	107
Toluene-d8	97	87	110
4-Bromofluorobenzene	90	85	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: GP-4-8 Client: Associated Earth Sciences
Date Received: 10/14/19 Project: Kelly's Auto Body 190396V001

Lab ID: 910284-12 Date Extracted: 10/17/19 Date Analyzed: 10/18/19 Data File: 101819.D Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	93	107
Toluene-d8	99	87	110
4-Bromofluorobenzene	93	85	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: GP-5-7 Client: Associated Earth Sciences
Date Received: 10/14/19 Project: Kelly's Auto Body 190396V001

Lab ID: 910284-15 Date Extracted: 10/17/19 Date Analyzed: 10/18/19 Data File: 101820.DMatrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	93	107
Toluene-d8	99	87	110
4-Bromofluorobenzene	92	85	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: GP-6-10 Client: Associated Earth Sciences
Date Received: 10/14/19 Project: Kelly's Auto Body 190396V001

Lab ID: 910284-19 Date Extracted: 10/17/19 Date Analyzed: 10/18/19 Data File: 101821.DMatrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	93	107
Toluene-d8	99	87	110
4-Bromofluorobenzene	91	85	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: GP-7-10 Client: Associated Earth Sciences
Date Received: 10/14/19 Project: Kelly's Auto Body 190396V001

Lab ID: 910284-22 Date Extracted: 10/17/19 Date Analyzed: 10/18/19 Data File: 101822.DMatrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	93	107
Toluene-d8	99	87	110
4-Bromofluorobenzene	93	85	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Associated Earth Sciences
Date Received: Not Applicable Project: Kelly's Auto Body 190396V001

10/17/19 Lab ID: 09-2550 mbDate Extracted: Date Analyzed: 10/17/19 Data File: 101730.DMatrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	93	107
Toluene-d8	101	87	110
4-Bromofluorobenzene	96	85	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Date of Report: 10/22/19 Date Received: 10/14/19

Project: Kelly's Auto Body 190396V001, F&BI 910284

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 910284-02 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	< 5	<5	nm

			I GICGIII		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	20	70	61-153	-

ENVIRONMENTAL CHEMISTS

Date of Report: 10/22/19 Date Received: 10/14/19

Project: Kelly's Auto Body 190396V001, F&BI 910284

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 910329-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	96	94	64-133	2

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	90	58-147

ENVIRONMENTAL CHEMISTS

Date of Report: 10/22/19 Date Received: 10/14/19

Project: Kelly's Auto Body 190396V001, F&BI 910284

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 910288-01 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	<5	89	93	75-125	4
Barium	mg/kg (ppm)	50	72.7	93 b	130 b	75 - 125	33 b
Cadmium	mg/kg (ppm)	10	<5	93	96	75 - 125	3
Chromium	mg/kg (ppm)	50	17.1	90	89	75 - 125	1
Lead	mg/kg (ppm)	50	45.8	101	111	75 - 125	9
Mercury	mg/kg (ppm	5	<5	95	92	75 - 125	3
Selenium	mg/kg (ppm)	5	<5	80	85	75 - 125	6
Silver	mg/kg (ppm)	10	<5	97	101	75 - 125	4

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	90	80-120
Barium	mg/kg (ppm)	50	98	80-120
Cadmium	mg/kg (ppm)	10	97	80-120
Chromium	mg/kg (ppm)	50	97	80-120
Lead	mg/kg (ppm)	50	104	80-120
Mercury	mg/kg (ppm)	5	98	80-120
Selenium	mg/kg (ppm)	5	103	80-120
Silver	mg/kg (ppm)	10	104	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 10/22/19 Date Received: 10/14/19

Project: Kelly's Auto Body 190396V001, F&BI 910284

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

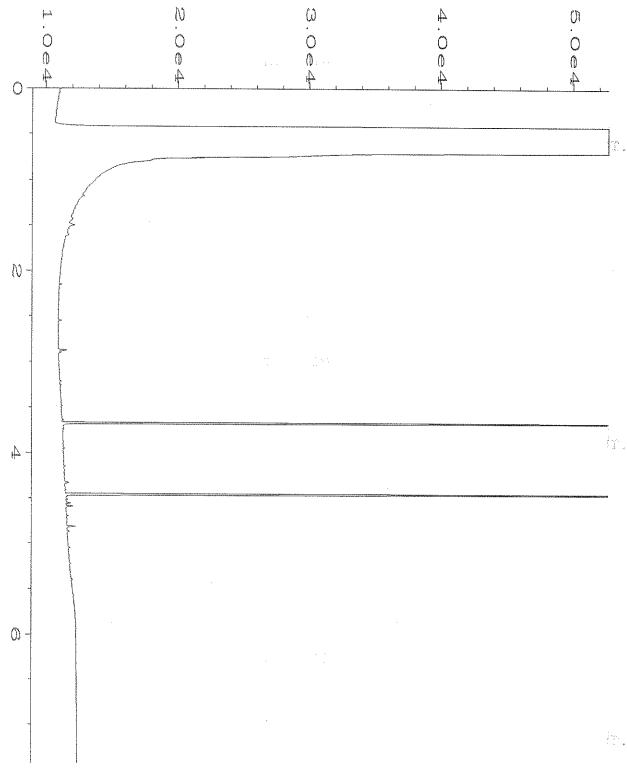
Laboratory Code: 910259-29 (Matrix Spike)

`	1 /		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2.5	<0.5	19	17	10-142	11
Chloromethane	mg/kg (ppm)	2.5	< 0.5	57	51	10-126	11
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	57 -	50	10-138	13
Bromomethane Chloroethane	mg/kg (ppm) mg/kg (ppm)	$\frac{2.5}{2.5}$	<0.5 <0.5	72 70	66 65	10-163 10-176	9 7
Trichlorofluoromethane	mg/kg (ppm)	2.5	< 0.5	63	55	10-176	14
Acetone	mg/kg (ppm)	12.5	< 0.5	83	81	10-163	2
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	75	70	10-160	7
Hexane	mg/kg (ppm)	2.5	< 0.25	44	37	10-137	17
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	91	87	10-156	4
Methyl t-butyl ether (MTBE) trans-1,2-Dichloroethene	mg/kg (ppm) mg/kg (ppm)	$\frac{2.5}{2.5}$	<0.05 <0.05	97 89	91 83	21-145 $14-137$	6 7
1,1-Dichloroethane	mg/kg (ppm) mg/kg (ppm)	$\frac{2.5}{2.5}$	< 0.05	90	84	19-140	7
2,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	80	75	10-158	6
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	92	87	25-135	6
Chloroform	mg/kg (ppm)	2.5	< 0.05	91	87	21-145	4
2-Butanone (MEK)	mg/kg (ppm)	12.5	< 0.5	71	72	19-147	1
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	79	78	12-160	1
1,1,1-Trichloroethane 1.1-Dichloropropene	mg/kg (ppm) mg/kg (ppm)	$\frac{2.5}{2.5}$	<0.05 <0.05	91 79	86 75	10-156 $17-140$	6 5
Carbon tetrachloride	mg/kg (ppm)	$\frac{2.5}{2.5}$	< 0.05	92	86	9-164	7
Benzene	mg/kg (ppm)	2.5	< 0.03	80	76	29-129	5
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	90	83	21-139	8
1,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	82	79	30-135	4
Bromodichloromethane	mg/kg (ppm)	2.5	< 0.05	85	82	23-155	4
Dibromomethane	mg/kg (ppm)	2.5	< 0.05	80	77	23-145	4
4-Methyl-2-pentanone cis-1,3-Dichloropropene	mg/kg (ppm) mg/kg (ppm)	$12.5 \\ 2.5$	<0.5 <0.05	83 77	81 76	24-155 $28-144$	$\frac{2}{1}$
Toluene	mg/kg (ppm)	2.5	< 0.05	85	83	35-130	2
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	80	81	26-149	1
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	82	81	10-205	1
2-Hexanone	mg/kg (ppm)	12.5	< 0.5	77	77	15-166	0
1,3-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	76	76	31-137	0
Tetrachloroethene Dibromochloromethane	mg/kg (ppm) mg/kg (ppm)	$\frac{2.5}{2.5}$	<0.025 <0.05	84 82	82 81	20-133 28-150	2 1
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	< 0.05	79	77	28-142	3
Chlorobenzene	mg/kg (ppm)	2.5	< 0.05	86	84	32-129	$\overset{\circ}{2}$
Ethylbenzene	mg/kg (ppm)	2.5	< 0.05	89	86	32-137	3
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	104	101	31-143	3
m,p-Xylene	mg/kg (ppm)	5	< 0.1	90	88	34-136	2
o-Xylene	mg/kg (ppm)	2.5	<0.05 <0.05	95	93	33-134	$\frac{2}{1}$
Styrene Isopropylbenzene	mg/kg (ppm) mg/kg (ppm)	$\frac{2.5}{2.5}$	< 0.05	89 96	88 92	35-137 $31-142$	4
Bromoform	mg/kg (ppm)	2.5	< 0.05	86	84	21-156	2
n-Propylbenzene	mg/kg (ppm)	2.5	< 0.05	85	85	23-146	0
Bromobenzene	mg/kg (ppm)	2.5	< 0.05	81	81	34-130	0
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	88	87	18-149	1
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	mg/kg (ppm)	$\frac{2.5}{2.5}$	<0.05 <0.05	74 82	77	28-140 $25-144$	4 0
2-Chlorotoluene	mg/kg (ppm) mg/kg (ppm)	$\frac{2.5}{2.5}$	< 0.05	82 88	82 87	31-134	1
4-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	84	84	31-136	0
tert-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	88	87	30-137	1
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	87	86	10-182	1
sec-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	89	89	23-145	0
p-Isopropyltoluene	mg/kg (ppm)	2.5	< 0.05	90	89	21-149	1
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	<0.05	89	88	30-131	1
1,4-Dichlorobenzene 1,2-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	$\frac{2.5}{2.5}$	<0.05 <0.05	87 94	86 91	29-129 31-132	1 3
1,2-Dictriorobenzene 1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	< 0.5	95	93	11-161	2
1,2,4-Trichlorobenzene	mg/kg (ppm)	2.5	< 0.25	99	97	22-142	2
Hexachlorobutadiene	mg/kg (ppm)	2.5	< 0.25	96	93	10-142	3
Naphthalene	mg/kg (ppm)	2.5	< 0.05	99	95	14-157	4
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	< 0.25	97	92	20-144	5

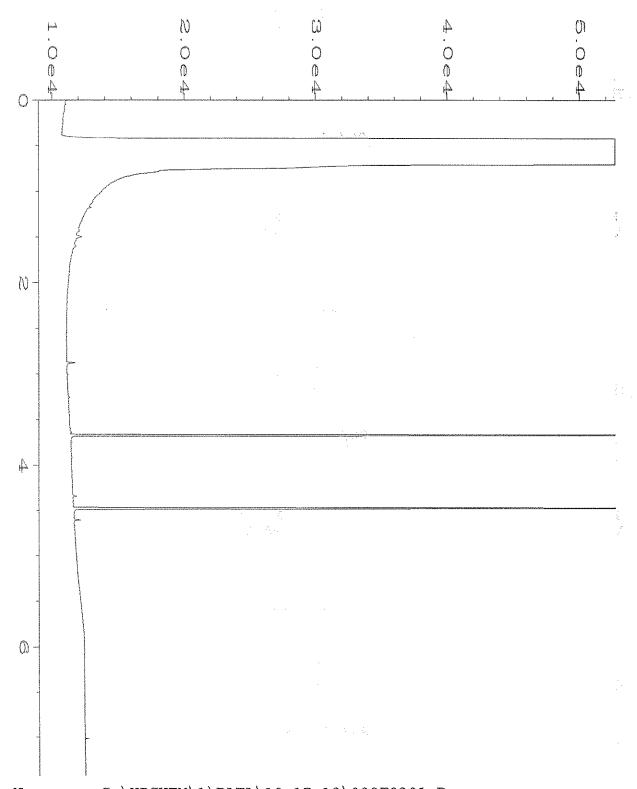
ENVIRONMENTAL CHEMISTS

Date of Report: 10/22/19 Date Received: 10/14/19

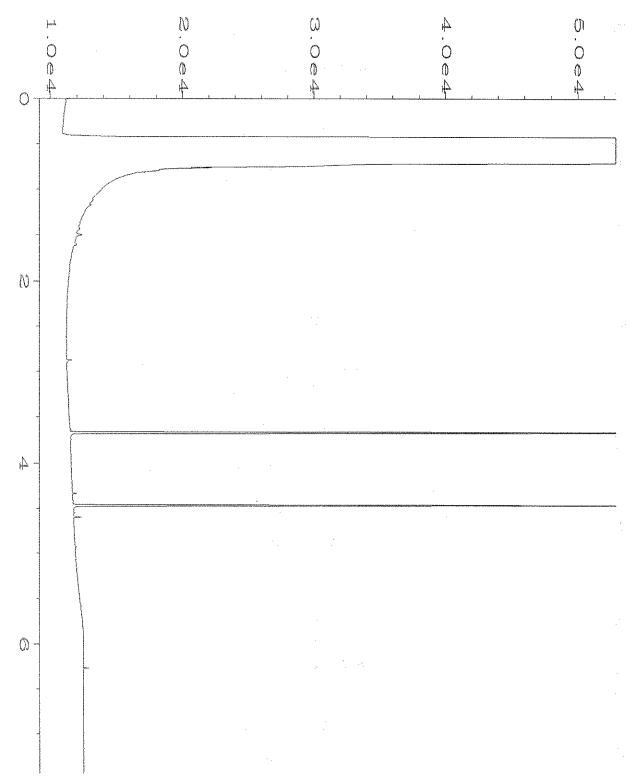
Project: Kelly's Auto Body 190396V001, F&BI 910284

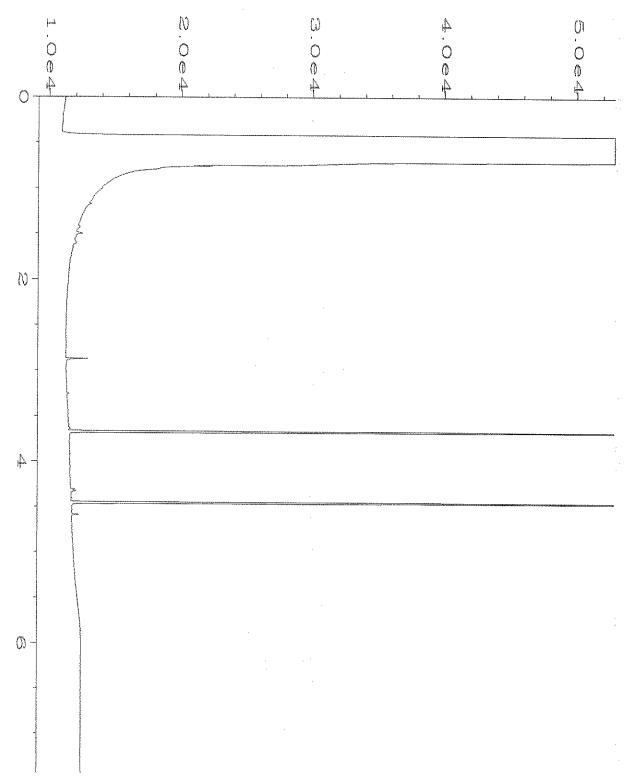

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

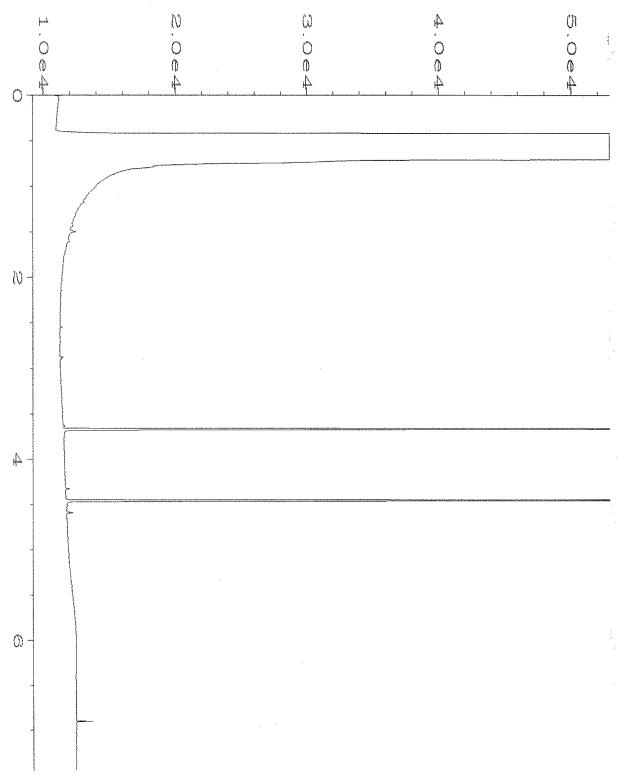
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2.5	54	10-146
Chloromethane	mg/kg (ppm)	2.5	71	27-133
Vinyl chloride	mg/kg (ppm)	2.5	79	22-139
Bromomethane	mg/kg (ppm)	2.5	73	38-114
Chloroethane	mg/kg (ppm)	2.5	79	9-163
Trichlorofluoromethane	mg/kg (ppm)	2.5	82	10-196
Acetone	mg/kg (ppm)	12.5	109	52-141
1,1-Dichloroethene	mg/kg (ppm)	$\frac{2.5}{2.5}$	86 86	47-128 43-142
Hexane Methylene chloride	mg/kg (ppm) mg/kg (ppm)	2.5	86 92	43-142 42-132
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	99	60-123
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	93	67-129
1,1-Dichloroethane	mg/kg (ppm)	2.5	95	68-115
2,2-Dichloropropane	mg/kg (ppm)	2.5	90	52-170
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	98	72-127
Chloroform	mg/kg (ppm)	2.5	97	66-120
2-Butanone (MEK)	mg/kg (ppm)	12.5	100	72-127
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	95	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	97	62-131
1,1-Dichloropropene	mg/kg (ppm)	2.5	96	69-128
Carbon tetrachloride	mg/kg (ppm)	2.5	97	60-139
Benzene	mg/kg (ppm)	2.5	93	68-114
Trichloroethene	mg/kg (ppm)	2.5	99	64-117
1,2-Dichloropropane	mg/kg (ppm)	2.5	98	72-127
Bromodichloromethane	mg/kg (ppm)	2.5	98	72-130
Dibromomethane	mg/kg (ppm)	2.5	93	70-120
4-Methyl-2-pentanone	mg/kg (ppm)	$12.5 \\ 2.5$	102 99	45-145 75-136
cis-1,3-Dichloropropene Toluene	mg/kg (ppm)	2.5	99	66-126
trans-1,3-Dichloropropene	mg/kg (ppm) mg/kg (ppm)	2.5	96	72-132
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	97	75-113
2-Hexanone	mg/kg (ppm)	12.5	103	33-152
1,3-Dichloropropane	mg/kg (ppm)	2.5	97	72-130
Tetrachloroethene	mg/kg (ppm)	2.5	93	72-114
Dibromochloromethane	mg/kg (ppm)	2.5	97	74-125
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	93	74-132
Chlorobenzene	mg/kg (ppm)	2.5	95	76-111
Ethylbenzene	mg/kg (ppm)	2.5	97	64-123
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	96	69-135
m,p-Xylene	mg/kg (ppm)	5	99	78-122
o-Xylene	mg/kg (ppm)	2.5	99	77-124
Styrene	mg/kg (ppm)	2.5	102	74-126
Isopropylbenzene Bromoform	mg/kg (ppm)	$\frac{2.5}{2.5}$	102 97	76-127 56-132
n-Propylbenzene	mg/kg (ppm) mg/kg (ppm)	$\frac{2.5}{2.5}$	97 97	74-124
Bromobenzene	mg/kg (ppm)	2.5	95	72-122
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	100	76-126
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	92	56-143
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	95	61-137
2-Chlorotoluene	mg/kg (ppm)	2.5	96	74-121
4-Chlorotoluene	mg/kg (ppm)	2.5	98	75-122
tert-Butylbenzene	mg/kg (ppm)	2.5	102	73-130
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	100	76-125
sec-Butylbenzene	mg/kg (ppm)	2.5	101	71-130
p-Isopropyltoluene	mg/kg (ppm)	2.5	99	70-132
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	96	75-121
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	95	74-117
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	97	76-121
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	mg/kg (ppm)	$\frac{2.5}{2.5}$	96 97	58-138
Hexachlorobutadiene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	101	64-135 50-153
Naphthalene	mg/kg (ppm)	2.5	104	63-140
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	99	63-138
-,-,-	g (PP)		• • • • • • • • • • • • • • • • • • • •	00 100

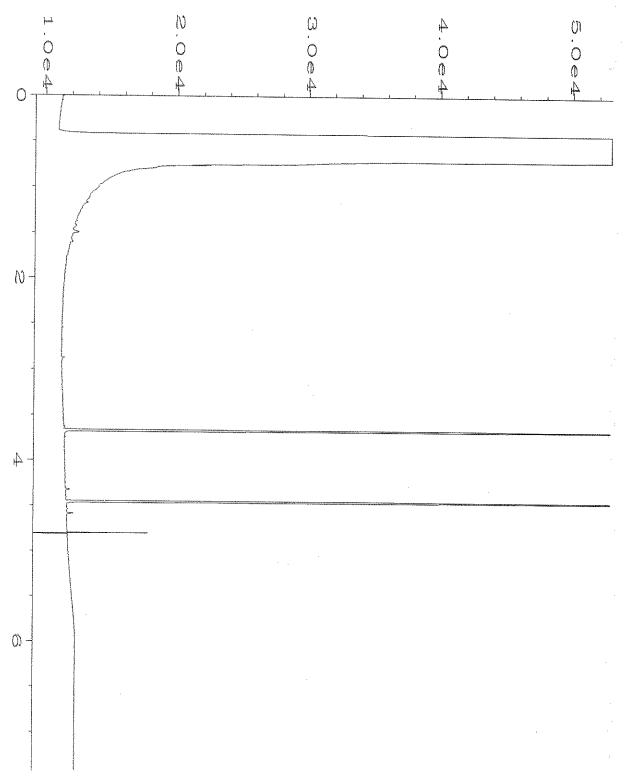

ENVIRONMENTAL CHEMISTS

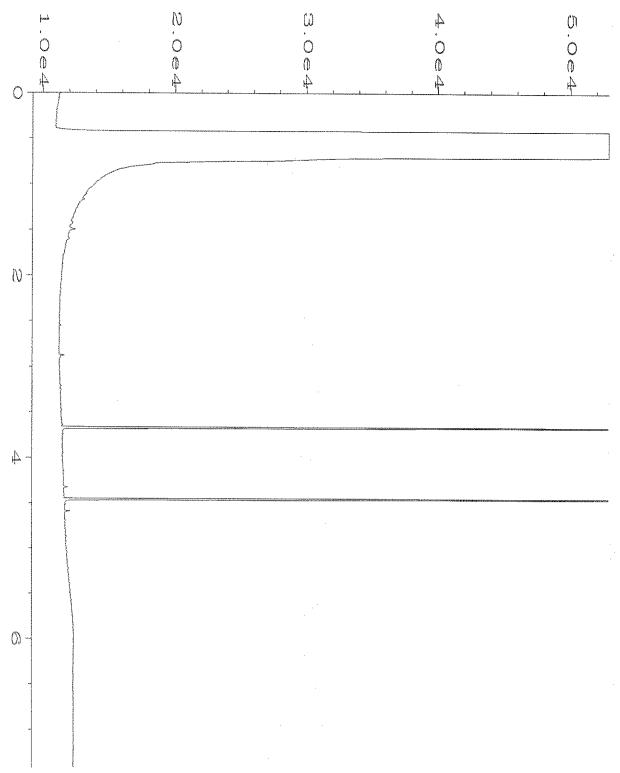
Data Qualifiers & Definitions

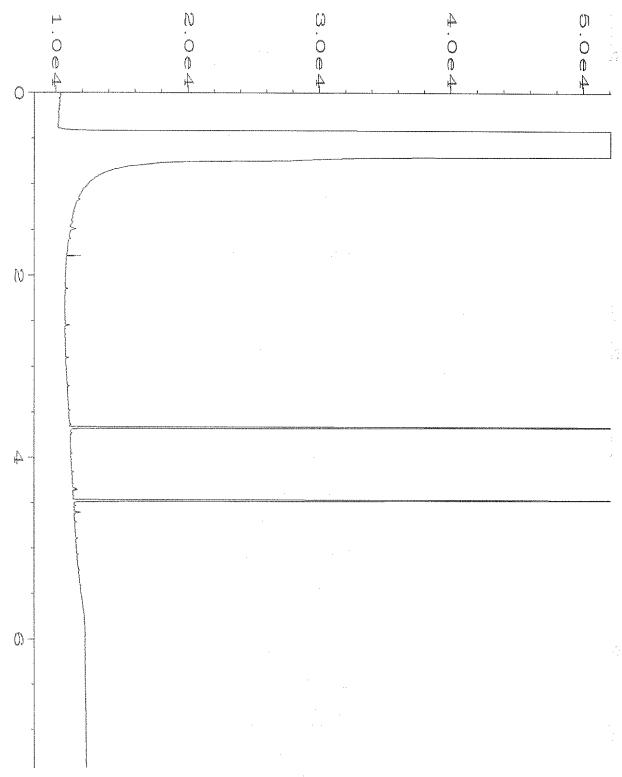

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.


```
: C:\HPCHEM\1\DATA\10-17-19\007F0301.D
Data File Name
Operator
                                                Page Number
Instrument
                                                Vial Number
                 : GC1
Sample Name
                 : 910284-02
                                                Injection Number: 1
                                                Sequence Line
Run Time Bar Code:
Acquired on
                : 17 Oct 19
                              08:00 AM
                                                Instrument Method: DX.MTH
Report Created on: 18 Oct 19
                              08:13 AM
                                                Analysis Method : DEFAULT.MTH
```



A ...

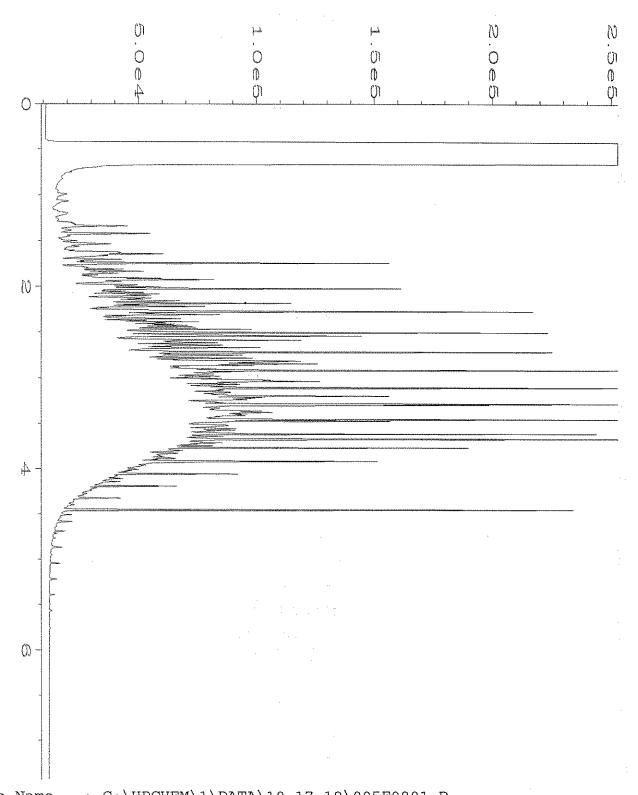

```
: C:\HPCHEM\1\DATA\10-17-19\009F0301.D
Data File Name
                                                      Page Number
Operator
                   : TL
                                                      Vial Number : 9
Injection Number : 1
Instrument
                   : GC1
Sample Name
                   : 910284-09
                                                      Sequence Line : 3
Instrument Method: DX.MTH
Run Time Bar Code:
Acquired on
                   : 17 Oct 19 08:23 AM
Report Created on: 18 Oct 19
                                                      Analysis Method : DEFAULT.MTH
                                 08:13 AM
```



```
: C:\HPCHEM\1\DATA\10-17-19\010F0301.D
Data File Name
Operator
                                                    Page Number
Vial Number
                  : TL
Instrument
                   : GC1
                                                                       : 10
Sample Name
                  : 910284-12
                                                    Injection Number: 1
Sequence Line: 3
Run Time Bar Code:
Acquired on
                  : 17 Oct 19
                                 08:35 AM
                                                    Instrument Method: DX.MTH
Report Created on: 18 Oct 19
                                 08:13 AM
                                                    Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\1\DATA\10-17-19\011F0301.D
Data File Name
                                                  Page Number
Operator
                  : TL
                                                  Vial Number
Instrument
                  : GC1
                                                                     : 11
                                                  Injection Number: 1
Sample Name
                  : 910284-15
                                                  Sequence Line : 3
Instrument Method: DX.MTH
Run Time Bar Code:
Acquired on
                  : 17 Oct 19 08:46 AM
Report Created on: 18 Oct 19
                                                  Analysis Method : DEFAULT.MTH
                              08:13 AM
```



```
: C:\HPCHEM\1\DATA\10-17-19\012F0301.D
Data File Name
Operator
                   : TL
                                                    Page Number
Vial Number
                                                                       : 1
Instrument
                   : GC1
                                                                       : 12
Sample Name
                   : 910284-19
                                                    Injection Number: 1
Sequence Line: 3
Run Time Bar Code:
Acquired on
                  : 17 Oct 19
                                                    Instrument Method: DX.MTH
                                 08:58 AM
Report Created on: 18 Oct 19
                                 08:14 AM
                                                    Analysis Method : DEFAULT.MTH
```




```
: C:\HPCHEM\1\DATA\10-17-19\013F0301.D
Data File Name
Operator
                                                Page Number
                                                Vial Number
Instrument
                 : GC1
                                                                 : 13
Sample Name
                 : 910284-22
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line
                                                               : 3
Acquired on
                 : 17 Oct 19
                              09:09 AM
                                                Instrument Method: DX.MTH
                                                Analysis Method : DEFAULT.MTH
Report Created on: 18 Oct 19
                              08:14 AM
```



```
: C:\HPCHEM\1\DATA\10-17-19\006F0301.D
Data File Name
Operator
                                                 Page Number
                 : TL
                                                 Vial Number
Instrument
                 : GC1
Sample Name
                 : 09-2581 mb2
                                                 Injection Number: 1
Run Time Bar Code:
Acquired on : 17 Oct 19 07:51 AM
                                                 Sequence Line : 3
                                                 Instrument Method: DX.MTH
                                                 Analysis Method : DEFAULT.MTH
Report Created on: 18 Oct 19 08:14 AM
```

100


```
: C:\HPCHEM\1\DATA\10-17-19\005F0801.D
Data File Name
Operator
                                                  Page Number
                                                  Vial Number : 5
Injection Number : 1
Instrument
                  : GC1
Sample Name
                  : 1000 Dx 58-62E
Run Time Bar Code:
                                                  Sequence Line : 8
Acquired on
                 : 17 Oct 19
                               10:31 PM
                                                  Instrument Method: DX.MTH
Report Created on: 18 Oct 19
                               08:14 AM
                                                  Analysis Method : DEFAULT.MTH
```

SAMPLE CHAIN OF CUSTODY ME 10-14-19

TURNAROUND TIME

910284

Company AE Report To fellie tridrews Phone___ City, State, Z Address 911

SAMPLERS (signature)	
PROJECT NAME	P0#
Kelly's Auto Rody	19039100001
REMARKS	INVOICE TO

☐ Archive Samples ☐ Other STED	ANALYSES REQUESTED			Email
SAMPLE DISPOSAI	INVOICE TO	REMARKS	18033	ZIP Krenon WA 98033
Rush charges authorized by:	10039100001	Kelly's toto Rody	nde frankristische Attein frankrische Andersche Frankrische Andersche serwerzum zu der	15 75
© Standard Turnaround	PO#	PROJECT NAME		1531

	GP3-15	67P-3-10	GP-3-5	GP-2-15	GP-2-12	gh-1-7-8	617-1-19	6p-1-12.5	67P-1-10	6P-1-4	Sample ID
2	101	8	080	67	06	8,-	140	8	2	0/AE 10-12-19	Lab ID
	+									10.12.19	Date Sampled
	100	1055	1050	1018	1010	0458	0415	0903	0855	5H80	Time Sampled
	<									8011	Sample Type
	M	S	5	5	2	5	G	S	N	Ŋ	# of Jars
											TPH-HCID
		×				X			X		TPH-Diesel
		×				×			×		TPH-Gasoline
	<u> </u>			<u> </u>					×		BTEX by 8021B
_		<u> </u>		ļ		×	<u> </u>	<u> </u>			VOCs by 8260C
											SVOCs by 8270D
)	<u> </u>								X		PAHs 8270D SIM
											RCRA 8
				,							
7	404		tras	tes	tras		さら	tas		-tero	Notes
					<u> </u>					<u> </u>	:

Ph. (206) 28: Seattle, WA 3012 16th Av Friedman &

-	erveu at	Dampies required at 1. "C			
3	*	2 12 12		Received by:	85-8282
1330	10/14/19 1330	F. 81	Liz Webber - Brya	Relinquished by T. W. S.	4 98119-2029
0460	10-14-19 0940	D 3.5	WES HERRINA	Received by:	lvenue West
0880	0580 pr. H-101	A&S)	Lellie Andrews	Relinquished by: Letter M.	& Bruya, Inc.
TIME	DATE	COMPANY	PRINT NAME	SJGNATURE	

Report To Kellie Andrews

City, State, ZIP_ DODAD Email

\mathbf{v}	SAMPLE CHAIN OF CUSTODY ME 10-14-19	ME 10-14-19	,
1	SAMPLERS (signature)	0	
	PROJECT NAME	PO#	~
	KIIY'S TOTE BODY	19039110 Vac/	
	REMARKS	INVOICE TO	
İ			

Standard Turnaround Rush charges authorized by:

TURNAROUND TIME

□ Other

☐ Dispose after 30 days
☐ Archive Samples

SAMPLE DISPOSAL

							-	-	***************************************						- Commence of the Commence of
HOLD										5	<	1325		20/	GP-6-14
		×			\times		×	×		(J)		13.15		19	6p-10-10
TOLD										S		1510		8	8p-6-5
HOLD										5		סאצו		17	GP-5-15
Hup										5		1230		16	GP-5-10
					\times	<u></u>	×	X		N		1220		6	6P-5-7
子る				ļ		<u> </u>				J		12.IS		14	61P-5-5
tao			<u> </u>	-						5		DHO.		3	6p-4-15
		×			X		×	×		N		1:30		S .	6P-4-8
tas										B	801	1125	l	11AE 10.12.19	GP-4-5
Notes	ALPANA	RCRA &	PAHs 8270D SIM	SVOCs by 8270D	VOCs by 8260C	BTEX by 8021B	TPH-Gasoline	TPH-Diesel	TPH-HCID	# of Jars	Sample Type	Time Sampled	Date Sampled	Lab ID	Sample ID
	ED	ANALYSES REQUESTED	3 REG	YSE	NAL	A									Монто на при воден и поличения под

Ph. (206) 285 Seattle, WA 9 3012 16th Ave Friedman &

:	-0.0000		TO THE PROPERTY OF THE PROPERT		:
			,	Received by:	35-8282
1330	10/14/19 1330	FiBI	Lin Webber-Bruja	Relinquished by The PM-B-	98119-2029
0840	10.14-19 094D	Ralex	WES HERRING	Received by:	venue West
0890	10.14-19 1880	12S1	Kelly Andraws	Relinquished by the Charles	t Bruya, Inc.
TIME	DATE	COMPANY	PRINT NAME	SIGNATURE	

Report Tokellue Findrews Company ASS Address 111 St try City, State, ZIP YOUG

284 S	SAMPLE CHAIN OF CUSTODY ME 10-14-19	ME 10-14-19	1 VS2/COS 2
	SAMPLERS (signature)		Page# of
rew)			TURNAROUND TIME
	PROJECT NAME	PO#	Standard Turnaround
No.	KINJUSTUB BOOK)903916 voo)	Rush charges authorized by:
	REMARKS	INVOICE TO	SAMPLE DISPOSAL
LWO DOW			☐ Dispose after 30 days
i			☐ Archive Samples
mail	the desires		Other

Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 I6 ^{sh} Avenue West	Friedman & Bruya, Inc.						1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				GP-7-13	GP-7-10	GP-7-5	Sample ID	
Received by:	Relinquished by:	Received by:	Relinguished by:	SIO								\	33	33	21.4€ 10.12.19	Lab ID	
	Se Se	7	Si Oliv	SIGNATURE									+			Date Sampled	
S	M.5/		THE PARTY OF THE P		The state of the s								1435	1425	1420	Time Sampled	
	چنا	WES HERRING	S										+		- 198	Sample Type	
į.	Lie Wahber-Ba	HER	Kelline Andrews	PRINT NAME			5		1				S	5	S	# of Jars	
	abbr	2	#	NUN			\leq	J								TPH-HCID	
	7	λ .,	1	AMI				$\not\vdash$						×		TPH-Diesel	
d	2		Ĉ.				\Box							×		TPH-Gasoline	
1			\subseteq		1			/	1	ļ	\perp	_				BTEX by 8021B	A
					<u> </u>		/			ļ				×		VOCs by 8260C	NAL
-					 		_/		١							SVOCs by 8270D	YSE.
	J.	Fed	大													PAHs 8270D SIM	SRE
-	<u>J</u> -	0		MO			/							×		RIRAB	QUI
İ		\$7		COMPANY													ANALYSES REQUESTED
				ا۲													D
						/					П						
20.		A 6 51.41-01	10.14/19 18830	DATE TIN									HOLD		HOLD	Notes	
	ŏ	40	5	HME							<u>V</u>						