APPENDIX H

ADDITIONAL TECHNICAL REPORTS

BELLEVUE GRAND CONNECTION: I-405 CROSSING DOWNTOWN TO EASTRAIL PRELIMINARY GEOTECHNICAL REPORT

WSP PROJECT NO.: 31300216.000 DATE: JULY 2024

CITY OF BELLEVUE

WSP 1001 FOURTH AVE SUITE 3100 SEATTLE, WA 98154

TEL.: +1 (206) 382-5200 WSP.COM

July 12, 2024

Jun Suk An City of Bellevue 450 110th Ave NE Bellevue, WA 98004

Subject: Grand Connection – Preliminary Geotechnical Report

The WSP Geotechnical and Tunneling Group is pleased to submit this Preliminary Geotechnical Report presenting the results of our geotechnical interpretation, analyses, and design recommendations for the Bellevue Grand Connection project located in Bellevue, Washington.

WSP appreciates the opportunity to be of service and look forward to continuing to work with you in the future. Please let us know if you have any questions or concerns about this report or need additional services or information.

Sincerely,

John Schober, PE Lead Geotechnical Engineer

Elizabeth Lundquist, PE Assistant VP, Geotechnical Engineer

Moi Arzamendi, PE Director, Geotechnical Engineer Senior Technical Principal

SIGNATURES

PREPARED BY	
John Schober, PE Lead Consultant	Elizabeth Lundquist, PE Assistant Vice President
Geotechnical Engineer	Geotechnical Engineer
REVIEWED BY	
Moi Arzamendi, PE Vice President, Geotechnical Engineer	

This report was prepared by WSP USA (WSP) for the account of City of Bellevue., in accordance with the professional services agreement. The disclosure of any information contained in this report is the sole responsibility of the intended recipient. The material in it reflects WSP USA's best judgement in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. WSP USA accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This limitations statement is considered part of this report.

The original of the technology-based document sent herewith has been authenticated and will be retained by WSP for a minimum of ten years. Since the file transmitted is now out of WSP's control and its integrity can no longer be ensured, no guarantee may be given with regards to any modifications made to this document.

PRODUCTION TEAM

CLIENT

City of Bellevue Jun Suk An

WSP

Vice President, Geotechnical Engineer Moi Arzamendi, PE

Assistant Vice President, Geotechnical Engineer Elizabeth Lundquist, PE

Lead Consultant, Geotechnical Engineer John Schober, PE

TABLE OF CONTENTS

1	INTR	ODUCTION	. 1
	1.1 1.2 1.3 1.4	BACKGROUND	1 1
2	EXIST	TING INFORMATION	. 3
3	SITE	CONDITIONS	. 4
	3.1 3.2 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8 3.3.9	REGIONAL GEOLOGY. TECTONIC SETTING. SUBSURFACE CONDITIONS. Artificial Fill	
	3.4	GROUNDWATER CONDITIONS	6
4	DISC	USSIONS, CONCLUSIONS AND RECOMMENDATIONS	. 7
	4.1 4.1.1 4.1.2 4.1.3	POTENTIAL GEOLOGIC HAZARDS Faulting and Surface Rupture Seismic Design Considerations Flooding	7 7
	4.2 4.2.1 4.2.2 4.2.3 4.2.4	EARTHWORK AND GRADING General Engineered Fill Temporary Excavations Use of On-site Soils	9 9 9
	4.3 4.3.1 4.3.2 4.3.3	DESIGN RECOMMENDATIONS Deep Foundation Recommendations MSE Wall Recommendations Vertical Circulation Towers	10 11
	4.4	INFILTRATION	14
5	CONS	STRUCTION CONSIDERATIONS	15
	5.1	DRILLED SHAFTS	15

	5.2	MSE WALL CONSTRUCTION	15
6	RECO	MMENDATIONS FOR FURTHER STUDIES	16
7	LIMIT	TATIONS	17
8	REFE	RENCES	18

TABLES

TABLE 4.1	SEISMIC SITE CLASSIFICATION	7
TABLE 4.2	RECOMMENDED SEISMIC DESIGN PARAMETERS	8
TABLE 4.3	DESIGN RESPONSE SPECTRUM	8
TABLE 4.4	GENERALIZED SOIL PROFILE DEPTHS AND PROPERTIES FOR FOUNDATION DESIGN	11
TABLE 4.5	GENERALIZED SOIL PROFILE DEPTHS AND PROPERTIES FOR FOUNDATION DESIGN	12
TABLE 4.6	MSE WALL GEOTECHNICAL DESIGN PARAMETERS	12

FIGURES

FIGURE 1: VICINITY MAP

FIGURE 2: BORING LOCATION MAP FIGURE 3: REGIONAL GEOLOGIC MAP

FIGURE 4: GEOLOGIC PROFILE WEST OF I-405 FIGURE 5: GEOLOGIC PROFILE EAST OF I-405

APPENDICES

APPENDIX A: GEOTECHNICAL DATA SUMMARY

1 INTRODUCTION

1.1 BACKGROUND

WSP USA (WSP) was retained by the City of Bellevue (City) to prepare a preliminary geotechnical report to support the Bellevue Grand Connection Project. The Grand Connection program is a series of projects and initiatives designed to improve pedestrian experience between Meydenbauer Bay Park through downtown Bellevue across Interstate 405 (I-405) to Eastrail.

The I-405 Non-Motorized Crossing project is the first phase of the Grand Connection Program and will establish a pedestrian and bicycle crossing over I-405, the first step in creating an iconic lid, including activated space over I-405, with the overall intent of directly connecting Downtown Bellevue to the Wilburton neighborhood and the Eastrail, an essential missing link.

A lid park over I-405 is a different phase of the Grand Connection, but the I-405 Non-Motorized Crossing project will need to be compatible and integrated with the lid in order to make pedestrian and bicycle connections to it in the future.

1.2 PROJECT DATUM

All horizontal coordinates, unless otherwise noted, are provided in North American Datum (NAD83) South State Plane Coordinates System. Elevations, unless otherwise noted, are provided in North American Vertical Datum of 1988 (NAVD88).

1.3 SITE LOCATION AND DESCRIPTION

The Bellevue Grand Connection site is located in Bellevue, Washington. The general site boundaries are between 110th Ave NE to the west, the former rail corridor to the east, NE 6th St to the north, and NE 4th St to the south. I-405 cuts through the project area between 112th Ave NE and 116th Ave NE. The total alignment length is approximately 2,500 feet. The topography of the site is gently sloping downhill from west to east. The surface elevation is about +160 feet at 110th Ave NE and about 110 feet east of 116th Ave NE. The former rail corridor at the eastern edge of the project limits is on a an approximately 30-foot-tall embankment, with an elevation of about +140 feet. The ground surface within the project is mostly paved with some trees in landscaped areas.

1.4 PURPOSE AND SCOPE OF WORK

The purpose of this geotechnical investigation program is to evaluate the soil and geologic conditions at the site and provide geotechnical recommendations for the 30% design of the project. In accordance with CIP # PW-R-216 Exhibit A, dated June 23, 2023, the following scope of work has been undertaken:

- Review of existing literature and available geotechnical reports.
- Provide seismic design parameters.
- Provide earthwork recommendations.
- Provide retaining wall recommendations.

- Provide bridge foundation recommendations.
- Recommendations for further studies.
- Preparation of this report.

The work performed is in general accordance with AASHTO and WSDOT standards where applicable.

2 EXISTING INFORMATION

Geotechnical reports for adjacent projects such as Sound Transit Eastlink and various development projects at adjacent parcels. The Sound Transit Eastlink reports were prepared by Golder Associates for HJH Final Design Partners. In general, these older reports were prepared for a similar structure type and within or very near the current study area and contain sufficient detail and content such that they are adequate for preliminary design of the project. Relevant geotechnical information from the reports is presented in Appendix A.

A geotechnical reference summary of these documents is provided below.

- H-J-H Final Design Partners (HJH), 2016, "East Link: South Bellevue to Overlake Transit Center: Package E335 Geotechnical Data Report", dated March 8, 2016.
- H-J-H Final Design Partners (HJH), 2014, "East Link: South Bellevue to Overlake Transit Center: Package E330 Geotechnical Data Report", dated September 5, 2015.
- GeoEngineers, 2004, "Geotechnical Engineering Services Bellevue City Hall Complex, Bellevue, Washington, dated February 6, 2004.
- CH2M Hill, 2011, Final Geotechnical Data and Considerations Report for Preliminary Engineering, dated July, 2011
- H-J-H Final Design Partners (HJH), 2016, "East Link: South Bellevue to Overlake Transit Center: Contract E335 Geotechnical Recommendations Report", dated March 8, 2016.
- H-J-H Final Design Partners (HJH), 2014, "East Link: South Bellevue to Overlake Transit Center: Contract E330 Geotechnical Recommendations Report", dated September 5, 2015.

3 SITE CONDITIONS

3.1 REGIONAL GEOLOGY

The project is located in the central portion of the Puget Lowland, an elongated, north-south topographic depression situated between the Olympic Mountains on the west and the Cascade Range on the east. This lowland is characterized by low, rolling relief with some deeply cut ravines and broad valleys. In Repeated glacial advances into this region strongly influenced present-day topography geology, and groundwater conditions in the project area. In general, the ground surface elevation is within 500 feet of sea level.

The Puget Sound area underwent six or more major glaciations during the Pleistocene Epoch (2 million years ago to about 10,000 years ago), which filled the Puget Lowland to significant depths with a complex sequence of glacial and nonglacial (deposited during interglacial times) sediments. These glaciers originated in the coastal mountains of British Columbia. The maximum southward advance of the ice was about halfway between Olympia and Centralia (about 50 miles south of Seattle). During the most recent glaciation of the central Puget Lowland (Vashon Stade of Fraser Glaciation), the thickness of ice was about 3,000 feet in the project area, resulting in overconsolidation of the underlying soils. Since the last glaciation, complete or partial erosion of some deposits, as well as local deposition of alluvial deposits, further complicates the geology of the region.

3.2 TECTONIC SETTING

The tectonics and seismicity of the region are the result of the relative movement and collision between the tectonic plates that underlie North America and the Pacific Ocean. These tectonic plates include the Juan de Fuca Plate and the North American Plate, and the intersection of these two plates is called the Cascadia Subduction Zone (CSZ). As these two plates collide, the Juan de Fuca Plate is being driven northeast (subducted), beneath the North American Plate.

Within the present understanding of the regional tectonic framework and historical seismicity, three broad earthquake source zones are identified. These include a shallow crustal source zone, a deep source zone within the portion of the Juan de Fuca Plate subducted beneath the North American Plate (deep subcrustal zone), and an interplate zone where the Juan de Fuca and North American Plates are in contact in the CSZ. The anticipated earthquakes related to these sources are summarized below:

- Shallow Crustal Zone: Geophysical lineaments in Western Washington are believed to be capable of producing earthquakes with magnitudes up to 7.5. The closest of these geophysical lineaments to the site is the Seattle Fault Zone. Geologic studies suggest that this is an active fault with an estimated magnitude 7.0 event occurring approximately 1,100 years ago. Historical shallow crustal seismicity has also been observed between a depth of 1 and 10 miles. Based on the U.S. Geological Survey (USGS) Interactive Fault Map (USGS, 2017), the Project alignment is located about 2 miles north of the nearest mapped fault splay of the Seattle Fault Zone.
- Deep Subcrustal Zone: The largest historical earthquakes (magnitudes up to 7.1) to affect the site were in the subducted Juan de Fuca Plate (deep subcrustal zone) at depths of 32 miles or greater. The depth of this zone is estimated at about 34 miles below the Project alignment.
- Interplate Zone (CSZ): The CSZ has produced, and remains capable of producing, strong earthquakes.
 Work to date suggests that earthquake magnitudes may range from 8.0 to 9.0 and may occur at time

intervals ranging from about 400 to 1,000 years. The Project alignment is located about 100 miles east of this zone. Based on work by Goldfinger and others (2012), the last earthquake produced by the CSZ was about 315 years ago.

3.3 SUBSURFACE CONDITIONS

Existing areas of the project site are underlain by various man-placed and natural soils including undocumented artificial fill, topsoil, lacustrine, recessional outwash, and glacial till.

3.3.1 ARTIFICIAL FILL

Shallow undocumented artificial fill soils (af) are located throughout the project area. These materials consist of both fine and coarse grain soils. In general, soils may be poorly to well-compacted. In most areas, they may be deemed adequate for support of additional fill. However, they should not be considered competent to support settlement sensitive structures.

3.3.2 LACUSTRINE DEPOSITS

Holocene lacustrine deposits (HI) is typically soft to firm, light gray to light brown, low to high plasticity silt, low plasticity clayey silt interbedded with organic silt with some fine sand and little gravel, wood debris, local deposits of wood debris, stratified.

3.3.3 RECESSIONAL OUTWASH DEPOSITS

Quaternary recessional outwash (Qvro) is a glaciofluvial sediment deposited as glacial ice retreated. This unit is typically loose to very dense, brown, sand to silty sand, gravelly sand, sandy gravel, sandy silt, stratified. Qvro may contain cobbles and boulders locally and oftentimes acts as a perched aquifer when overlying lower permeability stratigraphic units such as lodgement till.

3.3.4 LODGEMENT TILL

Quaternary lodgement till (Qvt) is a Vashon unit laid down along the base of the glacial ice. This unit is generally very dense, moist, silty sand with trace to some gravel or sand with trace to some silt and gravel or silty sandy gravel. It is generally non-stratified with a diamict structure and may contain boulders locally and saturated lenses of sand.

3.3.5 ADVANCE OUTWASH

Quaternary advance outwash (Qva) is glaciofluvial sediment deposited as the glacial ice advanced through the Puget Lowland. This unit is typically dense to very dense, sand to silty sand with gravel. This unit is crudely stratified.

3.3.6 PRE-VASHON FLUVIAL DEPOSITS

Quaternary pre-Vashon fluvial deposits (Qpnf) is an alluvial deposit from rivers and creeks. This unit is typically very dense, gray to greenish gray, sand to silty sand, gravel to silty gravel, organic particles, volcanic particles and micaceous particles. Qpnf is also commonly stratified.

3.3.7 PRE-VASHON LACUSTRINE DEPOSITS

Quaternary pre-Vashon Lacustrine deposits (Qpnl) is fine-grained lake deposits in large or small depressions. This unit is typically dense to very dense or very stiff to hard, gray to greenish gray, low plasticity silt to sandy silt, low plasticity clay, high plasticity clay, and silty fine sand. Qpnl is commonly stratified with local lenses of sand and organic deposits.

3.3.8 PRE-VASHON GLACIOLACUSTRINE DEPOSITS

Quaternary pre-Vashon glaciolacustrine deposits (Qpgl) is a fine-grained glacial flour deposited in proglacial lakes in the Puget Lowland. This unit is typically very stiff to hard or very dense, dark gray, silty clay to clayey silt with thin beds of laminae of fine sand and silt. Disturbed Qpgl contains randomly oriented slickensides and polished shear surfaces and may have a block structure. Disturbed Qpgl is interpreted to have resulted from ice loading during the Vashon glacial advance.

3.3.9 PRE-VASHON LODGEMENT TILL

Quaternary pre-Vashon lodgement till (Qpgt) is a unit laid down along the base of the glacial ice. This unit is typically dense to very dense, silty sand with trace to some gravel, sand with trace to some silt and gravel, silty sandy gravel, generally non-stratified with a diamict structure (hardpan). Oxidation is common and may contain boulders locally and saturated lenses of gravelly sand to sandy gravel.

3.4 GROUNDWATER CONDITIONS

Groundwater water data is available from boring logs and records of monitoring wells installed for the Sound Transit project. Generally, there is perched water over the glacial till with a groundwater table between 30 to 70 feet below ground surface. Hydraulic conductivity values were available for select geologic units and locations.

4 DISCUSSIONS, CONCLUSIONS AND RECOMMENDATIONS

4.1 POTENTIAL GEOLOGIC HAZARDS

The project area was evaluated for susceptibility to geologic hazards associated with seismic activity in the Puget Sound including strong ground shaking, ground failure, liquefaction, landslides, subsidence, and settlement.

4.1.1 FAULTING AND SURFACE RUPTURE

Ground surface displacement, or rupture, caused by an earthquake is a major consideration in the design of construction across active faults. The nearest known potentially active fault to the site is the east-west trending Seattle Fault Zone, located about 2.5 miles from the project site.

4.1.2 SEISMIC DESIGN CONSIDERATIONS

The seismic design for the bridge will be performed according to AASHTO (2023), the WSDOT BDM, and the WSDOT GDM. Recommended horizontal response spectra and related information, developed as described below, are presented in Table 5.1.

SITE CLASSIFICATION

AASHTO LRFD Seismic Bridge Design (2023) guidelines require the use of a site classification for seismic design. The seismic site class is permitted to be determined utilizing the guidelines provided in Table 4.1. In addition, with some exceptions, Site Class F is required for sites vulnerable to potential failure or collapse under seismic loading (such as liquefiable soils, quick and highly sensitive clays, and collapsible weakly cemented soil), soils with thick peat/organic deposits, very high plasticity clays, or very thick, soft to firm clays.

Table 4.1 Seismic Site Classification

SITE CLASS	\overline{V}_s (FEET/SEC)	\overline{N} OR \overline{N}_{ch} (BLOWS/FOOT)	$ar{S}_u$ (PSF)
A. HARD ROCK	> 5,000	NA	NA
B. ROCK	3,000 to 5,000	NA	NA
C. VERY DENSE SOIL AND SOFT ROCK	1,200 to 2,500	> 50	> 2,000
D. STIFF SOIL	600 to 1,200	15 to 50	1,000 to 2,000
E. SOFT CLAY SOIL ⁽¹⁾	< 600	< 15	< 1,000

⁽¹⁾ Any profile with more than 10 feet of soil with Plasticity Index (PI) greater than 20, moisture content greater than 40 percent, and undrained shear strength less than 500 psf is classified as Site Class E.

AASHTO/WSDOT SEISMIC DEMAND

The coordinates used to obtain the seismic design parameters at the project site are 47.615033°N, - 122.189848°W, respectively. AASHTO LRFD Seismic Bridge Design (2023) guidelines use a risk-targeted design response spectra taken from the AASHTO-USGS Seismic Design Ground Motion Database. The ground motion database provides 5 percent damped design acceleration coefficients, Sa, at 22 different periods shown in Table 5.3. The design response spectrum can be constructed with these values. The recommended seismic Site Class and design parameters are summarized in Table 4.2.

Table 4.2 Recommended Seismic Design Parameters

DESIGN PARAMETER	SYMBOL	RECOMMENDED VALUE
Site Class		С
Peak Ground Acceleration	As	0.49 g
Design spectral response acceleration (5% damped) at short periods	S _{DS}	1.23 g
Design spectral response acceleration (5% damped) at 1-second period	S _{D1}	0.54 g

Table 4.3 Design Response Spectrum

PERIOD, T (SECOND)	SPECTRAL ACCELERATION, S _a (g)	
0.00	0.49	
0.01	0.49	
0.02	0.50	
0.03	0.54	
0.05	0.66	
0.08	0.85	
0.10	1.04	
0.15	1.21	
0.20	1.23	
0.25	1.15	
0.30	1.06	
0.40	0.87	
0.50	0.73	
0.75	0.61	
1.00	0.54	
1.50	0.36	
2.00	0.27	

LIQUEFACTION, SEISMIC SETTLEMENTAND LATERAL SPREADING

Soil liquefaction is a phenomenon in which saturated, cohesionless soils lose stiffness and strength due to the build-up of excess pore water pressure during cyclic loading, such as that induced by earthquakes. The primary factors affecting the liquefaction potential of a soil deposit are (1) intensity and duration of earthquake shaking; (2) soil origin, type, and relative density; (3) overburden pressures; and (4) depth to groundwater. Soils most susceptible to liquefaction are saturated, loose sands and low plasticity to non-plastic silts. The potential consequences of liquefaction to engineered structures include loss of bearing capacity, buoyancy forces, increased lateral earth pressures, post-liquefaction settlement, lateral spreading, and slope instability. The potential for liquefaction, seismic settlement, and lateral spreading is considered negligible within the project area.

SEISMICALLY INDUCED LANDSLIDING

Since the site is relatively flat, the risk of seismically induced landslides is considered negligible.

4.1.3 FLOODING

Seasonal heavy precipitation including rain and snow are anticipated in the project area. However, uncontrolled flooding and site inundation are not anticipated if the associated project areas are adequately planned following appropriate site grading and earthwork design practices.

4.2 EARTHWORK AND GRADING

4.2.1 GENERAL

All earthwork design and grading excavation and fill/backfill operations should be performed in accordance with the most recent approved edition of the WSDOT Standard Specifications for Road, Bridge, and Municipal Construction (SSRBMC). Selected earthwork and grading specifications from these documents should be incorporated in the project specifications as deemed appropriate. The earthwork operations should be observed, and compaction testing performed by a certified testing laboratory and field technician/inspector as required.

All surficial vegetation and deleterious material should be stripped and completely removed from the proposed site areas that will be graded. The excavation of these soils should be possible using moderate to strong effort with conventional heavy-duty excavating equipment.

4.2.2 ENGINEERED FILL

The majority of soils excavated from the site may be used as engineered fill, provided that they are free of oversized rock, organic materials, expansive clay, and deleterious debris. Oversize material in excess of 6 inches in diameter should not be used in structural fill and material larger than 3 inches should not be used within the upper 3 feet of subgrade. Although the optimum lift thickness for fill soils will be dependent on the type of compaction equipment utilized, fill should generally be placed in uniform lifts not to exceed approximately 8 to 12 inches in loose thickness.

General engineered fill should be moisture conditioned to between ± 2 percent of the optimum moisture content and compacted to a minimum of 90 percent relative compaction (RC) per the Modified Proctor

(ASTM D 1557) maximum dry density. A rock correction adjustment to the maximum dry density and optimum moisture content should be performed when there is more than 5 percent oversize particles (larger than ¾ inch) in the fill material. The adjustment should follow ASTM D4718. Excavation of the onsite formational materials for reuse as compacted fill should comply with WSDOT common borrow specifications.

4.2.3 TEMPORARY EXCAVATIONS

Conditions of temporary excavations should be further evaluated during construction. Temporary excavations with a maximum height of 10 feet should be laid back or shored in accordance with the U.S. Occupational Safety and Health Administration (OSHA), and any other applicable regulations. For planning purposes, all near surface soils can be considered OSHA Type C soil. The actual OSHA soil type should be determined by the contractor's responsible person in the field at the time of construction. Type C soils should have 1½H:1V temporary construction excavation slopes up to 20 feet high, however 20-foot-deep excavations are not anticipated for this project. If glacial till is present, slopes of 1H:1V is reasonable. If stability of an excavation becomes questionable during construction, the excavation should be evaluated promptly by the geotechnical engineer. If groundwater seepage is observed, slopes should be cut back to 2H:1V. The maximum vertical unbraced excavation should be 5 feet.

The soil classifications presented in this report may be used for the planning of temporary excavations in accordance with OSHA requirements. Construction personnel should be aware that soil conditions may change rapidly if soil moisture conditions change or if soils that have been disturbed by previous excavations are encountered. Measures should be taken to protect construction personnel from raveling of excavated slopes. Any temporary cut slopes should be protected from precipitation and drying out. Direct rainfall or surface water on the slope face can destabilize the face of the excavation. On the other hand, if the face becomes too dry, raveling will occur. All excavations should comply with current OSHA safety requirements.

No surcharge loads, such as the weight of heavy equipment, should be placed within 10 feet from the top of open excavations. Care should be taken during excavation to avoid removing support for any existing improvements, such as foundations, pavements, and buried utilities. The contractor is responsible for selecting, designing, and constructing temporary shoring systems (if needed) that adequately protect the existing structures, utilities, and other improvements.

4.2.4 USE OF ON-SITE SOILS

In general, the excavated soils at the site are suitable for use as general structural fill provided they are placed near the optimum moisture content and any deleterious materials are screened from the fill prior to re-use. Deleterious materials would include any large chunks of wood, metal, concrete, plastic, or any other construction debris and garbage. Topsoil may be suitable for re-use in non-structural areas of the site.

4.3 DESIGN RECOMMENDATIONS

The project is anticipated to utilize drilled shafts for the bridge structure support, MSE wall or soldier pile wall for approach embankments, and shallow foundations for vertical circulation towers.

4.3.1 DEEP FOUNDATION RECOMMENDATIONS

Based on discussions with the design team, WSP understands drilled shafts are being considered to support the bridge structure. The use of drilled shafts will mitigate lateral loading on the nearby sound Transit elevated guideway. Driven piles are not considered appropriate based on the existing site conditions.

AXIAL RESISTANCE

Axial resistance of deep foundations is developed through the combination of side friction along the length of the pile and the base resistance developed at the pile tip. Table 4.4 presents the recommended unit side and base resistances for the soil conditions encountered near the proposed bridge structure. Unless otherwise noted, the parameters provided in Table 4.4 are applicable to both static and seismic loading condition. To determine the axial resistance of a given drilled shaft, the provided unit side resistances should be multiplied by the perimeter of the pile, and the unit base resistance should be multiplied by the area of the concrete at the tip of the shaft.

Table 4.4 Generalized Soil Profile Depths and Properties for Axial Drilled Shaft Design

SUBSURFACE LAYER	DEPTH RANGE (FEET)	UNIT SIDE RESISTANCE (KSF)	UNIT BASE RESISTANCE (KSF)	GEOTECHNICAL PARAMETERS
Hf	0-10 (West of I-405) 0-5 (East of I-405)	0.15	ł	$\gamma_t = 120 \text{ pcf}$ $c = 0 \text{ psf}$ $\phi = 32^\circ$
Qvro	5-15 (East of I-405)	0.4	1	$\gamma_t = 120 \text{ pcf}$ $c = 0 \text{ psf}$ $\phi = 36^\circ$
Glacial Soils	>10 (West of I-405) >15 (East of I-405)	6	100	$\gamma_t = 130 \text{ pcf}$ $S_u = 8,000 \text{ psf}$

yt: Total Unit Weight Su: Undrained Shear Strength

c: Drained Cohesion

• Drained Friction Angle

Due to the liquefaction potential of the fill, the axial resistance of the fill should be neglected in the seismic design load case. In addition, liquefaction-induced downdrag will impart a load on the pile. For the seismic analysis, WSP recommends applying a downdrag load in kips equal to 2P, where P is the shaft perimeter.

The resistances provided Table 4.4 are nominal resistances and need to be multiplied by an appropriate resistance factor to determine the factored resistance. These axial resistance recommendations are for a single pile and do not consider group effects. If the piles are spaced at closer than three pile diameters, center-to-center, then the recommendations will need to be modified to consider axial pile group effects.

LATERAL RESISTANCE

WSP anticipates that the structural engineer will use the computer program LPILE to perform lateral analyses of the drilled shafts. Table 4.65 provides the recommended soil parameters for the lateral analyses. Unless otherwise noted, the parameters provided in Table 4.6 are applicable to both static and seismic loading conditions.

Table 4.5 Generalized Soil Profile Depths and Properties for Lateral Drilled Shaft Design

SUBSURFACE LAYER	DEPTH RANGE (FEET)	LPILE MODEL	UNIT WEIGHT (PCF)	FRICTION ANGLE (DEGREE)	INITIAL MODULUS OF SUBGRADE REACTION (PCI)	COHESION, C (PSF)	STRAIN FACTOR, £50
Hf	0-10 (West of I-405) 0-5 (East of I-405)	Sand (Reese)	120	32	35		
Qvro	5-15 (East of I-405)	Sand (Reese)	120	36	75		
Glacial Soils	>10 (West of I-405) >15 (East of I-405)	Stiff Clay w/o Free Water	65			8000	0.004

The recommended lateral parameters provided in Table 4.65 assume a pile group with center-to-center spacing greater than five pile diameters. If closer spaced pile groups are used, group reduction factors should be applied as describe in AASHTO Table 10.7.2.4-1.

4.3.2 MSE WALL RECOMMENDATIONS

Retaining walls may be considered to retain approach embankments. The selection of an appropriate retaining wall system is dependent upon several factors, including tolerance to total and differential settlement, and construction considerations. Based on the explored subsurface conditions and the fill heights, WSP considers a Mechanically Stabilized Earth (MSE) wall for the approach embankments appropriate for the project.

MSE WALL DESIGN SOIL PARAMETERS

As recommended by AASHTO LRFD, MSE wall minimum soil reinforcement length should be 70 percent of the wall height (0.7H) as measured from the leveling pad, or 8 feet, whichever is greater. The MSE should be constructed in accordance with WSDOT SSRBMC Division 6-13 Structural Earth walls. MSE wall reinforced zone should meet the requirements provided in division 9-03.14(4) Gravel Borrow for Structural earth Wall. Embankment fill placed behind the reinforce zone should meet the specifications provided in WSDOT SSRBMC Division 2-03.3(14) – Rock Embankment. The estimated soil parameters are presented in Table 4.6.

Table 4.6 MSE Wall Geotechnical Design Parameters

MATERIAL TYPE	REINFORCED ZONE	RETAINED FILL	FOUNDATION ZONE
Unit Weight (pcf)	130	130	130
Friction Angle (degrees)	34	34	38
Cohesion (psf)	0	0	0

MSE wall lateral pressures should be calculated using soil parameters of retained fill provided in Table 4.6. The MSE walls should be embedded in accordance with Section 15-4.5 of the WSDOT GDM, with a minimum embedment of 2 feet at the face of the wall.

MSE WALL LATERAL RESISTANCE

Lateral resistance to lateral movement for an MSE wall consists of sliding friction and passive resistance. WSP recommends that passive earth pressure be neglected when calculating the lateral resistance because potential soil disturbance or loss in front of the wall, and future excavation in front of the wall. The nominal friction resistance from sliding can be expressed as the vertical load on the footing multiplied by a coefficient of 0.6 for SE-reinforced soil mass on an approved subgrade. A resistance factor of 1.0 should be used calculation of friction sliding resistance.

MSE WALL BEARING RESISTANCE

The bearing resistance analysis was performed in accordance with the WSDOT GDM and AASHTO LRFD. The factored bearing resistance analysis was based on the assumption that the MSE walls will be supported on Qvt. A factored bearing resistance of 5 ksf can be used assuming an embedment depth of 2 feet or more.

It is assumed that MSE walls will be constructed as part of new approach fills, and all approach fill settlements will be allowed to occur prior to installation of permanent MSE wall facing. Therefore, the service limit state bearing resistance was not estimated. The bearing resistance of the wall was evaluated as a rectangular foundation with a length to width (L/B) ratio of 10, where the width is the width of the reinforced backfill. A resistance factor of 0.65 should be used for the strength limit state, and a factor of 0.9 should be used for the extreme event limit state designs.

MSE WALL STATIC SETTLEMENT

It is assumed that permanent wall facing will not be installed until settlement is complete. According to WSDOT GDM, MSE walls constructed with flexible facing should tolerate up to six inches of settlement. MSE walls founded on glacial till are anticipated to undergo minimal settlement.

MSE WALL DRAINAGE

Suitable drainage for walls can be provided by granular backfill material and a wall base subdrain system consisting of a 6-inch-diameter perforated or slotted drainpipe wrapped in an envelope of filter material at least 12 inches thick and confined by a separation geotextile. The filter material should meet the requirements for Gravel Backfill for Drains specified in Division 9-03.12(4) of the WSDOT SSRBMC.

The separation geotextile fabric should meet the requirements for Geotextile for Underground Drainage Filtration Property specified in Table 2 in the Division 9-3.2(1) of the WSDOT SSRBMC. The subdrain should be above the typical groundwater level, convey any collected seepage to the end of the wall, and daylight at low spots below the wall elevation. In addition, the subdrain should daylight to the face of the wall or tie-in to a drainage system every 300 feet.

4.3.3 VERTICAL CIRCULATION TOWERS

SHALLOW FOUNDATIONS

The bearing resistance analysis was performed in accordance with the WSDOT GDM and AASHTO LRFD. The factored bearing resistance analysis assumed that the vertical circulation towers, elevator shafts, and staircases will be supported on Qvt with a minimum embedment depth of 2 feet and minimum width of 2 feet. A factored bearing resistance of 5 ksf can be used.

SLAB-ON-GRADE FLOORS

WSP recommends that the upper 3 feet of soils below ground level floor slabs consist of properly compacted select fill soil. These soils should be compacted to a relative compaction of at least 90 percent per ASTM D1557. Subgrade soil supporting floor slabs should be prepared in accordance with the earthwork recommendations of this report.

The slab reinforcement should be placed near the center of the concrete slab. A welded wire fabric (WWF) may be used in lieu of conventional reinforcement bars. As a minimum, the slab-on-grade floor should be underlain by at least 4 inches of clean, coarse sand or fine gravel subbase to provide a capillary moisture break and uniform support to the slab. In order to minimize the likelihood of membrane punctures, the subgrade must be compacted smooth and flat before installation to further eliminate the possibility of protrusion points.

Subsurface moisture and vapor naturally migrate upward through the soil. Where the soil is covered by a building or pavement, this subsurface moisture will collect and transmit through the concrete slab-ongrade. Traditional Visqueen® vapor barriers may be considered marginally effective and degrade with time. To reduce the impact of this subsurface moisture and the potential impact of future introduced moisture, WSP recommends a polyolefin vapor barrier membrane be utilized between the prepared subgrade and the bottom of the slab-on-grade floor. The structural engineer/architect should determine the most suitable moisture barrier to be utilized based on the information provided in this report.

4.4 INFILTRATION

Infiltration testing has not yet been performed at the site. When infiltration test results are available, the feasibility of infiltration can be evaluated. Infiltration may be possible in areas with underlying fill and recessional outwash deposits, whereas glacial till and glacially consolidated deposits generally act as an impermeable layer making for a poor infiltration basin.

There is anticipated to be up to 10 feet or more fill and recessional outwash deposits between the median of I-405 and B-011. Areas west of 112th Ave NE may also have up to 10 feet or more of fill material at the surface. These areas should be further investigated for infiltration feasibility. Other areas are expected to have less than 5 feet of fill or glacial till at the ground surface.

5 CONSTRUCTION CONSIDERATIONS

5.1 DRILLED SHAFTS

Drilled shaft installation procedures should follow the WSDOT SSRBMC, Division 6-19 Shafts, with appropriate project-specific provisions. The selection of equipment and procedures for constructing drilled shafts should consider shaft diameter and length and subsurface conditions. The design and performance of drilled shafts can be significantly influenced by the equipment and construction procedures used to install the shafts.

Generally, drilled shafts are constructed by excavating a cylindrical bore to the prescribed embedment with a large-diameter auger or other drilling tool. Temporary or permanent casing is often used, depending on site conditions. Upon completion of drilling and inspection of the shaft, a steel rebar cage is placed, and concrete is pumped into the hole to complete the drilled shaft.

Due to the possibility of instability while drilling in loose sand below the groundwater table, WSP recommends that the drilled shafts be constructed using fully-cased excavations using a non-vibratory and non-driving method. The drilled shafts should be constructed in the wet if groundwater is encountered during drilling. The temporary casing should be advanced ahead of the auger. Further, due to concerns over the potential impact of construction vibration on the adjacent structure, WSP recommends that the temporary casing be installed using a non-vibratory method. Due to the potential hydrostatic imbalances, drilling slurry may be required to avoid soil loss around the casing. Drilled shaft contractors who participate in on this project should be required to demonstrate that they have suitable equipment for this project and adequate experience in the construction of shafts with similar subsurface conditions.

Based on review of available geotechnical data and interpretation of the local geology, cobbles and boulders should be expected during excavation at the site. The boulder may be greater than 24 inches in diameter. The contractor should be prepared to advance the excavation past these obstructions with suitable means, method, and equipment.

5.2 MSE WALL CONSTRUCTION

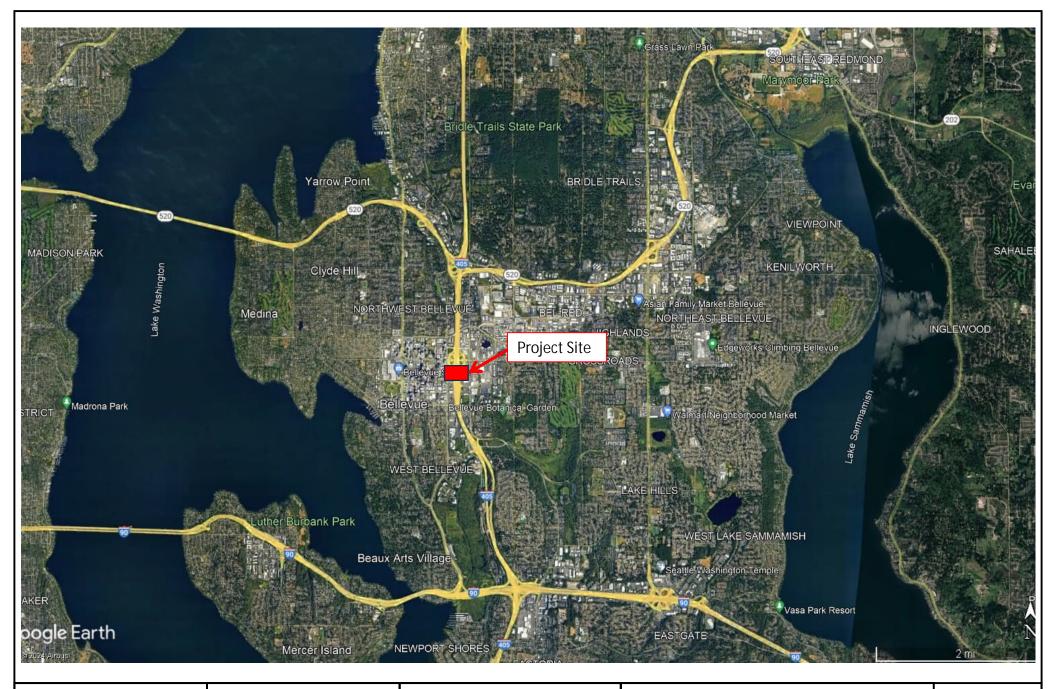
A leveling pad is an unreinforced concrete pad generally used to begin the facing construction. If concrete fascia panels are used, this allows a uniform, level starting point to place the fascia panels on which to build upward. The surface of the leveling pad should be smoot and horizontal, both side-side-and front-to-back, to ensure the fascia panel courses are level.

6 RECOMMENDATIONS FOR FURTHER STUDIES

Further studies in the form of additional geotechnical borings and laboratory testing are recommended for the bridge alignment east of 116th Ave NE. If the bridge alignment is placed greater than 100 feet from the existing Sound Transit elevated guideway, a boring should be drilled at each proposed bent support. Furthermore, borings should extend a minimum of 20 feet deeper than proposed foundation depths.

7 LIMITATIONS

This preliminary geotechnical report has been prepared for the exclusive use of City of Bellevue and their consultants for specific application to the subject project with the purpose of providing geotechnical design recommendations. The findings, conclusions and recommendations presented in this report were prepared to support the preliminary design of the project and were prepared in accordance with generally accepted geotechnical engineering practice. No warranty, express or implied, is made.


The scope of services was limited to those described herein. It should be recognized that definition and evaluation of subsurface conditions are difficult. Judgments leading to conclusions and recommendations are generally made with incomplete knowledge of the subsurface conditions present due to the limitations of data from field studies.

WSP offers various levels of investigative and engineering services to suit the varying needs of different clients. Although risk can never be eliminated, more detailed and extensive studies yield more information, which may help understand and manage the level of risk. Since detailed study and analysis involves greater expense, our clients participate in determining levels of service, which provide information for their purposes at acceptable levels of risk. The client and key members of the design team should discuss the issues addressed in this report with WSP, so that the issues are understood and applied in a manner consistent with the owner's budget, tolerance of risk and expectations for future performance and maintenance.

Recommendations contained in this report are based on subsurface explorations and laboratory tests performed by others and our present knowledge of the proposed construction. It is possible that soil or groundwater conditions could vary between or beyond the points explored. Our geotechnical scope of services did not include environmental assessments or evaluations regarding the presence or absence of hazardous substances in the soil, surface water, or groundwater at this site.

8 REFERENCES

- AASHTO, 2017, AASHTO LRFD Bridge Design Specifications, 8th edition.
- AASHTO, 2023, AASTHO LRFD Seismic Bridge Design, 3rd edition.
- H-J-H Final Design Partners (HJH), 2016, "East Link: South Bellevue to Overlake Transit Center: PackageE335 Geotechnical Data Report", dated March 8, 2016.
- H-J-H Final Design Partners (HJH), 2014, "East Link: South Bellevue to Overlake Transit Center: Package E330 Geotechnical Data Report", dated September 5, 2015.
- GeoEngineers, 2004, "Geotechnical Engineering Services Bellevue City Hall Complex, Bellevue, Washington, dated February 6, 2004.
- Goldfinger, C., Nelson, C.H., et al, 2012, Turbidite Event History: Methods and Implications for Holocene Paleoseismicity of the Cascadia Subduction Zone, USGS Professional Paper 1661-F, U.S. Geological Survey, p. 184 p, 64 Figures. http://pubs.usgs.gov/pp/pp1661f/ Appendices
- CH2M Hill, 2011, Final Geotechnical Data and Considerations Report for Preliminary Engineering, dated July, 2011
- H-J-H Final Design Partners (HJH), 2016, "East Link: South Bellevue to Overlake Transit Center: Contract E335 Geotechnical Recommendations Report", dated March 8, 2016.
- H-J-H Final Design Partners (HJH), 2014, "East Link: South Bellevue to Overlake Transit Center: Contract E330 Geotechnical Recommendations Report", dated September 5, 2015.
- WSDOT, 2024, Standard Specifications for Road, Bridge, and Municipal Construction, M 41-10.

PROJECT NO.: 30903010

DRAWN BY: J. Schober

DRAWN BY: J. SCHODE

CHECKED BY: E. Lundquist

DATE: 5/13/2024

Bellevue Grand Connection Bellevue, Washington

Vicinity Map

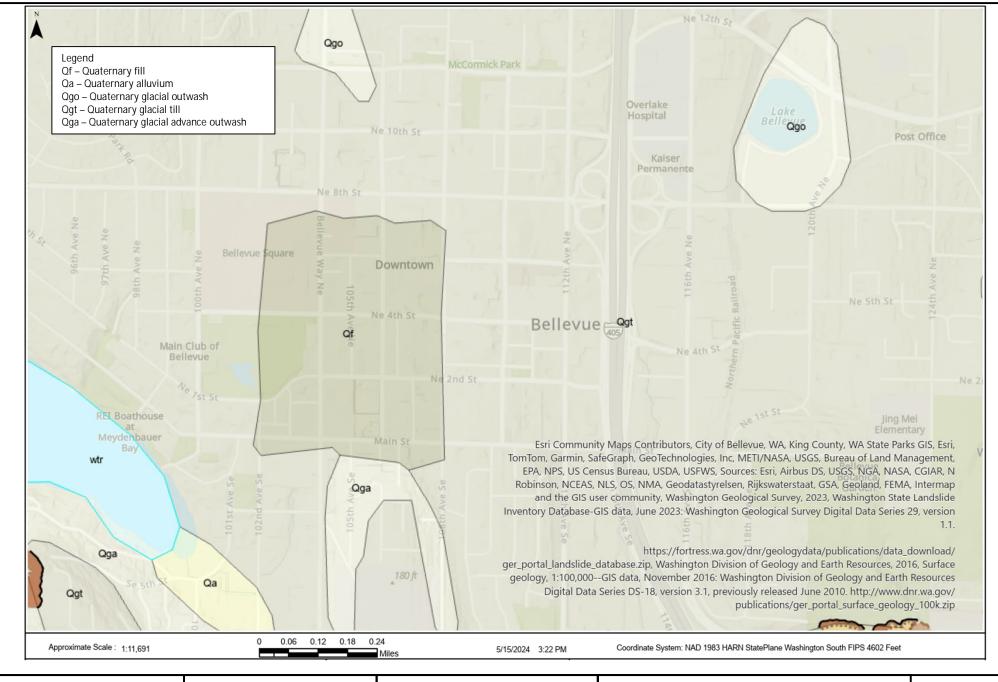
FIGURE

PROJECT NO.: 30903010

DRAWN BY: J. Schober

CHECKED BY: E. Lundquist

CHECKED BY: E. Lundquist


DATE: 2/13/2024

Boring Location Map

Bellevue Grand Connection
Bellevue, Washington

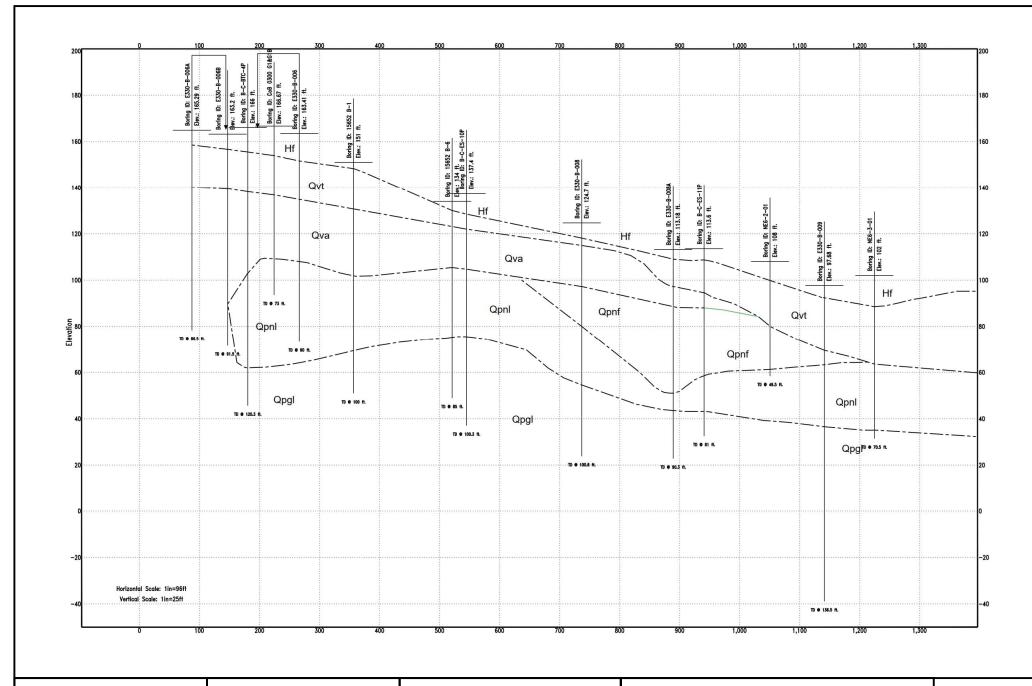
2

FIGURE

PROJECT NO.: 30903010

DRAWN BY: J. Schober

CHECKED BY: E. Lundquist


DATE: 2/13/2024

Bellevue Grand Connection Bellevue, Washington

Regional Geologic Map

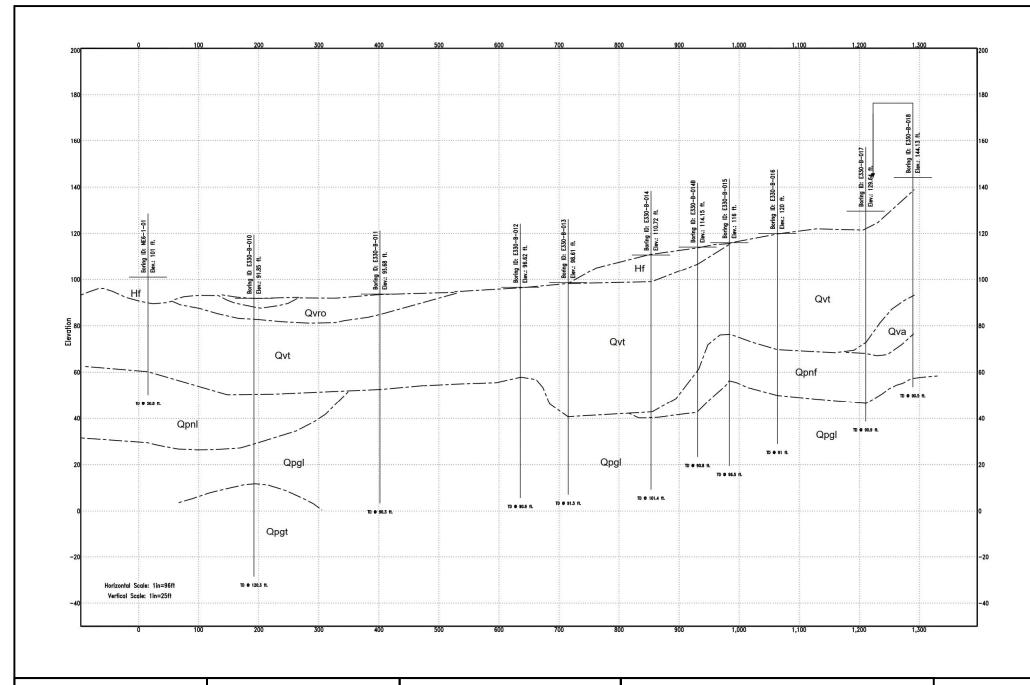
FIGURE

2

PROJECT NO.: 30903010

DRAWN BY: J. Schober

CHECKED BY: E. Lundquist


DATE: 5/13/2024

Bellevue Grand Connection Bellevue, Washington

Geologic Profile West of I-405

FIGURE

3

PROJECT NO.: 30903010
DRAWN BY: J. Schober
CHECKED BY: E. Lundquist
DATE: 5/13/2024

Bellevue Grand Connection Bellevue, Washington

Geologic Profile East of I-405

FIGURE

4

APPENDIX

A GEOTECHNICAL DATA SUMMARY

MEMO

TO: City of Bellevue, Transportation Department

450 110th Avenue NE Bellevue, WA 98004

Attention: Jun Suk An, PE

FROM: Elizabeth Lundquist, PE (WSP); John Schober, PE (WSP)

1001 4th Avenue, Suite 3100

Seattle, WA 98154

SUBJECT: Geotechnical Data Summary for Bellevue Grand Connection: I-405 Crossing –

Downtown to Eastrail

DATE: July 12, 2024

INTRODUCTION

The Bellevue Grand Connection Project: I-405 Crossing – Downtown to Eastrail includes a pedestrian and bicycle bridge crossing over I-405. WSP collected available geotechnical data in the project area summarized in this memo. The project study area is shown in Figure 1 and is between 110th Ave NE to the west, the former rail corridor to the east, NE 6th St to the north, and NE 4th St to the south. The data presented in this memo will be used to support the alternatives analysis and 30% design of Grand Connection Crossing project.

REVIEW OF EXISTING INFORMATION

A total of 83 explorations in the project study area between NE 4th and NE 6th streets were collected. Geotechnical data was collected from Sound Transit and the Washington Department of Natural Resources (WA DNR) geologic portal. A summary of the boring locations and data available at each location is available in Table 1. Where possible, the primary investigation reports are referenced.

EXISTING GEOTECHNICAL DATA

Existing geotechnical borings are available from HJH Final Design Partners "Geotechnical Data Report: E335 South Bellevue to Overlake Transit Center" and "Geotechnical Data Report: E330 South Bellevue to Overlake Transit Center" from September 2014. Relevant boring logs are presented in Appendix A.1. The borings collected were drilled primarily on 110th Ave NE and NE 6th St for the elevated guideway as part of the Eastlink project. The borings were drilled with sonic, mud rotary and hollow stem auger drilling methods and ranged in depth from 55 to 136.5 feet below ground surface. Additional historic borings were found in the WA DNR portal. These borings come from development projects of the parcels between NE 6th St and NE 4th St.

EXISTING IN-SITU AND LABORATORY TESTING DATA

Laboratory testing data is available for select borings as indicated in Table 1 and presented in Appendix A.2. Laboratory tests include moisture content, grain size analysis, and Atterberg limit tests.

Pressuremeter test results are also available for boring E33-PMT-003. A vertical seismic profile is available for Boring E-330-005. These test results and profiles are presented in Appendix A.4

GEOLOGIC UNIT DESCRIPTIONS

Because most of the data is from the HJH reports, a similar unit description will be implemented in this data summary. The following geologic units were identified in the project study area:

Fill (Hf): Loose to dense material disturbed by human processes.

Lacustrine Deposits (HI): Soft to firm, light gray to light brown, low to high plasticity silt, low plasticity clayey silt interbedded with organic silt with some fine sand and little gravel, wood debris, local deposits of wood debris, stratified.

Recessional Outwash deposits (Qvro): Compact to very dense, brown, sand to silty sand, gravelly sand, sandy gravel, sandy silt, stratified. May contain cobbles and boulders locally. Oftentimes acts as a perched aquifer when overlying lower permeability stratigraphic units such as lodgement till.

Lodgement Till (Qvt): Dense to Very Dense, moist, silty sand with trace to some gravel or sand with trace to some silt and gravel or silty sandy gravel. It is generally non-stratified with a diamict structure and may contain boulders locally and saturated lenses of sand.

Advance Outwash (Qva): Compact to very dense sand to silty sand with gravel. This unit is crudely stratified.

Pre-Vashon Fluvial Deposits (Qpnf): Dense to very dense, gray to greenish gray, sand to silty sand, gravel to silty gravel, organic particles, volcanic particles and micaceous particles. Commonly stratified.

Pre-Vashon Lacustrine Deposits (QpnI): Very Dense to hard gray to greenish gray, low plasticity silt to sandy silt, low plasticity clay, high plasticity clay, and silty fine sand. Commonly stratified with local lenses of sand and organic deposits.

Pre-Vashon Glaciolacustrine Deposits (Qpgl): hard to very dense, dark gray, silty clay to clayey silt with thin beds of laminae of fine sand and silt. Disturbed Qpgl contains randomly oriented slickensided and polished shear surfaces and may have a block structure. Disturbed Qpgl interpreted to have resulted from Ice loading during the Vashon glacial advance.

Pre-Vashon Lodgement Till (Qpgt): Dense to very dense silty sand with trace to some gravel, sand with trace to some silt and gravel, silty sandy gravel, generally non-stratified with a diamict structure. Oxidation is common and may contain boulders locally and saturated lenses of gravelly sand to sandy gravel.

GROUNDWATER

Groundwater water data is available from boring logs and records of monitoring wells installed for the Sound Transit project. Generally there is perched water over the glacial till with a groundwater table between 30 to 70 feet below ground surface. Hydraulic conductivity values were available for select geologic units and locations. Available groundwater data is compiled in Appendix A.3.

Attachments:

Figure 1: Boring Location Map
Table 1: Existing Boring Summary
Appendix A.1 Boring Logs
Appendix A.2 Laboratory Test Results
Appendix A.3 Groundwater Measurements
Appendix A.4 In-Situ Testing
Appendix A.5 Photographs

FIGURES

PROJECT NO.: 30903010	Deviser Leastier Man
DRAWN BY: E. Lundquist	Boring Location Map
CHECKED BY: J. Schober	Coatachnical Data Summary
DATE: 2/13/2024	Geotechnical Data Summary

FIGURE

TABLES

		Termination	Depth to	Completion				GW Depth		
Exploration ID	Туре	Depth	Till	Date	Elevation	Northing	Easting	(FT)	GW Measure Date	Lab Data
E330-PMT-03		71.5			158	227030.31	1304953.89	N/A		N
B-C-BTC-3P	HSA/Mud	55	NE	6/20/2010	161.4	227173.20	1304932.10	N/A		Υ
B-C-BTC-4P	HSA/Mud	120.3	1	6/23/2010	166	227372.30	1304945.89	N/A		Υ
E330-B-003	Sonic	90	10	1/2/2013	143.84	226056.31	1304908.97	N/A		Υ
E330-B-004	Sonic	85	6	4/8/2013	145.07	226835.32	1305021.89	28.9	2/11/2014	Υ
E330-B-005	Sonic	78	6	2/15/2013	157.76	226980.34	1304953.45	N/A		Υ
E330-B-006	Sonic	90	12.5	2/14/2013	163.41	227305.15	1304960.60	67.5	2/11/2014	Υ
E330-B-006A	Mud Rotary	86.5	6	3/19/2013	165.29	227336.06	1304908.52	66.7	2/11/2014	Υ
E330-B-006B	Mud Rotary	91.5	8	3/29/2013	163.2	227278.06	1304909.98	59.2	2/11/2014	Υ
E330-B-008	Mud Rotary	100.8	9.5	5/22/2013	124.7	227357.33	1305502.07	N/A		Υ
E330-B-008A	Mud Rotary	90.3	7	7/3/2013	113.18	227357.89	1305654.42	N/A		Υ
E330-B-009	Mud Rotary	136.5	7	3/20/2013	97.68	227320.61	1305905.59	N/A		Υ
E330-B-010	Mud Rotary	120.3	9.5	2/15/2013	91.85	227340.59	1306309.88	N/A		Υ
E330-B-011	Mud Rotary	90.3	8	2/11/2013	93.68	227354.27	1306520.15	N/A		Υ
E330-B-012	Mud Rotary	90.9	1	2/10/2013	96.62	227274.86	1306751.91	N/A		Υ
E330-B-013	Mud Rotary	91.5	1	2/6/2013	98.61	227361.75	1306833.91	N/A		Υ
E330-B-014	Mud Rotary	101.4	12.0	3/28/2013	110.72	227433.20	1306973.61	N/A		Υ
E330-B-014B	Mud Rotary	90.8	6	3/29/2013	114.15	227449.89	1307051.57	N/A		Υ
E330-B-015	Mud Rotary	96.5	1	9/12/2013	116	227505.30	1307105.84	N/A		Υ
E330-B-016	Mud Rotary	91	1	9/13/2013	120	227513.30	1307185.84	N/A		Υ
E330-B-017	Mud Rotary	90.9	9.0	5/9/2013	129.64	227680.51	1307337.23	N/A		Υ
E330-B-018	Mud Rotary	90.5	7.0	2/27/2013	144.13	227822.94	1307352.92	N/A		Υ
B-C-ES-10P	HSA/Mud	100.3	10	8/16/2010	137.4	227399.50	1305311.10	34.4		Υ
B-C-ES-11P	HSA/Mud	81	15	6/24/2010	113.6	227492.80	1305709.30	8.7		Υ
E335-AN-001	Sonic	133	3.0	10/2/2013	150	226748.32	1304958.89	46.4	2/11/2014	N
E335-AN-002	Sonic	110	12.0	10/7/2013	149	226726.32	1304961.89	36.7	2/11/2014	N
E335-AN-003	Sonic	60	6.0	10/9/2013	150	226775.32	1304960.89	39.6	2/11/2014	N
15652 B-1	NR	100	5	11/12/1979	151	227362.30	1305121.88	48		N
15652 B-2	NR	95	8	11/26/1979	145	N/A	N/A	N/A		N
15652 B-3	NR	92	6	11/19/1979	N/A	N/A	N/A	N/A		N
15652 B-4	NR	75	5	11/23/1979	123	226916.32	1305284.88	N/A		N
15652 B-5	NR	79	8	11/24/1979	127	227119.31	1305293.88	N/A		N
15652 B-6	NR	85	10	11/24/1979	134	227347.30	1305285.88	N/A		N
15652 B-7	NR	25	10	11/22/1979	121	N/A	N/A	N/A		N
15652 B-8	NR	25	12	11/23/1979	113	N/A	N/A	N/A		N
15652 B-9	NR	35	8	11/23/1979	104	N/A	N/A	N/A		N
15652 SB-1	HSA	45.1	25	12/3/2002	Unknown	N/A	N/A	N/A		N
15652 SB-2	HSA	40.5	30	12/3/2002	Unknown	N/A	N/A	N/A		N
CoB 0300 G1&G1B	HSA	73	1	9/11/2003	166.67	227351.17	1304989.25	47.9	1/23/2004	Υ
CoB 0300 G-2	HSA	47.5	8.5	9/8/2003	151.4	N/A	N/A	34.8	1/30/2004	Υ
CoB 0300 G-3	HSA	58	5.5	9/12/2003	161.4	N/A	N/A	45		Υ
CoB 0300 G-4	HSA	40	6	12/12/2003	N/A	N/A	N/A	19.5	1/30/2004	Υ

Exploration ID	Туре	Termination Depth	Depth to	Completion Date	Elevation	Northing	Easting	GW Depth (FT)	GW Measure Date	Lab Data
15550 B-1	NR	57.9	NE	NE	157	226935.31	1304869.89	N/A		N
15550 B-4	NR	93.5	NE	NE	157	226890.32	1304882.89	N/A		N
15550 B-5	NR	73.8	NE	NE	159	227027.31	1304876.89	N/A		N
NE6-1-01	NR	50.8	NE	NE	101	227399.30	1306134.86	N/A		N
NE6-3-01	NR	70.5	NE	NE	102	227400.30	1305990.86	N/A		N
NE6-2-01	NR	49.5	NE	NE	108	227438.30	1305817.87	N/A		N
16115 TB-3	HSA	16	8	1/8/1991	NR	NR	NR	N/A		N
16115 TB-5	HSA	15	12	1/14/1991	NR	NR	NR	N/A		N
09149 SB-1	HSA	15.5	4	12/9/1994	NR	NR	NR	N/A		N
09149 SB-2	HSA	13	4	12/10/1994	NR	NR	NR	N/A		N
09149 SB-3	HSA	15.5	4	12/10/1994	NR	NR	NR	N/A		N
09149 SB-4	HSA	13	5	12/10/1994	NR	NR	NR	N/A		N
09149 MW-1	HSA	20	12	12/10/1994	NR	NR	NR	N/A		N
09149 MW-2	HSA	23	3	12/10/1994	NR	NR	NR	N/A		N
09149 MW-3	HSA	23	4	12/10/1994	NR	NR	NR	N/A		N
09149 MW-4	HSA	22.5	8	12/9/1994	NR	NR	NR	N/A		N

APPENDIX A.1

BORING LOGS

UNIFIED SOIL CLASSIFICATION (ASTM D 2487-00) CRITERIA FOR ASSIGNING SOIL GROUP NAMES MATERIAL GROUP SOIL GROUP NAMES & LEGEND AND GROUP SYMBOLS USING LABORATORY TESTS SYMBOL **TYPES** GW WELL-GRADED GRAVEL **GRAVELS** CLEAN GRAVELS <5% FINES POORLY GRADED GRAVEL GP >50% OF COARSE COARSE-GRAINED SOILS >50% RETAINED ON NO. 200 SIEVE FRACTION RETAINED ON NO 4. SIEVE **GRAVELS WITH** SILTY GRAVEL GM **FINES** >12% FINES GC **CLAYEY GRAVEL** WELL-GRADED SAND SANDS **CLEAN SANDS** <5% FINES SP POORLY GRADED SAND ≥50% OF COARSE FRACTION PASSES SM SILTY SAND SANDS AND FINES ON NO 4. SIEVE >12% FINES SC CLAYFY SAND CI LEAN CLAY SILTS AND CLAYS ORGANIC CLAY OR SILT FINE-GRAINED SOILS >50% PASSES NO. 200 SIEVE CHART <u>a</u> 50 (OH, OL) if: LL (oven dried) < 0.75 'INDEX (F., MLSILT LIQUID LIMIT <50 LL (not dried) OL ORGANIC CLAY OR SILT PLASTICITY CI CH **FAT CLAY** SILTS AND CLAYS **ELASTIC SILT** MH LIQUID LIMIT ≥50 20 30 70 80 90 ORGANIC CLAY OR SILT OH LIQUID LIMIT (LL) РΤ **PEAT** HIGHLY ORGANIC SOILS PRIMARILY ORGANIC MATTER, DARK IN COLOR, AND ORGANIC ODOR (Hf) FILL: PLACED BY HUMANS, ENGINEERED AND NONENGINEERED. OTHER SOIL UNITS TILL: LODGMENT TILL LAID DOWN ALONG THE BASE OF THE GLACIAL (Qvt)/(Qvat) ICE AND HETEROGENEOUS SOILS DEPOSITED DURRING THE /(Qpgt) WASTING OF GLACIAL ICE

Gravels or sands with 5% to 12% fines require dual symbols (GW-GM, GW-GC, GP-GM, GP-GC, SW-SM, SW-SC, SP-SM, SP-SC)

COMPONENT DEFINITIONS BY GRADATION

COMPONENT	SIZE RANGE
BOULDERS	ABOVE 12 IN.
COBBLES	3 IN. TO 12 IN.
GRAVEL	3 IN. TO NO. 4 (4.76 mm)
COARSE GRAVEL	3 IN. TO 3/4 IN.
FINE GRAVEL	3/4 IN. TO NO. 4 (4.76 mm)
SAND	NO. 4 (4.76 mm) TO NO. 200 (0.074 mm)
COARSE SAND	NO. 4 (4.76 mm) TO NO. 10 (2.0 mm)
MEDIUM SAND	NO. 10 (2.0 mm) TO NO. 40 (0.42 mm)
FINE SAND	NO. 40 (0.42 mm) TO NO. 200 (0.074 mm)
SILT AND CLAY	SMALLER THAN NO. 200 (0.074 mm)
SILT	0.074 mm TO 0.005 mm
CLAY	LESS THAN 0.005 mm

RELATIVE DENSITY / CONSISTENCY ESTIMATE USING STANDARD PENETRATION TEST (SPT) VALUES

		` '	
NLESS SOILS (a)	CO	HESIVE SOILS(UNCONFINED
SITY N ₁ (BLOWS/ FOOT) ^(c)	CONSISTENCY	N₁ (BLOWS/ FOOT) ^(c)	COMPRESSIVE STRENGTH
0 - 4	VERY SOFT	0 - 2	0 - 0.25
4 - 10	SOFT	2 - 4	0.25 - 0.50
10 - 30	FIRM	4 - 8	0.50 - 1.0
30 - 50	STIFF	8 - 15	1.0 - 2.0
OVER 50	VERY STIFF	15 - 30	2.0 - 4.0
	HARD	OVER 30	OVER 4.0
	0 - 4 4 - 10 10 - 30 30 - 50	O - 4	SITY N ₁ (BLOWS/FOOT) ^(c) CONSISTENCY N ₁ (BLOWS/FOOT) ^(c) 0 - 4 VERY SOFT 0 - 2 - 4 - 10 - 30 FIRM 4 - 8 30 - 50 STIFF 8 - 15 OVER 50 VERY STIFF 15 - 30

- (a) Soils consisting of gravel, sand, and silt, either separately or in combination possessing no characteristics of plasticity, and exhibiting drained behavior.
- (b) Soils possessing the characteristics of plasticity, and exhibiting undrained behavior.
- (c) Refer to ASTM D 1586-99 for a definition of N. N values may be affected by a number of factors including material size, depth, drilling method, and borehole disturbance. N values are only an approximate guide for frozen soil or cohesive soil.

DESCRIPTIVE TERMINOLOGY FOR PERCENTAGES

RANGE OF PROPORTION
0 - 5%
5 - 12%
12 - 30%
>30%

CRITERIA FOR DESCRIBING MOISTURE CONDITION

	MOISTURE CONDITION
DRY	NO VISIBLE MOISTURE
DAMP	ENOUTH MOISTURE TO DARKEN SOIL
MOIST	MOISTENS HAND
WET	VISIRI E WATER PRESENT

SAMPLER AND OTHER ABBREVIATIONS

SS	SPT Sampler (2 in. OD, 140 lb hammer)
HD	Heavy Duty Split Spoon (3 in. OD, 140 lb hammer)
SH	Thin Walled (Shelby) Tube
GS	Grab Sample from Surface / Testpit /Sonic Core
ATD	At Time of Drilling
BGS	Below Ground Surface

SHEET 1 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Sonic

DATUM: Sound Transit East Coordinate System COORDINATES: N: 554,144.97 E: 1,633,023.08

ELEVATION: 143.84 INCLINATION: -90

DRILLING DATE: 1/2/13 COO DRILL RIG: Track Mounted Geoprobe 8140LS Sonic OCATION: 110th Ave. N of Main St SOIL PROFILE SAMPLES **BORING METHOD** PENETRATION RESISTANCE BLOWS / ft ◆ DEPTH (Ft) ELEV. 40 NOTES GRAPHIC LOG NUMBER WATER LEVELS **USCS** REC ATT TYPE RUN DESCRIPTION DEPTH (Ft) 60 - 0 0.0 - 0.5 Asphalt Pavement 143.3 7 inch diameter asphalt 0.5 - 5.0 0.5 ф Dense, brown, (SM), moist, silty, fine to medium SAND, some fine to coarse gravel, trace cobbles, [WEATHERED TILL, Qvt]. core. Air knife excavation from 0.5 to 5 ft bgs. Φ Φ 4.5 4.5 SM S-1 GB Φ 4 ¢ 138.8 - 5 5.0 - 10.0 ф Dense, brown, (SM), moist, silty, fine to medium SAND, some fine to coarse gravel, [WEATHERED TILL, Qvt] Φ Φ 0.5 S-2 GB 2 SM Φ Sonic-4-inch Diameter Core/6-inch Diameter Casing 4 Φ 0.5 Φ S-3 GB 133.8 - 10 ф Dense, brown, (SM), moist, silty, fine to medium SAND, little to some fine to coarse gravel, [TILL, Qvt]. Φ Λ SM 0.5 S-4 GB 3 Φ Φ 8/18/14 129.8 14.0 129.3 14 0 - 14 5 0.5 0.5 SP-SM GB ф Dense, brown, (SP-SM), moist, fine to medium SAND, little silt, [TILL, Qvt]. ST SONIC 11393533 ST PROJECT.GPJ 113.93533SOUND TRANSIT.GDT 0.5 SM Ф S-6 GB 14.5 - 15.0 128.8 15 Dense, brown, (SM), moist, silty, fine to 15.0 d medium SAND, trace fine gravel, [TILL, 15.0 - 17.5 Very dense, brown, (SM), moist, silty, fine to medium SAND, little fine to coarse gravel, some small pockets of brown, moist, fine to medium SAND, little silt, [TILL, Qvt]. SM Φ 0.5 S-7 GB 126.3 17.5 - 20.0 17.5 ф Very dense, gray, (SM), moist, fine SAND an SILT, some fine to coarse gravel, heterogeneous, [TILL, Qvt]. 0.5 0.5 S-8 GB Φ Φ Boulder encountered from 19 to 20 ft 123.8 20 Log continued on next page

1 in to 3 ft

DRILLING CONTRACTOR: Holt Services Inc.

DRILLER: Steve Zimmerman

LOGGED: Jeff Schwartz CHECKED: David P. Findley

SHEET 2 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Sonic DRILLING DATE: 1/2/13

DATUM: Sound Transit East Coordinate System COORDINATES: N: 554,144.97 E: 1,633,023.08 INCLINATION: -90

		I: 110th Ave. N of Main St. DRILL R SOIL P	ROFILE		Junie	<u>u Ge</u>	оргове	0 140L3	SAMI	PLES	PENE	TRATION F	RESISTANCE	
(Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC		.EV. PTH Ft)	RUN	REC ATT	NUMBER	TYPE	20	PL MC	/ ft ◆ 60 80 LL 60 80	NOTES WATER LEVELS
20		20.0 - 25.0 Very dense, brown to gray, (SM), moist, fine to medium SAND and SILT, some fine to coarse gravel, heterogeneous, [TILL, Qvt].		0 0	· 0 U · 0 U ·	0.0								
		Grades to grayish brown at 22 ft bgs.	SM	Φ	00.00		5	0.5 0.5	S-9	GB				
		Small pocket of (SP-SM), moist, fine to medium SAND, little silt from 23 to 25 ft bgs.		φ Φ	O- 9 O-									
				$ \phi $		8.8		0.5 0.5	S-10	GB	•			S-10@24.5ft %G-5.3
25		25.0 - 30.0 Dense to very dense, grayish brown, (SM), moist to wet, silty, fine SAND, some fine to coarse gravel, heterogeneous, [TILL, Qvt].		0	2	5.0								%S-49.8 %F-44.9 Driller's Note: Easier
					00.00			0.5 0.5	S-11	GB	-			drilling, top portion of R 6 wet (slough).
	ter Casing		SM	φ	O . O O.		6	0.5			-			
	6-inch Diamet	Some sub-horizontal laminations observed from 29.5 to 30 ft bgs.			00.00			0.5 0.5	S-12	GB	-			
80	Sonic-4-inch Diameter Core/6-inch Diameter Casing	30.0 - 35.0 Very dense, gray, (SM), moist, fine SAND and SILT, some fine to coarse gravel, heterogeneous, [TILL, Qvt].		0		0.0		0.5	5-12	ОВ				
	Sonic				0			<u>0.5</u> 0.5	S-13	GB	_			
			SM	0 0	U. 9 U. 9 U.		7	0.3						
				$ \phi $	0 10	08.8		<u>0.5</u> 0.5	S-14	GB				
35		35.0 - 37.0 Very dense, gray to dark gray, (GM), moist, silty, fine to coarse GRAVEL, some fine sand, [TILL, Qvt].	GM	0		5.0		5.0						End drilling at 35 ft bgs 1410 on 1/2/13. Begin drilling at 35 ft bg 0905 on 1/3/13.
		270.400	Olvi	0		06.8		1.0	S-15	GB				Driller's Note: Easier dr from 35 to 38 ft bgs.
		37.0 - 40.0 Very dense, gray to dark gray, (SM), moist, fine SAND and SILT, some fine to coarse gravel, trace dark brown organic debris at 39.5 ft bgs, [TILL, Qvt].	SM	0 0	. OO: OO:	7.0	8							
					0 0			1.0 1.0	S-16	GB	•			S-16@39ft %G-16.0 %S-40.4

1 in to 3 ft

DRILLING CONTRACTOR: Holt Services Inc.

DRILLER: Steve Zimmerman

LOGGED: Jeff Schwartz CHECKED: David P. Findley

SHEET 3 of 5

PROJECT: Sound Transit East Link/WA
PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Sonic
DRILLING DATE: 1/2/13
DRILL RIG: Track Mounted Ge

DATUM: Sound Transit East Coordinate System COORDINATES: N: 554,144.97 E: 1,633,023.08 INCLINATION: -90

	ТНОБ	SOIL PI	ROFILE		1			SAMI	PLES	PENETF	RATION RESISTANCE BLOWS / ft ◆	
(Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	()	RUN	REC ATT	NUMBER	TYPE	20 PL L 20	MC LL 40 60 80	NOTES WATER LEVELS
0 -		40.0 - 50.0 Very dense, gray, (SM), moist, silty, fine SAND, some fine to coarse gravel, heterogeneous, [TILL, Qvt].		$\left \phi \right $	40.0							Harder drilling 40 to 45 bgs.
					V	9	0.5 0.5	S-17	GB			
5			SM		40. 40.		1.0 1.0	S-18	GB	_		Slightly easier drilling
				0 0 0	. 4 U. 4 U.							Slightly easier drilling conditions from 45-50 bgs.
	ō				>	10	0.5 0.5	S-19	GB			
	th Diameter Casin	Wood fragment at 47.5 ft bgs.		0	- 4 A: 4 A:							
0	re/6-inc	Cobble encountered at 50 ft bgs.			93.8		<u>0.5</u> 0.5	S-20	GB			
J	Sonic-4-inch Diameter Core/6-inch Diameter Casing	50.0 - 59.5 Very dense, gray to dark gray, (SM), moist, fine to medium SAND and SILT, some fine to coarse gravel, heterogeneous, [TILL, Qvt].		$\left \phi \right $	50.0							RUN 11 grades sandi with depth.
	Sonic				9	11	<u>0.5</u> 0.5	S-21	GB	•		S-21@52ft %G-18.3 %S-41.6
		Some irregular thin pockets/lenses of fine to medium SAND, little silt at 52.5 to 55 ft bgs.		$ \phi $	0							%F-40.1
				1111	>		<u>0.5</u> 0.5	S-22	GB	-		
5			SM	$ \phi $	9 O - 9 O -							
					4 Q - 4 Q -	40	0.5 0.5	S-23	GB	_		
				1411	4 Q - 4 Q -	12						
0		59.5 - 60.0 Very dense, gray, (SM), moist, silty, fine Log continued on next page	SM	Φ	84.3 59.5 83.8		0.5 0.5	S-24	GB			

1 in to 3 ft

DRILLING CONTRACTOR: Holt Services Inc.

DRILLER: Steve Zimmerman

LOGGED: Jeff Schwartz CHECKED: David P. Findley

SHEET 4 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Sonic DRILLING DATE: 1/2/13

DATUM: Sound Transit East Coordinate System COORDINATES: N: 554,144.97 E: 1,633,023.08

ELEVATION: 143.84 INCLINATION: -90

DRILL RIG: Track Mounted Geoprobe 8140LS Sonic OCATION: 110th Ave. N of Main St SOIL PROFILE SAMPLES **BORING METHOD** PENETRATION RESISTANCE BLOWS / ft ◆ DEPTH (Ft) ELEV. 40 60 80 NOTES GRAPHIC LOG **USCS** TYPE WATER LEVELS RUN REC ATT DESCRIPTION DEPTH (Ft) 60 - 60 SAND, trace fine gravel, some light gray sand partings, [TILL, Qvt]. 60.0 ф 60.0 - 65.0 Very dense, gray, (SM), moist, fine to medium SAND and SILT, some fine to ¢ coarse gravel, trace cobbles heterogeneous, [TILL, Qvt]. Φ S-25@62ft %G-19.3 %S-40.0 %F-40.7 0.5 S-25 GB SM ⇕ 13 Φ Φ 2-inch thick layer of fine to medium SAND, little silt at 65.5 ft bgs. 0.5 GB Φ S-26 - 65 65.0 - 70.0 65.0 4 Very dense, gray, (SM), moist, silty, fine to medium SAND, some fine to coarse gravel, heterogeneous, [TILL, Qvt]. 0.5 S-27 GB Φ Φ SM Φ 14 Sonic-4-inch Diameter Core/6-inch Diameter Casing 4 Φ 0.5 Φ S-28 GB 73.8 - 70 Driller's Note: Few inches 70.0 - 76.0 ф Very dense, gray, (SM), moist, silty, fine to medium SAND, some fine to coarse gravel, heterogeneous, [TILL, Qvt]. of water at bottom of hole (RUN 14). Φ 4 15 Φ SM Φ 8/18/14 Φ S-29 GB 11393533 ST PROJECT.GPJ 113.93533SOUND TRANSIT.GDT Φ 75 Φ 67.8 76.0 - 77.0 76.0 76.0 - 77.0 Very dense, gray, (SM), moist to wet, silty, fine to medium SAND, some fine to coarse gravel, some small lenses/pockets of fine to medium SAND, [TILL, Qvt]. Λ 1.0 SM S-30 GB 66.8 77.0 0.5 ф 77.0 - 77.5 GP S-31 GB Very dense, gray, (GP), wet, fine to coarse GRAVEL, some fine to coarse sand, trace silt, [TILL, Qvt]. 16 77.5 Φ 77.5 - 79.0 SM Very dense, gray, (SM), moist to wet, silty, fine to medium SAND, some fine to coarse gravel, some small lenses/pockets of fine to medium SAND, [TILL, Qvt]. Large cobble or boulder encountered at 77.5 to 78.0 ft bgs, (dry rock flour and broken rock 64.8 79.0 0.5 SP ф S-32 GB 64.3 79.0 - 79.5fragments). Very dense, gray, (SP), wet, fine to medium SAND, trace silt, [TILL, Qvt].

Log continued on next page 79.5 ф 80

1 in to 3 ft

ST SONIC

DRILLING CONTRACTOR: Holt Services Inc.

DRILLER: Steve Zimmerman

LOGGED: Jeff Schwartz CHECKED: David P. Findley

SHEET 5 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Sonic DRILLING DATE: 1/2/13

DATUM: Sound Transit East Coordinate System COORDINATES: N: 554,144.97 E: 1,633,023.08 ELEVATION: 143.84 INCLINATION: -90

LOC	OJECT CATION	NUMBER: 113-93533.0320 DRILLIN I: 110th Ave. N of Main St. DRILL R	G DATE IG: Tra	:: 1/2/ ick Mou	13 inted Ge	eoprobe	8140L	COORDIN S Sonic	IATES: N: 5	54,144.9	/ E: 1,6	33,023.08	INCLINATION: -90
			ROFILE						PLES	PENET	RATION F	RESISTANC	E
(Ft)	METH			೦	ELEV.			E.		20	BLOWS A	/π ◆ 60 80	NOTES
	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH (Ft)	RUN N	REC ATT	NUMBER	TYPE	PL - 20	MC	LL 60 80	WATER LEVELS
30 -		79.5 - 83.5 Very dense, gray, (SM), moist, fine SAND and SILT, little fine to coarse gravel, heterogeneous, [TILL, Qvt].	SM	1411	2	17				20	40		Groundwater observed 74.0 ft bgs at the end o RUN 16. Very hard drilling RUNs through 19.
	Sasing						1.0 1.0	S-33	GB				
	ch Diameter C	83.5 - 90.0 Very dense, gray, (SM), moist, silty, fine to medium SAND, some fine to coarse gravel, heterogeneous, [TILL, Qvt].		0	60.3		_						
5	Sonic-4-inch Diameter Core/6-inch Diameter Casing			0	,	18							
	nic-4-inch Diar		SM	0 0			1.0 1.0	S-34	GB				
	Son			1411	2	19							
0				0	53.8		1.0 1.0	S-35	GB				Groundwater measure
		Boring completed at 90.0 ft.			90.0								78.2 ft bgs, hole open ft bgs (end of borehole
5													
00 in	to 3 ft			100	GED:	loff C	Soburar	+-					Φ. Φ

DRILLING CONTRACTOR: Holt Services Inc.

DRILLER: Steve Zimmerman

LOGGED: Jeff Schwartz CHECKED: David P. Findley

RECORD OF BOREHOLE E330-B-004 SHEET 1 of 3 DRILLING METHOD: Sonic DATUM: Sound Transit East Coordinate System ELEVATION: 145.01 PROJECT: Sound Transit East Link/WA DRILLING DATE: 4/8/2013
DRILL RIG: Tsi 150cc Compact Crawler COORDINATES: N: 554,924.27 E: 1,633,136.57 PROJECT NUMBER: 113-93533.0320 INCLINATION: -90 OCATION: NE 4th St. and 110th Ave NE WELL TAG # BHU584 SOIL PROFILE SAMPLES **BORING METHOD** PENETRATION RESISTANCE BLOWS / ft ◆ DEPTH (Ft) ELEV. 40 NOTES GRAPHIC LOG NUMBER **USCS** REC ATT TYPE WATER LEVELS RUN DESCRIPTION DEPTH (Ft) WELL INSTALLATION 60 - 0 0.0 - 0.7 8-inch diameter Asphalt Pavement, [Fill, Hf]. 144.3 0.7 - 0.9 flush mount 0.9 steel Crushed Rock, [FILL, Hf]. monument 0.9 - 6.0
Dense, grayish brown, (SM), moist, fine to medium SAND and SILT, some fine to coarse gravel, scattered cobbles, [FILL, Hf]. 1.0 1.0 cemented to 1 GB ft bgs. 2-inch diameter PVC riser from SM 0.3 to 28 ft bgs. 1.0 1.0 Backfilled with S-2 GB 3/8 inch - 5 bentonite chips from 1 to 24.8 ft bgs. S-2@4ft %G-15.4 %S-45.2 139.0 60-225 ď 6.0 Dense, grayish brown, (SM), moist, fine to medium SAND and SILT, some fine to 1.0 1.0 GB S-3 coarse gravel, scattered cobbles, [TILL, Qvt]. %F-39.4 2 Φ Φ 1.0 1.0 GB S-4 Φ - 10 Φ Sonic-4-inch Diameter Core/6-inch Diameter Casing 1.0 1.0 4 S-5 GB Φ SM ¢ 1.0 1.0 S-6 GB - 15 3 ¢ Φ Φ S-7@17.5ft %G-17.8 %S-47.1 1.0 1.0 S-7 GB • ¢ %F-35.1 ¢ - 20 ¢ Φ Driller's Note: 122.5 More gravel 22.5 - 27.0 22.5 9 encountered Very dense, grayish brown, (SM), moist, gravelly, silty, fine to coarse SAND, [TILL, Qvt]. midway RUN 4 1.0 GB S-8 Backfilled with SM Colorado silica 10 x 20 sand - 25 Φ filter from 24.8 to 39 ft bgs. S-9@26ft %G-27.6 4 1.0 1.0 S-9 GB 118.0 %S-49 1 %F-23.3 27.0 - 30.0 Very dense, gray, (GP-GM), moist to wet, fine to coarse GRAVEL, some sand, little silt 2-inch diameter slotted PVC size 0.010 inch [ADVANCE OUTWASH, Qva]. GP-GM 5 from 28 to 38 ft bgs S-10 GB 115.0 30 Log continued on next page 1 in to 4 ft LOGGED: Jeff Schwartz DRILLING CONTRACTOR: Holt Services Inc. CHECKED: David P. Findley DRILLER: Brian Owens DATE: 3/11/2014 FINAL DESIGN PARTNERS

8/18/14

11393533 ST PROJECT.GPJ 113.93533SOUND TRANSIT.GDT

ST SONIC

RECORD OF BOREHOLE E330-B-004 SHEET 2 of 3 PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320 DRILLING METHOD: Sonic DATUM: Sound Transit East Coordinate System ELEVATION: 145.01 DRILLING DATE: 4/8/2013
DRILL RIG: Tsi 150cc Compact Crawler COORDINATES: N: 554,924.27 E: 1,633,136.57 INCLINATION: -90 OCATION: NE 4th St. and 110th Ave NE WELL TAG # BHU584 SOIL PROFILE SAMPLES **BORING METHOD** PENETRATION RESISTANCE BLOWS / ft ◆ DEPTH (Ft) ELEV. 40 60 NOTES GRAPHIC LOG NUMBER **USCS** REC ATT TYPE WATER LEVELS RUN DESCRIPTION DEPTH (Ft) WELL INSTALLATION 60 - 30 30.0 - 33.0 30.0 Vibration test conducted at Solid - 33.0 Very dense, gray, (GM), moist to wet, silty GRAVEL, some sand, [ADVANCE OUTWASH, Qva]. 30 feet by ATS Consulting. 1.0 GB GM S-11 S-12@33ft %G-23.4 %S-67.6 %F-9.0 33.0 - 34.5 33.0 1.0 Very dense, gray, (SW-SM), wet, fine to coarse SAND, some fine gravel, little silt, [ADVANCE OUTWASH, Qva]. S-12 GB SW-SN 110.5 Saturated soil 34.5 - 37.0 34.5 encountered at Very dense, gray, (GM), wet, silty, fine to coarse GRAVEL, little sand, [ADVANCE - 35 6 34 ft bgs. OUTWASH, Qva]. GM 1.0 1.0 S-13 GB 108.0 37.0 - 37.5 Hard, greenish gray, (ML), moist, low plasticity SILT, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. 0.5 0.5 ML S-14 GB 107.5 57:5-43:0 Hard, mottled dark gray and white, (CL), moist, low plasticity, silty CLAY, some slickensides, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. 1.0 1.0 Backfilled with GB S-15 3/8 inch 40 bentonite chips from 39 to 85 ft bgs. Core/6-inch Diameter Casing S-16@42ft 1.0 %G-%S-GB **I⊕** I S-16 102.0 43.0 - 59.0 %F-98.4 43.0 Hard, gray, (ML), moist, low plasticity, clayey SILT, homogeneous, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. - 45 7 Sonic-4-inch Diameter 1.0 1.0 S-17 GB - 50 Vibration test conducted at 50 feet by ATS ML Consulting. 11393533 ST PROJECT.GPJ 113.93533SOUND TRANSIT.GDT 1.0 1.0 S-18 GB - 55 8 59.0 S-19 GB 60 Log continued on next page 1 in to 4 ft LOGGED: Jeff Schwartz ST SONIC DRILLING CONTRACTOR: Holt Services Inc. CHECKED: David P. Findley DRILLER: Brian Owens DATE: 3/11/2014 FINAL DESIGN PARTNERS.

RECORD OF BOREHOLE E330-B-004 SHEET 3 of 3 PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320 LOCATION: NE 4th St. and 110th Ave NE DRILLING METHOD: Sonic DATUM: Sound Transit East Coordinate System ELEVATION: 145.01 DRILLING DATE: 4/8/2013
DRILL RIG: Tsi 150cc Compact Crawler COORDINATES: N: 554,924.27 E: 1,633,136.57 INCLINATION: -90 WELL TAG # BHU584 SOIL PROFILE SAMPLES **BORING METHOD** PENETRATION RESISTANCE BLOWS / ft ◆ DEPTH (Ft) ELEV. 40 60 NOTES GRAPHIC LOG NUMBER **USCS** REC ATT TYPE WATER LEVELS RUN DESCRIPTION DEPTH (Ft) WELL INSTALLATION - 60 59.0 - 72.0 59:0 - 72:0 Hard, dark gray, (CL), moist, silty CLAY, some light gray mottling, silckensides, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. White clasts observed from 61 to 62 1.0 S-20 GB ft bgs. Grades to mottled gray and light gray - 65 9 S-21@68ft 1.0 %G-%S-%F-98.0 S-21 GB Sonic-4-inch Diameter Core/6-inch Diameter Casing - 70 73.0 72.0 - 76.0 72.0 Hard, gray, (ML), moist, low plasticity, clayey SILT, homogeneous, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. 1.0 S-22 GB ML - 75 10 69.0 76.0 - 80.0 76.0 Hard, mottled gray and light gray, (ML), moist, low plasticity, clayey SILT, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. ML 1.0 GB S-23 65.0 - 80 80.0 - 82.0 80.0 Hard, gray, (ML), moist, low plasticity, clayey SILT, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. ML S-24@81ft %G-%S-%F-96.8 1.0 1.0 S-24 GB ST SONIC 11393533 ST PROJECT.GPJ 113.93533SOUND TRANSIT.GDT 63.0 82.0 - 85.0 Hard, mottled gray and light gray, (ML), moist, low plasticity, clayey SILT, few slickensides, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. 82.0 11 ML 1.0 1.0 S-25 GB 60.0 - 85 Boring completed at 85.0 ft. 85.0 90 1 in to 4 ft LOGGED: Jeff Schwartz DRILLING CONTRACTOR: Holt Services Inc. CHECKED: David P. Findley DRILLER: Brian Owens DATE: 3/11/2014 FINAL DESIGN PARTNERS

SHEET 1 of 4

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Sonic DRILLING DATE: 2/15/2013

LOC		NUMBER: 113-93533.0320 DRILLIN I: 110th Ave, N of NE 4th St. DRILL R	IG: Tru	ck Mou	nted R1	31 Son	ic		ATES: N: 5	1	,		INCLINATION: -90
	гнор	SOIL P	ROFILE		1		1	SAM	PLES	PENETR	ATION REBLOWS /	ESISTANCE ft ♦	
(Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH (Ft)	RUN	REC ATT	NUMBER	TYPE	20 PL	MC	LL	NOTES WATER LEVELS
0 -	В	0.0 - 0.8 Asphalt Pavement. 0.8 - 2.0 Concrete Pavement.			157.0					20	40 6	80	Air knife excavation to 6 ft bgs.
5	Air Knife Excavation	2.0 - 6.0 From observation during air knife excavation: Compact, grayish brown, (SM), moist, SAND and SILT, some fine to coarse gravel, heterogeneous, [WEATHERED TILL, Qvt].	SM		2.0								4-inch PVC casing insta to 76 feet for shear wave test. Grouted in place.
		6.0 - 22.5 Dense, grayish brown, (SM), moist, silty, fine to coarse SAND, some fine to coarse gravel, [TilLL, Qvt]. Some yellowish red oxidation observed from 6 to 15 ft bgs.			6.0	1	1.0 1.0	S-1	GB	•			Begin drilling at 6 ft bgs 1000 on 2/16/2013. S-1@6.5ft %G-17.9 %S-35.4 %F-46.7
				0 0 0									Pressuremeter Test at 8 ft bgs.
0	asing						1.0	S-2	GB				Pressuremeter Test at 1 ft bgs.
	ר Diameter C	Large cobble encountered at 12 ft					1.0 1.0	S-3	GB				Large cobble encounter at 12 ft bgs during casir advance.
	Sonic-4-inch Diameter Core/6-inch Diameter Casing	bgs.	SM	0 0 0		2							auvance.
5	4-inch Diam						1.0 1.0	S-4	GB				
	Sonic												
							1.0 1.0	S-5	GB				
							1.0 1.0	S-6	GB				

DRILLING CONTRACTOR: Cascade Drilling, LP

DRILLER: Kevin Rogers

LOGGED: Jeff Schwartz CHECKED: David P. Findley

SHEET 2 of 4

PROJECT: Sound Transit East Link/WA
PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Sonic
DRILLING DATE: 2/15/2013
DRILL RIG: Truck Mounted R131 Sonic

_	THOL	SOIL P	ROFILE				+	SAM	PLES	PENETR	ATION R BLOWS /	ESISTANCI ft ♦	=
DEPTH (Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH (Ft)	RUN	REC ATT	NUMBER	TYPE	20 PL 1 20	MC	LL 60 80	NOTES WATER LEVELS
20 -		6.0 - 22.5 Dense, grayish brown, (SM), moist, silty, fine to coarse SAND, some fine to coarse gravel, [TILL, Qvt]. Becomes slightly sandier from 20.5 to 22.5 ft bgs.	SM	0 0						-			
					135.3		1.0 1.0	S-7	GB				
		22.5 - 27.5 Very dense, grayish brown, (SM), moist, silty, fine to medium SAND, some fine to coarse gravel, heterogeneous, [TILL, Qvt].		22.5		22.5							Pressuremeter Test at 2 ft bgs.
25			SM				1.0 1.0	S-8	GB				Pressuremeter Test at 2 ft bgs.
23			Sivi	0 0		3							
				0 5	130.3		1.0 1.0	S-9	GB				
	iameter Casing	27.5 - 32.5 Very dense, grayish brown, (GM), moist, silty, fine to coarse GRAVEL and SAND, little cobbles, [TILL, Qvt].		0 0	27.5								
30	re/6-inch D		GM	0			1.0 1.0	S-10	GB				
30	Sonic-4-inch Diameter Core/6-inch Diameter Casing		GW										
	0,	32.5 - 35.0 Dense to very dense, brown to grayish brown, (GP-GM), moist to wet, fine to			125.3 32.5	4	1.0	S-11	GB				Danas and the Total of
		brown, (GP-GM), moist to wet, fine to coarse GRAVEL and SAND, little silt, [ADVANCE OUTWASH, Qva].	GP-GM										Pressuremeter Test at ft bgs.
35					122.8		1.0 1.0	S-12	GB	•			S-12@34ft %G-50.5 %S-38.6 %F-10.9
		35.0 - 37.0 Dense to very dense, brown, (GP), moist to wet, fine to coarse GRAVEL and SAND, trace silt, [ADVANCE OUTWASH, Qva].	GP		35.0		1.0	S-13	GB	_			A few inches of ground water measured at bott of hole at the end of Rl 4, 35 ft bgs. RUN 5 - Drill rods wet a muddy.
		37.0 - 38.5 Dense to very dense, grayish brown, (GM), wet, silty, fine to coarse GRAVEL, some sand, [ADVANCE OUTWASH, Qva].	GM		120.8 37.0	5	1.0 1.0	S-14	GB				
		38.5 - 39.0 Dense to very dense, brown, (GP), moist to	GP	000	38.5 118.8		<u>0.5</u> 0.5	S-15	GB]			
		wet, fine to coarse GRAVEL and SAND, trace silt, [ADVANCE OUTWASH, Qva].	GM		39.0								
40		Log continued on next page			GED:								

SHEET 3 of 4

PROJECT: Sound Transit East Link/WA
PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Sonic
DRILLING DATE: 2/15/2013
DRILLI RIG: Truck Mounted R131 Sonic

	兒	SOIL P	ROFILE	1		1		SAM	PLES	PENETRATION BLOW	I RESISTANCE S / ft ◆	
(j.j.) 40	BORING METHOD	DESCRIPTION	nscs	GRAPHIC	DEPTI (Ft)	- N N N N	REC ATT	NUMBER	TYPE	20 40 PL M 20 40	60 80	NOTES WATER LEVELS
		39.0 - 41.0 Dense, brown, (GM), moist, silty, fine to coarse GRAVEL, some sand, [ADVANCE OUTWASH, Qva].	GM		116.8		1.0 1.0	S-16	GB			Casing wet at 40 ft bgs, observed while pulling casing for Shear Wave
		41.0 - 42.6 Dense, brown, (GP-GM), moist to wet, fine to coarse GRAVEL and SAND, little silt, little cobbles, [ADVANCE OUTWASH, Qva].	GP-GM		41.0	5	<u>1.0</u> 1.0	S-17	GB			install on 2/19/2013.
		42.6 - 47.5 Dense, brown, (GM/GP-GM), wet to moist, sitty, fine to coarse GRAVEL, some sand, little cobbles and fine to coarse GRAVEL and SAND, little silt and cobbles, [ADVANCE OUTWASH, Qva].			42.6							A few inches of groundwater at bottom hole at the end of RUN 42.6 ft bgs, slow seepar of groundwater into hole likely from 35 feet and below.
5		C	M/GP-G			6	1.0 1.0	S-18	GB			
		Yellowish red oxidation observed in (GM) soils from 46 to 46.5 below ground surface.			110.3							Ground water measured 46 ft bgs at 1215 on 2/15/2013 (bottom of ho
	Diameter Casing	47.5 - 51.5 Hard, mottled gray and light gray, (CL), damp to moist, CLAY, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].			47.5		<u>1.0</u> 1.0	S-19	GB	- - -		at 47 ft bgs, no casing) S-19@48ft %G-0.0 %S-4.8 %F-95.2
60	Sonic-4-inch Diameter Core/6-inch Diameter Casing		CL		106.3	7						
	ic-4-inc	51.5 - 52.0 Dense, brown, (GM), moist, silty, fine to coarse GRAVEL, some fine to coarse sand.	GM	. N	51.5 0 105.8	7	<u>0.5</u> 0.5	S-20	GB			
	Soni	52.0 - 52.5 Hard, mottled gray and light gray, (ML), moist, low plasticity SILT, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].	ML		52.0 105.3 52.5		-					Drill rod wet at about 33 bgs, observed when pu up drill rod at end of RU
		52.5 - 60.0 Hard, gray, (ML), moist, low plasticity SILT, trace fine to coarse gravel, non-stratified, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].				8	1.0					7, 52.5 ft bgs.
55		No gravel at 55 ft bgs.					1.0 1.0	S-21	GB			
		g « agu	ML				1.0	0.00	65			
						9	1.0	S-22	GB			Casing advanced from 57 ft bgs prior to RUN on 2/18/2013.
- 1					97.8							

ST SONIC

DRILLING CONTRACTOR: Cascade Drilling, LP

DRILLER: Kevin Rogers

CHECKED: David P. Findley

SHEET 4 of 4

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Sonic DRILLING DATE: 2/15/2013

		NUMBER: 113-93533.0320 DRILLING 110th Ave, N of NE 4th St. DRILL RI	G: Tru			31 Sor	nic		IATES: N: 5				INCLINATION: -90
l 원		SOIL PE	ROFILE		1			SAM	PLES	PENETRA B	ATION R LOWS /	ESISTANCE ft ◆	
(Ft)		DESCRIPTION	SOSN	GRAPHIC LOG	(11)	RUN	REC ATT	NUMBER	TYPE	20 PL L 20	MC	LL 60 80	NOTES WATER LEVELS
		60.0 - 62.5 Hard, gray, (CH), moist, high plasticity CLAY, slickensided, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].			60.0								0.00@04#
			CH			9	1.0	S-23	GB	•	+		S-23@61ft %G-0.0 %S-2.5 %F-97.5
		62.5 - 67.5 Hard, gray, (ML), moist, low plasticity, clayey SILT, non-stratified, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].			95.3 62.5								Pressuremeter Test at ft bgs.
5			ML			10	<u>1.0</u> 1.0	S-24	GB				
neter Casing	· _	67.5-73.0			90.3 67.5		-						Casing advanced to 67 bgs prior to RUN 11 on 2/18/2013.
Sonic-4-inch Diameter Core/6-inch Diameter Casing		Dense to very dense, gray, (ML), moist to wet, non-plastic SILT, trace fine sand, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].											
ic-4-inch Dia			ML				<u>1.0</u> 1.0	S-25	GB				
Soni						11							Pressuremeter Test at ft bgs.
		73.0 - 78.0 Hard, gray, (ML), moist, low plasticity clayey SILT, slickensided, [PRE-VASHON			84.8 73.0								Pressuremeter Test at ft bgs. Ground water measure
5		GLACIOLACUSTRINE DEPOSITS, Qpgl].					1.0 1.0	S-26	GB				69.1 ft bgs at 0915 on 2/19/2013 (bottom of h at 73.3 ft bgs, cased to feet).
			ML				-						Cascade over-drilled borehole from 76 to 78
						12							bgs for shear wave installation on 2/19/201
		Boring completed at 78.0 ft.			79.8 78.0		_						
0													

ST SONIC

DRILLING CONTRACTOR: Cascade Drilling, LP DRILLER: Kevin Rogers

CHECKED: David P. Findley

		RE	COI	RD C	OF B	ORI	EHC	LE E3	30-B-0	06	SHEET 1	l of 5	
P	ROJECT	: Sound Transit East Link/WA DRILLIN NUMBER: 113-93533.0320 DRILLIN N: NE 110th Ave. S of NE 6th St. DRILL R	IG DATE	E: 2/8/2	013-2/1			DATUM: COORDIN	Sound Trans IATES: N: 5	sit East Coordinat 55,393.84 E: 1,0	e System 633,074.71	ELEVATION: 16 INCLINATION: - WELL TAG # BH	-90
	_		ROFILE			0.00.		SAM	PLES	PENETRATION I			10.00
DEPTH (F1)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH (Ft)	RUN	REC ATT	NUMBER	TYPE	PL MC	60 80 LL 60 80	NOTES WATER LEVI	
- 0		0.0 - 0.8 Asphalt Pavement.								20 40	80 80	Air knife excavation to	
- 5	Air Knife Excavation	0.8 - 10.0 Controled Density Fill.			162.7							10 ft bgs completed on 2/7/2013. Begin drilling at 1145 on 2/8/2013, advance casing to 10 ft bgs, cleanout to 10 feet. 12-inch diameter flush mount steel monument, cemented to 3.0 ft bgs. 4-inch diameter PVC riser from 0.3 to 53 ft bgs. Backfilled with medium bentonite chips from 3 to 50 ft bgs.	
- 10 - -			SM/SP-S	SM O	150.9	1							
ISIT.GDT 8/18/14	Core/6-inch Diameter Casing	12.5 - 27.5 Very dense, grayish brown, (SM), moist fine to medium SAND and SILT, little fine to coarse gravel, heterogeneous, [TILL, Qvt].			12.5							Hydraulic leak observed in sonic drill head. Shut down at 1244 2/8/2013,	
ID TRAN	Sonic-4-inch Diameter	Minor yellowish-red oxidation observed from about 15 to 18 ft bgs.		0 5	ļ		1.0 1.0	RUN-2	GB	•		16 ft of 8-inch diameter casing	
SSOUN	inch		SM	0 6			1.0			_		removed from bore hole. Resume drilling	
ST SONIC 11393533 ST PROJECT.GPJ 113.93533SOUND TRANSIT.GDT 8/18/14	Sonic-4	Log continued on next page				2						Active Grant	-
11	n to 3 ft		1	LOG	GED:	Jeff S	Schwar	rtz	ı	<u> </u>	(0)	•	
ST SONIC IDI	RILLING	CONTRACTOR: Cascade Drilling Kevin Rogers	, LP	CHE		: Dav	id P. F	indley			FINAL	DESIGN PART	NERS.

RECORD OF BOREHOLE E330-B-006 SHEET 2 of 5 DRILLING METHOD: Sonic DRILLING DATE: 2/8/2013-2/14/2013 DRILL RIG: Truck Mounted R131 Sonic PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320 DATUM: Sound Transit East Coordinate System ELEVATION: 163.41 COORDINATES: N: 555,393.84 E: 1,633,074.71 INCLINATION: -90 OCATION: NE 110th Ave. S of NE 6th St. WELL TAG # BHS738 SOIL PROFILE SAMPLES PENETRATION RESISTANCE BLOWS / ft ◆ **BORING METHOD** DEPTH (Ft) ELEV. 40 NOTES GRAPHIC LOG NUMBER **USCS** TYPE RUN REC ATT WATER LEVELS DESCRIPTION DEPTH (Ft) WELL INSTALLATION - 20 12.5 - 27.5 Very dense, grayish brown, (SM), moist fine to medium SAND and SILT, little fine to coarse gravel, heterogeneous, [TILL, Qvt]. φ 2 Φ ⇕ Driller's Note: Tight formation, very hard drilling. Φ ⇕ - 25 Ф ¢ Easier drilling. 27.5 - 32.5 27.5 ф Sonic-4-inch Diameter Core/6-inch Diameter Casing Dense to very dense, gray to grayish brown, (GM/GP-GM), moist, silty, fine to coarse GRAVEL, some fine to coarse sand and fine to coarse GRAVEL and SAND, little silt, Ф [TILL, Qvt]. Φ GM/ - 30 ¢ Becomes grayish brown at about 30 ft bgs. 4 ¢ Brown fabric-like organic fragments at about 32.5 ft bgs. · d 130.9 32.5 32.5 - 40.0 Dense to very dense, grayish brown, (GP-GM), moist, fine to coarse GRAVEL and SAND, little silt, [ADVANCE OUTWASH, Qva]. 35 groundwater observed at end of RUN 4, 35 ft bgs. 5 40 Log continued on next page 1 in to 3 ft LOGGED: Jeff Schwartz

ST SONIC 11393533 ST PROJECT.GPJ 113.93533SOUND TRANSIT.GDT 8/18/14

DRILLING CONTRACTOR: Cascade Drilling, LP DRILLER: Kevin Rogers

CHECKED: David P. Findley

RECORD OF BOREHOLE E330-B-006 SHEET 3 of 5 PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320 DRILLING METHOD: Sonic DATUM: Sound Transit East Coordinate System ELEVATION: 163.41 DRILLING DATE: 2/8/2013-2/14/2013
DRILL RIG: Truck Mounted R131 Sonic COORDINATES: N: 555,393.84 E: 1,633,074.71 INCLINATION: -90 OCATION: NE 110th Ave. S of NE 6th St. WELL TAG # BHS738 SOIL PROFILE SAMPLES **BORING METHOD** PENETRATION RESISTANCE BLOWS / ft ◆ DEPTH (Ft) ELEV. 40 60 80 NOTES GRAPHIC LOG NUMBER SSS REC ATT TYPE WATER LEVELS RUN DESCRIPTION DEPTH (Ft) WELL INSTALLATION 40 40.0 - 45.0 40.0 Dense to very dense, grayish brown, (GP), moist, fine to coarse GRAVEL and SAND, trace silt, [ADVANCE OUTWASH, Qva]. $^{\circ}$ $^{\circ}$ 0 6 5 0 0 GP 0 0 0 118.4 45 6 45.0 - 47.5 45.0 Dense to very dense, grayish brown, (GP-GM), moist, fine to coarse GRAVEL, some fine to coarse sand, little silt, [ADVANCE OUTWASH, Qva]. GP-GM Grades siltier at 47 ft bgs. 47.5 - 48.0 47.5 Core/6-inch Diameter Casing Dense to very dense, grayish brown, (SM), moist, silty, fine to medium SAND, some fine to coarse gravel. 115.4 48.0 Dense to very dense, grayish brown, (GP-GM), moist, fine to coarse GRAVEL, some fine to coarse sand, little silt, cobbles, [ADVANCE OUTWASH, Qva] Cobbles/boulders encountered at 48 to 48.5 ft bgs. - 50 7 Backfilled with 8x12 filter pack sand from 50 Sonic-4-inch Diameter Becomes moist to wet at 50 ft bgs. to 73.5 ft bgs. RUN-7@52ft %G-63.6 %S-28.1 %F-8.3 0.5 GP-GM RUN-7 GB Becomes gray at 52.5 ft bgs. 4-inch diameter slotted PVC size 0.040 inch from 53 to 73 ft bgs. 55 8 106.9 Groundwater 56.5 - 57.5 Very dense, gray, (GM), moist, silty, fine to coarse GRAVEL, some sand, [ADVANCE OUTWASH, Qva]. measured at 54.4 ft bgs at GM end of RUN 8 (56.5 ft bgs) on 2/12/2013. 57.5 - 60.0 57.5 57:5 - 00.0 Hard, dark gray, (ML), moist, low plasticity, clayey SILT, trace fine organic fragments, rhythmic gray clayey SILT layers to 1/2 inch thick, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl] MLBecomes fine SAND at 60 ft bgs 103.4 60 Log continued on next page 1 in to 3 ft LOGGED: Jeff Schwartz

11393533 ST PROJECT.GPJ 113.93533SOUND TRANSIT.GDT ST SONIC

8/18/14

DRILLING CONTRACTOR: Cascade Drilling, LP DRILLER: Kevin Rogers

CHECKED: David P. Findley

RECORD OF BOREHOLE E330-B-006 SHEET 4 of 5 PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320 DRILLING METHOD: Sonic DATUM: Sound Transit East Coordinate System ELEVATION: 163.41 DRILLING DATE: 2/8/2013-2/14/2013
DRILL RIG: Truck Mounted R131 Sonic COORDINATES: N: 555,393.84 E: 1,633,074.71 INCLINATION: -90 OCATION: NE 110th Ave. S of NE 6th St. WELL TAG # BHS738 SOIL PROFILE SAMPLES **BORING METHOD** PENETRATION RESISTANCE BLOWS / ft ◆ DEPTH (Ft) ELEV. 40 60 80 NOTES GRAPHIC LOG NUMBER **USCS** REC ATT TYPE WATER LEVELS RUN DESCRIPTION DEPTH (Ft) WELL INSTALLATION 60 - 60 60.0 - 65.0 60.0 Dense to very dense, gray, (GP-GM), wet, fine to coarse GRAVEL, some sand, little silt, cobbles, IPRE-VASHON RUN 9 appears to be mixed GLACIOLACUSTRINE DEPOSITS, Qpgl]. and disturbed. GP-GM 9 98 4 2/12/2013 end drilling at 65 ft bgs at 1430. - 65 65.0 - 66.0 65.0 63.0 - 06.0
Hard/dense to very dense, dark gray, (ML/SP), moist, low plasticity SILT and fine SAND, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. ML/SF Stop drilling 974 1430 2/12/2013 at 66.0 66.0 - 73.0 65 feet Dense to very dense, dark gray, (SP-SM), moist, fine SAND, little silt, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. 2/13/13 Hole caved, three cleanout runs because of caving. RUN 10 Soil Sonic-4-inch Diameter Core/6-inch Diameter Casing may be disturbed and physically mixed due to 10 casing advancement prior to run. Grades to fine to medium SAND at SP-SM Groundwater 69 ft bgs. measured in extraction well at about 66.5, - 70 1330 2/13/2013. RUN-10@72ft 0.5 RUN-10 GB %G-0.1 %S-94.5 %F-5.4 Trace coarse SAND at 72 ft bgs. 2/14/2013 73.0 - 84.0 Hard, greenish gray, (CL), moist, silty CLAY, Groundwater measured at trace sand and gravel, few slickensides, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. 66.5 ft bgs after well installation. 8/18/14 11393533 ST PROJECT.GPJ 113.93533SOUND TRANSIT.GDT Backfilled with medium bentonite chips 75 Becomes mottled greenish gray and light gray at about 75 ft bgs. from 73.5 ft to bottom of hole. 11 CL RUN-11@76.7ft %G-0.5 %S-1.8 1.0 1.0 RUN-11 GB %F-97.7 80 Log continued on next page 1 in to 3 ft LOGGED: Jeff Schwartz ST SONIC DRILLING CONTRACTOR: Cascade Drilling, LP CHECKED: David P. Findley DRILLER: Kevin Rogers DATE: 3/11/2014 FINAL DESIGN PARTNERS

			RE	COF	RD (OF B	ORI	EHC	LE E3	30-B-0	06	SHEET 5	of 5
	PR	OJECT	: Sound Transit East Link/WA DRILLING NUMBER: 113-93533.0320 DRILLING I: NE 110th Ave. S of NE 6th St. DRILL RI	DATE	: 2/8/2	2013-2/1			DATUM: COORDIN	Sound Trans IATES: N: 5	sit East Coordinate 55,393.84 E: 1,6	System 33,074.71	ELEVATION: 163.41 INCLINATION: -90 WELL TAG # BHS738
			SOIL PF						SAMI	PLES	PENETRATION R BLOWS /		
	DEPTH (Ft)	BORING METHOD	DESCRIPTION	NSCS	GRAPHIC LOG	ELEV. DEPTH (Ft)	RUN	REC ATT	NUMBER	TYPE	20 40 PL MC	LL 60 80	NOTES WATER LEVELS WELL INSTALLATION
	— 80 - - -	iameter Casing	73.0 - 84.0 Hard, greenish gray, (CL), moist, silty CLAY, trace sand and gravel, few slickensides, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].	CL		79.4	12				20 40		2/13/2013 Groundwater measured at 67.5 ft bgs at end of RUN 11 (80 ft bgs).
	 85	Sonic-4-inch Diameter Core/6-inch Diameter Casing	84.0 - 87.5 Hard, gray, (ML), moist, clayey SILT, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].	ML		75.9							-
	_ 90		87.5 - 90.0 Hard, mottled gray and light gray, (ML), moist, clayey SILT, few slickensides, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].	ML		73.4	13	-					
ST SONIC 11393533 ST PROJECT.GPJ 113.93533SOUND TRANSIT.GDT 8/18/14	- - - - - - - -	to 3 ft	Boring completed at 90.0 ft.		LOG	90.0	Jeff S	Schwa	tz				
ST SONIC	DRI	LLING	CONTRACTOR: Cascade Drilling, Kevin Rogers	LP	CHE	CKED E: 3/1	: Dav	id P. F				FINAL	DESIGN PARTNERS.

SHEET 1 of 3

PROJECT: Sound Transit East Link/WA DRILLING METHOD: Mud Rotary DATUM: Sound Transit East Coordinate System ELEVATION: 165.29

		I: NE 110th Ave. S of NE 6th St. DRILL RI SOIL PROFILE	<u>ю. В-С</u>	iviodii	E DIII II	uck		SAMPLES			PENE	TRATI			ANCE	WELL TAG#:BHI	J32
(Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	ELEV.	NUMBER	TYPE	BLOWS per 6 in	N	REC ATT	10	BLC)WS/f	t ◆ 0 4	0	NOTES WATER LEVI	ELS
+	BC	0.0 - 1.0		<u> </u>	(Ft)			30 inch drop			20) 40	0 6) I	0	WELL INSTALL	ATIO
		Concrete Pavement. 1.0 - 1.5 Crushed Rock.	GP-GN	1	164.3 163.8											excavation to 7 ft bgs. Begin drilling at	
	Knife Excavation	1.5 - 6.0 Compact to dense, brown, (SM), moist, sitty, fine to medium SAND, some fine to coarse gravel, cobbles, [FILL, Hf].			1.5											1248 on 3/19/2013 8-inch diameter flush mount steel	
	Air Knife	Trace fine roots to 4 ft bgs.	SM													monument, concrete to 1.5 ft bgs. 2-inch diameter PVC riser from	
_		6.0 - 15.0 Very dense, mottled brown and grayish brown, (SM), moist, fine to medium SAND and SILT, some fine to coarse gravel, [TILL, Qvt].			159.3 6.0											0.3 to 52 ft bgs. 3/8-inch HolePlug Bentonite	
						S-1	SS	26-40-42	>50	<u>1.2</u> 1.5					>>·	Chips from 1.5 to 49 ft bgs.	
			SM			S-2	SS	22-50/5"	>50	0.9	•				>>	S-2@10ft %G-13.7 %S-40.5 %F-45.8	
				0 0												Intermittent drill chatter from 10 to 15 ft bgs.	
5				0	150.3 15.0	S-3	SS	50/6"	>50	0.4					>>-		
	ameter Bit, Mud Rotary	Very dense, grayish brown, (SM), moist, silty, fine to medium SAND, some fine to coarse gravel and cobbles, some reddish yellow mottling/oxidation, [TILL, Qvt]. 16.0 - 25.0 Very dense, gray, (SM), moist, silty, fine to medium SAND, some fine to coarse gravel, scattered cobbles, [TILL, Qvt].	SM		149.3 16.0					0.5							
	4.9-inch Dia		SM			S-4	SS	28-50/4"	>50	0.5 0.8	•				>>•	S-4@20ft %G-18.6 %S-49.8	
	•															%F-31.6 Increasing drill chatter from 20 to 25 ft bgs. Slight loss of drilling mud, possible water bearing zone at 21 ft bgs.	
5		25.0 - 33.0 Very dense, gray, (GP-GM), moist, fine to coarse GRAVEL and fine to medium SAND, little silt, scattered cobbles, [ADVANCE OUTWASH, Qva].	GP-GM		140.3	S-5	SS	50/5"	>50	0.4					>>•	Significant drill chatter from 25 to 30 ft bgs.	
)																	
		Log continued on next page		7.0.7													_

STLOG

DRILLING CONTRACTOR: Holt Services Inc.

DRILLER: John Bennet

CHECKED: David P. Findley

RECORD OF BOREHOLE E330-B-006A SHEET 2 of 3 DRILLING METHOD: Mud Rotary DATUM: Sound Transit East Coordinate System ELEVATION: 165.29 PROJECT: Sound Transit East Link/WA DRILLING DATE: 3/19/2013 COORDINATES: N: 555,424.75 E: 1,633,022.63 PROJECT NUMBER: 113-93533.0320 INCLINATION: -90 OCATION: NE 110th Ave. S of NE 6th St. DRILL RIG: B-59 Mobile Drill Truck WELL TAG#:BHU524 SOIL PROFILE SAMPLES PENETRATION RESISTANCE METHOD BLOWS / ft ◆ DEPTH (Ft) ELEV. 20 30 NOTES GRAPHIC LOG **BLOWS** NUMBER REC ATT WATER LEVELS BORING per 6 in DESCRIPTION Ν DEPTH 140 lb hammer 30 inch drop (Ft) WELL INSTALLATION 60 - 30 S-6@30ft %G-56.6 %S-35.9 %F-7.5 0.0 25.0 - 33.0 S-6 SS 50/3" >50 25.0 - 35.0 Very dense, gray, (GP-GM), moist, fine to coarse GRAVEL and fine to medium SAND, little silt, scattered cobbles, [ADVANCE GP-GM OUTWASH, Qval. End drilling at 0250 on 3/19/2013, Some fine to coarse SAND. Resume drilling 33.0 - 38.0 33.0 3/20/2013 Very dense, brown to grayish brown, (GP-GM), moist, fine to coarse GRAVEL, and fine to medium SAND, little silt, [ADVANCE OUTWASH, Qva]. - 35 GP-GM Drill chatter >> observed at 35 ft bgs. S-7 SS 35-50/3" >50 127.3 38.0 - 45.0 Very dense, grayish brown, (GP-GM), moist to wet, fine to coarse GRAVEL, some fine to medium sand, little silt, [ADVANCE 6 OUTWASH, Qva]. 40 0.7 S-8 SS 32-50/2" >50 • %G-62.6 %S-31.4 %F-6.0 Rotary Drill chatter observed at 43 ft bgs. Mud Bit 120.3 - 45 Diameter 0.3 45.0 - 53.0 S-9 SS 50/6" >50 Very dense, brown, (GP-GM), moist, fine to coarse GRAVEL and fine to medium SAND, little to trace silt, [ADVANCE OUTWASH, 4.9-inch 10x20 silica sand from 49 - 50 to 86.5 ft bgs. S-10 SS 50/3" >50 <u>0.3</u> 0.3 observed at 50 ft bgs. PROJECT.GPJ 113.93533SOUND TRANSIT.GDT 8/18/ 36000 2-inch diameter, 112.3 53.0 - 60.0 0.010 inch Very dense, brown, (GP), moist, fine to coarse GRAVEL and fine to medium SAND, cobbles, [ADVANCE OUTWASH, Qva]. machine slotted PVC $\circ \circ$ 000 installed between 82 and 52 ft bgs. - 55 >50 <u>0.2</u> 0.3 S-11 SS 50/3" Driller Note: increased, 00 coarser gravel approximately 55 ft bgs. Drill chatter observed at 58 0 ft bgs. 11393533 ST 105.3 Log continued on next page LOGGED: Jeff Schwartz

1 in to 4 ft

DRILLER: John Bennet

STLOG

DRILLING CONTRACTOR: Holt Services Inc.

DATE: 3/11/2014

CHECKED: David P. Findley

FINAL DESIGN PARTNERS

RECORD OF BOREHOLE E330-B-006A SHEET 3 of 3 DRILLING METHOD: Mud Rotary DATUM: Sound Transit East Coordinate System PROJECT: Sound Transit East Link/WA ELEVATION: 165.29 DRILLING DATE: 3/19/2013 COORDINATES: N: 555,424.75 E: 1,633,022.63 PROJECT NUMBER: 113-93533.0320 INCLINATION: -90 OCATION: NE 110th Ave. S of NE 6th St. DRILL RIG: B-59 Mobile Drill Truck WELL TAG#:BHU524 SOIL PROFILE SAMPLES PENETRATION RESISTANCE METHOD BLOWS / ft ◆ DEPTH (Ft) ELEV. 20 30 NOTES GRAPHIC LOG **BLOWS** NUMBER REC ATT WATER LEVELS BORING per 6 in DESCRIPTION Ν DEPTH 140 lb hammer 30 inch drop (Ft) WELL INSTALLATION 60 - 60 0.2 60.0 - 64.0 60.0 S-12 SS 50/3" >50 Very dense, gray, (GP), moist to wet, coarse GRAVEL and SAND, trace silt, [ADVANCE OUTWASH, Qva]. $^{\circ}$ $^{\circ}$ 000 900 101.3 64.0 - 65.2 04.0 - 03.2 Very dense, gray and greenish gray, (GM), moist, silty, fine to coarse GRAVEL, some fine to medium sand, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpg]]. GM - 65 0.4 >> Significant drill chatter to 69.5 S-13 SS 50/6" >50 65.2 ft bgs. Hard, gray (CL), moist, low plasticity CLAY, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. CL Smooth drilling from 69.5 to 71 - 70 0.8 S-14 12-50/3" >50 ft bgs. 70.5 - 73.0 Very dense, greenish gray, (GC), moist, clayey, fine to coarse GRAVEL, some sand, [PRE-VASHON GLACIOLACUSTRINE Mud Rotary Drill chatter encountered from 71 to 73 ft GC DEPOSITS, Qpgl]. Bit, 92.3 73.0 Smooth drilling from 73 to 86.5 73.0 - 83.0 4.9-inch Diameter Very dense, gray, (SP), wet, medium to fine SAND, [PRE-VASHON ft bgs. GLACIOLACUSTRINE DEPOSITS, Qpgl]. - 75 0.5 S-15 SS 50/5.5 >50 SP - 80 0.4 S-16 SS 50/6" >50 Trace fine gravel. 83.0 - 86.5 83.0 - 00.5 Dense, greenish-gray, (SM), moist, silty SAND, little fine gravel, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. SM - 85 S-17@85ft %G-9.9 %S-53.4 %F-36.7 S-17 SS 22-37-43 >50 |H| Borehole completed at 86.5 ft. 90

1 in to 4 ft

DRILLER: John Bennet

11393533 ST PROJECT.GPJ 113.93533SOUND TRANSIT.GDT 8/18/

STLOG

DRILLING CONTRACTOR: Holt Services Inc.

LOGGED: Jeff Schwartz CHECKED: David P. Findley

SHEET 1 of 5 PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320 DRILLING METHOD: Mud Rotary DRILLING DATE: 3/29/2013 DATUM: Sound Transit East Coordinate System
COORDINATES: N: 555,366.75 E: 1,633,024.09 INCLINATION: -90

LOC	CATION	NUMBER: 113-93533.0320 DRILLING N: NE 110th Ave. S of NE 6th St. DRILL R	IG: B-6	0 Mobil	e Drill Tri	uck		COORDIN	71120	. 14. 5	55,366.75 E: 1,633,024.09	WELL TAG#:BHU57
	НОБ	SOIL PROFILE						SAMPLES	ı	ı	PENETRATION RESISTANCE BLOWS / ft ◆	
DEPTH (Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH	NUMBER	TYPE	BLOWS per 6 in	N	REC ATT	10 20 30 40 PL MC LL	NOTES WATER LEVELS
0	<u> </u>	0.0 - 1.0 Asphalt Pavement.			(Ft)			30 inch drop			20 40 60 80	8-inch diameter flush mount steel
		1.0 - 1.5 Crushed Rock.	GP-GN	' '	162.2 1.0 161.7							monument, basalite concrete to 1.3
		1.5 - 8.0 Compact to dense, brown, (SM), silty, fine to medium SAND, some fine to coarse gravel, few cobbles, [FILL, Hf].			1.5							ft bgs. 2-inch diameter PVC riser from 0.3 to 45 ft
	r Knife Excavation	Roots to 4 ft bgs.	SM									bgs. Backfilled with 3/8-inch HolePlug Bentonite Chips from 1.3 to 42 ft bgs.
5	Air		SIVI									
		Gravel and cobbles at 7 to 7.5 ft bgs. No sampling from 8 to 60 ft bgs, lithology inferred from drill action.										Very slow
-		8.0 - 31.0 Dense to very dense, (SM), silty SAND, little to some gravel, [TILL, Qvt].			155.2 8.0							groundwater seepage at 7.5 ft during air knife excavation.
		No sampling from 8 to 60 ft bgs, lithology inferred from drill action.										excavation.
10												
	<u>Ś</u>											
	t, Mud Rotary											
	iameter Bit,		SM	0 0								
15	4.9-inch Diameter			0 5								
	•											
				0 0	2							
20		Log continued on next page			1							
1 in	to 3 ft			LOG	ر GED: ،	Jeff S	Schwa	irtz	I	l .	La	• •
DRII		: GCONTRACTOR: Holt Services Inc Derek Patsey	-	CHE	GED: 、 CKED: E: 3/11	Dav	id P.	artz Findley			G-	O-G

SHEET 2 of 5 PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320 DRILLING METHOD: Mud Rotary DRILLING DATE: 3/29/2013 LOÇATION: NE 110th Ave. S of NE 6th St. DRILL RIG: B-60 Mobile Drill Truck DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,366.75 E: 1,633,024.09 ELEVATION: 163.20 INCLINATION: -90 WELL TAG#:BHU570

Solid Soli	무	N: NE 110th Ave. S of NE 6th St. DRILL RI SOIL PROFILE						SAMPLES			PENETE	ATION RE	ESISTANCE	WELL TAG#:B	
B B - 310 Dense to very dense, (SM), sity SAND, little to some gravel, [TILL, Cvt]. No sampling from 8 to 60 it bgs, lithology inferred from drill action. SM SM SM SM SM SM SM SM SM S	(Ft) BORING METH	DESCRIPTION	nscs	GRAPHIC LOG	EPTH	NUMBER	TYPE	per 6 in	N	REC ATT	10 PL	20 3 MC	0 40 LL	WATER LE	VELS
No sampling from 8 to 60 ft bgs, lithology inferred from drill action.		Dense to very dense, (SM), silty SAND, little to some gravel, [TiLL, Qvt]. No sampling from 8 to 60 ft bgs, lithology inferred from drill action.	SM (4)		(Ft)	N		140 lb hammer 30 inch drop			H	-		Changing drilling conditions, marked	LATIC
Log continued on next page	5	No sampling from 8 to 60 ft bgs, lithology inferred from drill action.	GP-GM GP-GM											marked increase in drill	

DRILLING CONTRACTOR: Holt Services Inc.

DRILLER: Derek Patsey

CHECKED: David P. Findley

SHEET 3 of 5

DRILLING METHOD: Mud Rotary DRILLING DATE: 3/29/2013 PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,366.75 E: 1,633,024.09 ELEVATION: -90

Section Sect			NUMBER: 113-93533.0320 DRILLING : NE 110th Ave. S of NE 6th St. DRILL RI SOIL PROFILE	G: B-6	3/29/2 0 Mobile	Drill Tru	ıck		SAMPLES					33,024.09	INCLINATION: WELL TAG#:BI	HU570
No autration from the final section. No autration from the final section. Intrody afternat from dril section. No autration from the final section. Intrody afternat from dril section. Deadfilled with 10-020 arises are section. Deadfilled	(Ft)	ING METHC		SCS	APHIC -OG		MBER	YPE	BLOWS	N	REC	10	BLOWS /	ft ♦ 30 40	NOTES WATER LE	S VELS
Very deere. (GPVP-CAMCM). GRAVEL, vanisher women with a more croticis. (GPV) and croticis of the control of the control of control o	0	BORI		Ď		DEPTH (Ft)	5 N	-	140 lb hammer 30 inch drop		A11		-		WELL INSTAL	LATIC
57.0 - 60.8 Hard, dark greenish gray, (ML/CL), moist, clayey SiLT and silty CLAY, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Opgi]. ML (CL	5	h Diameter Bit, Mud Rotary	Very dense, (GP/GP-GM/GM), GRAVEL, variable amounts of silt, sand and cobbles, [ADVANCE OUTWASH, Qva]. No sampling from 8 to 60 ft bgs,	GP /GP-GM /GM											10x20 silica sand from 42 to 76 ft bgs. Slightly easier drilling from 42 to 45 ft bgs. 2-inch diameter, 0.010 inch machine slotted PVC installed between 45 and 75 ft bgs.	
	0	4.9-inch E	Hard, dark greenish gray, (ML/CL), moist, clayey SILT and silty CLAY, [PRE-VASHON	ML /CL											change in drill action at 57 ft bgs, becomes	

ST LOG 113 1 in to 3 ft

DRILLING CONTRACTOR: Holt Services Inc.

DRILLER: Derek Patsey

LOGGED: Jeff Schwartz CHECKED: David P. Findley

RECORD OF BOREHOLE E330-B-006B SHEET 4 of 5 PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320 DRILLING METHOD: Mud Rotary DATUM: Sound Transit East Coordinate System ELEVATION: 163.20 PROJECT NUMBER: 113-93533.0320

DRILLING DATE: 3/29/2013

OCATION: NE 110th Ave. S of NE 6th St. DRILL RIG: B-60 Mobile Drill Truck COORDINATES: N: 555,366.75 E: 1,633,024.09 INCLINATION: -90 WELL TAG#:BHU570 SOIL PROFILE SAMPLES PENETRATION RESISTANCE **BORING METHOD** BLOWS / ft ◆ DEPTH (Ft) ELEV. 20 30 NOTES GRAPHIC LOG **BLOWS** NUMBER **USCS** REC ATT WATER LEVELS per 6 in DESCRIPTION Ν DEPTH 140 lb hammer (Ft) WELL INSTALLATION 30 inch drop 60 - 60 1.0 1.0 SS 17-50/5.5" >50 /CL 102.4 60.8 - 62.5 60.8 Very dense, gray, (SM), moist, silty, fine SAND, some micaceous grains, homogeneous, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. SM 100.7 62.5 - 68.0 Hard, mottled greenish gray and gray, (ML), moist, clayey SILT and SAND, abundant wood fragments, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. - 65 S-2@65ft %G-0.5 %S-38.8 %F-60.7 ML S-2 SS 18-50/5" >50 • 95.2 os.u - 78.0 Hard, gray, (CH), moist, high plasticity CLAY, trace coarse gravel, slickensides, [PRE-VASHON LACUSTRINE DEPOSITS, Qpnl]. 68.0 - 78.0 Rotary Mud Bit - 70 Diameter S-3 SS 26-30-33 >50 4.9-inch Smooth drilling from 73 ft bgs to bottom of hole. 75 Some internal deformation observed-Cap at bottom offsets, slickensides, of screen. 1.5 1.5 SS 12-19-25 44 Backfilled with 3/8-inch HolePlug Bentonite Chips from 75 ft bgs to bottom of hole. 85.2 Easier drilling 78.0 - 83.0 78.0 at 78 ft bgs, Hard, gray, (ML), moist, low plasticity, clayey SILT, [PRE-VASHON transition out of clayey silt. GLACIOLACUSTRINE DEPOSITS, Qpgl]. ML 80 Log continued on next page 1 in to 3 ft LOGGED: Jeff Schwartz DRILLING CONTRACTOR: Holt Services Inc. CHECKED: David P. Findley DRILLER: Derek Patsey DATE: 3/11/2014 FINAL DESIGN PARTNERS.

ST LOG 11393533 ST PROJECT.GPJ 113.93533SOUND TRANSIT.GDT 8/18/14

RECORD OF BOREHOLE E330-B-006B SHEET 5 of 5 PROJECT: Sound Transit East Link/WA
PROJECT NUMBER: 113-93533.0320
DRILLING METHOD: Mud Rotary
DRILLING DATE: 3/29/2013
LOCATION: NE 110th Ave. S of NE 6th St. DRILL RIG: B-60 Mobile Drill Truck DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,366.75 E: 1,633,024.09 PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320 ELEVATION: 163.20 INCLINATION: -90 WELL TAG#:BHU570 SOIL PROFILE SAMPLES PENETRATION RESISTANCE **BORING METHOD** BLOWS / ft ◆ DEPTH (Ft) ELEV. NOTES GRAPHIC LOG **BLOWS** NUMBER REC ATT WATER LEVELS DESCRIPTION per 6 in Ν DEPTH 140 lb hammer 30 inch drop (Ft) WELL INSTALLATION 60 - 80 78.0 - 83.0 0.5 0.5 S-5 SS 50/6" >50 Hard, gray, (ML), moist, low plasticity, clayey SILT, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. ML 80.2 83.0 - 91.5
Hard, gray, (CH), moist, high plasticity
CLAY, few slickensides, [PRE-VASHON
GLACIOLACUSTRINE DEPOSITS, Qpgi]. 83.0 4.9-inch Diameter Bit, Mud Rotary - 85 1.5 1.5 SS 14-18-25 43 - 90 S-7 SS 14-16-21 37 91.5 Borehole completed at 91.5 ft. ST LOG 11393533 ST PROJECT.GPJ 113.93533SOUND TRANSIT.GDT 8/18/14 - 95 100 1 in to 3 ft LOGGED: Jeff Schwartz DRILLING CONTRACTOR: Holt Services Inc. CHECKED: David P. Findley FINAL DESIGN PARTNERS. DRILLER: Derek Patsey DATE: 3/11/2014

SHEET 1 of 4

FINAL DESIGN PARTNERS.

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLER: Derick Patsy

DRILLING METHOD: Mud Rotary
DRILLING DATE: 5/22/2013
DRILL RIG: Landa L-10-T Track

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,446.03 E: 1,633,616.19 ELEVATION: -90

H	SOIL PROFILE		1	T			SAMPLES			PENETR I	ATION R BLOWS /	ESISTAN0 ft ◆	E
BORING METHOD	DESCRIPTION	NSCS	GRAPHIC LOG	DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT	10 PL L 20	MC	LL 60 80	NOTES WATER LEVELS
	0.0 - 4.5 Loose, dark brown, (SM), moist, silty, fine SAND, [FILL, Hf].	SM											
					S-1	SS	3-4-3	7	<u>0.7</u> 1.5	•			
	4.5 - 7.0 Dense, light brown, (SM), moist, silty, fine SAND, some gravel, [FILL, Hf].	SM		120.2 4.5	S-2	SS	14-17-13	30	<u>0.3</u> 1.5			•	
	7.0 - 9.5 Compact, brownish gray, (SM), moist, fine to medium SAND and SILT, some gravel,			117.7 7.0									S-3@7.5ft
	ribbons of brown-orange, silty, fine to coarse sand, [FILL, Hf].	SM		115.2	S-3	SS	10-13-14	27	1.0 1.5	•	•		S-3@7.5ft %G-5.9 %S-57.5 %F-36.6
	9.5 - 12.0 Very dense, brownish gray, (SM), moist, silty, fine to coarse SAND, some gravel, [TILL, Qvt].	SM	0	9.5	S-4	SS	36-40-50/4"	>50	<u>0.9</u> 1.3				>>•
	12.0 - 27.0 Very dense, gray, (GP-GM/GM), moist to wet, fine to coarse GRAVEL and SAND,			112.7	S-5	SS	20-50/3"	>50	0.3				>> ♦
.9-inch bit, Mud Rotary	little silt, to silty, fine to coarse GRAVEL, some sand, [ADVANCE OUTWASH, Qva].								0.0				Moderate drilling chatt
4.9-inch bit, N					S-6	SS	21-50/3"	>50	0.3				>>•
		GM			S-7	SS	24-50/2"	>50	<u>0.5</u> 0.7	•			S-7@20ft %G-58.3 %S-30.9 %F-10.8
					S-8	SS	17-50/3"	>50	0.7				>>•
	27.0 - 43.0 Very dense, gray, (SM), moist, fine to coarse SAND and SILT, [PRE-VASHON FLUVIAL DEPOSITS, Qpnf].	SM	200	97.7									Smooth drilling at 27.5 bgs.
	Log continued on next page												

SHEET 2 of 4

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Mud Rotary DRILLING DATE: 5/22/2013

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,446.03 E: 1,633,616.19 ELEVATION: -90

	N: 11101 NE 6th St	G: Lar	nda L-10)-T Track					. 11. 0				INCLINATION: -90
QOH.	SOIL PROFILE						SAMPLES			PENETRA BL	TION RI OWS /	ESISTANCE ft ◆	
(Ft) BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT	10 PL	20 3 MC	LL 60 80	NOTES WATER LEVELS
	27.0 - 43.0 Very dense, gray, (SM), moist, fine to coarse SAND and SILT, [PRE-VASHON FLUVIAL DEPOSITS, Qpnf].				S-9	SS	25-38-41	>50	<u>1.5</u> 1.5	•			S-9@30ft %G-0.0 %S-68.0 %F-32.0
5													
		SM			S-10	SS	37-38-50/6"	>50	1.3 1.5			>>	
							05.70/		0.9				S-11@40ft \$\daggerightarrow{\partial G-0.0}
					S-11	SS	25-50/5"	>50	0.9			>>	◆%G-0.0 %S-62.4 %F-37.6
4.9-inch bit, Mud Rotary	43.0 - 67.0 Very dense, greenish gray, (ML), moist, SILT and SAND, ribbons of gray-purple, silty, fine sand, [PRE-VASHON LACUSTRINE DEPOSITS, Qpnl].			81.7 43.0									
4.9-inch bi					S-12	SS	31-38-49	>50	1.3 1.5			>>	
)													
	Trace organic fragments at 50 ft bgs.	ML			S-13	SS	13-23-42	>50	1.0 1.5			>>	•
5					0 ::		04.50/20		1.0				
					S-14	SS	31-50/6"	>50	1.0 1.0			>>>	
0	Log continued on next page												

STLOG

DRILLING CONTRACTOR: Holt Services Inc.

DRILLER: Derick Patsy

CHECKED: David P. Findley

SHEET 3 of 4

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Mud Rotary DRILLING DATE: 5/22/2013

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,446.03 E: 1,633,616.19 ELEVATION: -90

LOC		N: 11101 NE 6th St DRILL RI	G: Lar	nda L-10)-T Track	(COORDIN					
	ТНОБ	SOIL PROFILE	1	1	1			SAMPLES			PENETRATIO BLOW	N RESISTAN /S / ft ◆	CE
DEPTH (Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT	10 20 PL 1 20 40	30 40 MC LL 60 80	NOTES WATER LEVELS
- 60 —		43.0 - 67.0 Very dense, greenish gray, (ML), moist, SILT and SAND, ribbons of gray-purple, silty, fine sand, [PRE-VASHON LACUSTRINE DEPOSITS, Qpnl].				S-15	SS	30-50/3"	>50	0.8	25 40		S-15@60ft %G-2.9 %S-32.3 %F-64.8 Slight drilling chatter at 6 ft bgs.
65			ML										Smooth drilling from 63 bgs to bottom of hole.
					57.7	S-16	SS	14-23-29	>50	1.3 1.5	-		>>•
		67.0 - 73.0 Dense, gray, (CH), moist, high plasticity CLAY, homogeneous, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].			67.0								
70			СН			S-17	SS	17-22-25	47	<u>1.2</u> 1.5		4	S-17@70ft %G- ♦ %S- %F-98.3
75	4.9-inch bit, Mud Rotary	73.0 - 87.0 Very dense, gray, (ML), moist, sandy SILT, homogeneous, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].			51.7 73.0	S-18	SS	50/6"	>50	0.5 0.5			>> •
80	4.9		ML			S-19	SS	50/5"	>50	0.4			>> •
85						S-20	SS	30-31-50/6"	>50	<u>1.2</u> 1.5			>>•
		87.0 - 93.0 Very dense, gray, (CL), moist, low plasticity CLAY and SAND, trace gravel, increased sand with depth, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].	CL		37.7 87.0								
90		Log continued on next page		<i>\\\\\\\</i>	1								
	to 4 ft				GED:							M	
		CONTRACTOR: Holt Services Inc. Derick Patsy	=		CKED: E: 5/22			Findley				EIN	AL DESIGN PARTNER

SHEET 4 of 4

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Mud Rotary DRILLING DATE: 5/22/2013

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,446.03 E: 1,633,616.19 ELEVATION: -90

	НОБ	SOIL PROFILE						SAMPLES			PENETRATION F BLOWS		
DEP IN (Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT	10 20	30 40 LL 60 80	NOTES WATER LEVELS
90 -		87.0 - 93.0 Very dense, gray, (CL), moist, low plasticity CLAY and SAND, trace gravel, increased sand with depth, [PRE-VASHON] GLACIOLACUSTRINE DEPOSITS, Qpgl].	CL			S-21	SS	26-50/5"	>50	0.8	● 1	>>-	S-21@90ft %G- %S- %F-62.7
95	4.9-inch bit, Mud Rotary	93.0 - 97.0 Very dense, gray, (CL), moist, low plasticity CLAY, homogeneous, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].			31.7 93.0	_							
	4.9-inch bit				27.7	S-22	SS	26-42-50/6"	>50	1.1 1.5		>>-	
	,	97.0 - 100.8 Very dense, gray, (ML), moist, SILT, homogeneous, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].	ML		97.0								
100					23.9	S-23	ss	38-50/4"	>50	0.8		>>-	
		Borehole completed at 100.8 ft. Backfilled with 3/8-inch bentonite chips.			100.8								
105													
110													
115													
				1	1	1	1		1	1			I

STLOG

DRILLING CONTRACTOR: Holt Services Inc. DRILLER: Derick Patsy

SHEET 1 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Mud Rotary DRILLING DATE: 7/3/2013

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,446.59 E: 1,633,768.55 INCLINATION: -90

BOOT BOOT BOOT BOOT BOOT BOOT BOOT BOOT	ELEV. DEPTH (Ft) 108.7 4.5	NUMBER.	% TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC	10 Pi 20	M40	C L	40 L 80	NOTES WATER LEVELS Gravel at surface.
M		S-1	SS								Gravel at surface.
M		S-1	SS								
м				17-17-13	30	<u>0.8</u> 1.5	•		•		S-1@2.5ft %G-26.2 %S-53.0 %F-20.8
	\otimes										
- ****		S-2	SS	9-14-12	26	<u>1.0</u> 1.5		•	•		
11119	7.0										
M 0 0	0 · 0 0 · 0	S-3	SS	17-25-30	>50	<u>1.2</u> 1.5	•			>>	S-3@7.5ft %G-13.7 %S-64.2 ◆%F-22.1
- + + + + + + + + + + + + + + + + + + +	103.7										
M 0 0 0	· 0 0 · 0 0 ·	S-4	SS	36-50/6"	>50	<u>0.6</u> 1.0				>>	¥
	101.2	_									
0 0	0 · 0 0 · 0	S-5	SS	9-37-50/4"	>50	1.0 1.3				>>	
M 0 0	0 .00					0.4					
0		S-6	SS	50/5"	>50	0.4				>>	
0 0	96.2										
M	17.0										
									10	<u></u>	Φ. Φ
VI	LO CH	LOGGED: CHECKED:	LOGGED: Mike \CHECKED: Davi	LOGGED: Mike Wolcz	LOGGED: Mike Wolczko CHECKED: David P. Findley	LOGGED: Mike Wolczko CHECKED: David P. Findley	LOGGED: Mike Wolczko CHECKED: David P. Findley				

SHEET 2 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Mud Rotary DRILLING DATE: 7/3/2013

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,446.59 E: 1,633,768.55 ELEVATION: -90

LOC		N: 530 112th Ave. NE DRILL R SOIL PROFILE	IG: Lan	nda L-10)-T Track			SAMPLES	ATES		PENETR	ATION R	ESIST	ANCE	
- 20 - Et)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT		20 MC	fft ◆ 30 4	40	NOTES WATER LEVELS
20 —		17.0 - 22.0 Very dense, gray, (SM), wet, silty, fine to coarse SAND, some gravel, diamict structure, friable, micaceous particles, [ADVANCE OUTWASH, Qva].	SM			S-7	SS	37-50/6"	>50	<u>0.7</u> 1.0	•			>>+	S-7@20ft %G-18.8 •WS-53.8 %F-27.4
		22.0 - 30.7 Dense, gray, (SP-SM), wet, fine to coarse SAND, little silt, fine organics, [PRE-VASHON FLUVIAL DEPOSITS, Qpnf]. Piece of rock in sampler.			91.2										Easy drilling at 22 ft bgs
25	otary		SP-SM			S-8	SS	50/6"	>50	0.1 0.5				>>•	Very poor recovery San S-8 at 25 ft bgs, rock lodged in tip of sampler
30	5-inch Diameter Bit, Mud Rotary	30.7 - 33.0 Compact, gray-green, (ML), moist, fine sandy SILT, with little shell fragments and brown organic silt, [PRE-VASHON LACUSTRINE DEPOSITS, Qpnl].	ML		82.5	S-9	SS	25-23-23	46	<u>1.5</u> 1.5				•	
35		33.0 - 38.0 Compact, gray-green, (CL-ML), moist, low plasticity, silty CLAY and SAND, fine organics, fine micaceous particles, [PRE-VASHON LACUSTRINE DEPOSITS, Qpnl].			80.2										S-10@35ft
			CL-ML			S-10	SS	17-25-26	>50	1.5 1.5	•			>>+	%G- %S- %F-61.9
		38.0 - 41.0 Compact, gray-green, (ML), moist, SILT, some clay, little sand, [PRE-VASHON LACUSTRINE DEPOSITS, Qpnl].	ML		75.2 38.0										
40		Log continued on next page													
DRIL		CONTRACTOR: Holt Services Inc		CHE	GED: I CKED: E: 5/22	Dav	id P.	zko Findley					G)—	O-H DESIGN PARTNER

SHEET 3 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320 LOCATION: 530 112th Ave. NE DRILLING METHOD: Mud Rotary DRILLING DATE: 7/3/2013 DRILL RIG: Landa L-10-T Track DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,446.59 E: 1,633,768.55 INCLINATION: -90

		: 530 112th Ave. NE DRILL RI	G: Lan	da L-10	-T Track										
5		SOIL PROFILE						SAMPLES			PENETRA B	TION RI LOWS /	ESISTA ft ♦	NCE	
(Ft)	BORING METHOD	DESCRIPTION	NSCS	GRAPHIC LOG	DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	Ν	REC ATT	10 PL 20	MC	LL 50 8		NOTES WATER LEVELS
.0		38.0 - 41.0 Compact, gray-green, (ML), moist, SILT, some clay, little sand, [PRE-VASHON LACUSTRINE DEPOSITS, Qpnl].	ML		72.2 41.0	S-11	SS	13-27-35	>50	<u>1.5</u> 1.5				>>	
		Compact, gray, (SP), wet, fine to coarse SAND, trace silt, [PRE-VASHON FLUVIAL DEPOSITS, Qpnf].	SP												
		43.0 - 45.3 Very dense, gray, (SM), wet, silty, fine to coarse SAND and GRAVEL, [PRE-VASHON FLUVIAL DEPOSITS, Qpnf].	SM		70.2 43.0										
5	-	45.3 - 48.0			67.9 45.3	S-12	ss	27-50/3"	>50	0.8 0.8	•			>>	S-12@45ft %G-32.1 %S-48.8 %F-19.1
		43.3 - 46.0 Very dense, gray, (SW), wet, fine to coarse SAND and fine GRAVEL, [PRE-VASHON FLUVIAL DEPOSITS, Qpnf].	SW		45.3	0-12	00	21-30/3	-30	0.8					%S-48.8 %F-19.1
740	otary	48.0 - 63.0 Very dense, gray, (SM), wet, silty, fine to coarse SAND, micaceous particles, [PRE-VASHON FLUVIAL DEPOSITS,			65.2 48.0										
) d	5-inch Diameter Bit, Mud Rotary	Qpnfj.				S-13	SS	28-37-43	>50	1.5				>>	
4	5-inch					3-13	33	20-01-40	-30	1.5 1.5					
5			SM												
						S-14	SS	39-50/6"	>50	<u>0.9</u> 1.0				>>	
0															
		Log continued on next page													

STLOG 113

DRILLING CONTRACTOR: Holt Services Inc.

DRILLER: Derick Patsey

LOGGED: Mike Wolczko CHECKED: David P. Findley

SHEET 4 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Mud Rotary DRILLING DATE: 7/3/2013

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,446.59 E: 1,633,768.55 INCLINATION: -90

	ATION	NUMBER: 113-93533.0320 DRILLIN I: 530 112th Ave. NE DRILL R				k		- CONDIN	, (1 LO	. 14. 0	50,440.00 L. 1,000,70	8.55 INCLINATION: -90
	HOD	SOIL PROFILE						SAMPLES	1		PENETRATION RESIST BLOWS / ft ◆	ANCE
DEPTH (Ft)	BORING METHOD	DESCRIPTION	SOSN	GRAPHIC LOG	DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT	10 20 30	00
60 —		48.0 - 63.0 Very dense, gray, (SM), wet, silty, fine to coarse SAND, micaceous particles, [PRE-VASHON FLUVIAL DEPOSITS, Qpnf].	SM			S-15	SS	43-50/4"	>50	0.8	•	S-15@60ft %G-0.2 %S-80.1 %F-19.7
		63.0 - 68.0 Very dense, gray, (ML), moist, clayey SiLT, some fine to coarse SAND, trace gravel, diamict structure, [PRE-VASHON LACUSTRINE DEPOSITS, Qpnl]			63.0							
65			ML			S-16	SS	41-50/2"	>50	0.7		>>•
70	5-inch Diameter Bit, Mud Rotary	68.0 - 73.0 Hard, gray, (CH), moist, CLAY, trace fine to coarse sand and gravel, distorted bedding, heavily slickensided, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].	CH		45.2 68.0	S-17	SS	20-50/6"	>50	1.0 1.0		>>•
	5-inch Diar				40.2 73.0	3-11	33	20-30/0	250	1.0		
7 5		Hard, gray, (ML), moist, SILT, little sand, slickensided, fractures ranging from horizontal to vertica, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].	ML			S-18	SS	38-50/6"	>50	1.0 1.0	•11	S-18@75ft %G- >> ♦ %S- es on 6
		78.0 - 83.0 Hard, gray, (CL/ML), moist, SILT to CLAY, numerous clayey slickensided fractures, ranging from 10° to 70° from horizontal, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].	CL /ML		35.2 78.0	_						%F-90.6 Difficulty extracting drill at 75 ft bgs.
30												
		Log continued on next page	1	1 ' ' '	1	1	1		1	1		1

STLOG

DRILLING CONTRACTOR: Holt Services Inc.

DRILLER: Derick Patsey

CHECKED: David P. Findley DATE: 5/22/2014

SHEET 5 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Mud Rotary
DRILLING DATE: 7/3/2013
DRILLI RIG: Landa I -10-T Track

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,446.59 E: 1,633,768.55 INCLINATION: -90

	THOL	SOIL PROFILE	I		I			SAMPLES			PENETRATION RE BLOWS / f	SISTANCE t ◆	
(Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT	PL MC	LL —H	NOTES WATER LEVELS
0 +		78.0 - 83.0 Hard, gray, (CL/ML), moist, SILT to CLAY, numerous clayey slickensided fractures, ranging from 10° to 70° from horizontal, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].	CL /ML			S-19	SS	33-50/6"	>50	<u>1.0</u> 1.0		>>	
55	5-inch Diameter Bit, Mud Rotary	83.0 - 88.0 Hard, gray, (CL), moist, CLAY, some fine to coarse sand, trace gravel, small shell fragments, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].	CL		30.2 83.0	S-20	SS	50/6"	>50	<u>0.5</u> 0.5	•	>>	S-20@85ft *%G- %S- %F-85.7
0	9	88.0 - 90.3 Hard, gray, (SC), moist, clayey, silty, fine to coarse sand, trace fine gravel, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].	sc		25.2 88.0	S-21	SS	50/3"	>50	0.3		>>	
		Borehole completed at 90.3 ft. Backfilled with 3/8-inch bentonite chips, surfaced with cold patch asphalt.			90.3					0.3			
5													
00													

DRILLER: Derick Patsey

DRILLING METHOD: Mud Rotary DRILLING DATE: 3/20/2013 DRILL RIG: B-60 Mobile Drill Truck

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,409.3 E: 1,634,019.72

ELEVATION: 97.68 INCLINATION: -90

SHEET 1 of 7

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320 OCATION: 114th Ave NE - Dead End SAMPLES PENETRATION RESISTANCE **BORING METHOD** BLOWS / ft ◆ DEPTH (Ft) ELEV. 20 NOTES GRAPHIC LOG **BLOWS** NUMBER REC ATT WATER LEVELS DESCRIPTION per 6 in Ν DEPTH 140 lb hammer 30 inch drop (Ft) 60 - 0 0.0 - 0.5 Asphalt Pavement. 0.5 - 7.0 0.5 Compact, gray, (SM), damp, silty, fine to coarse SAND and fine to coarse GRAVEL, non-stratified, [FILL, Hf]. S-1@2.5ft %G-32.4 %S-50.0 %F-17.6 1.2 1.5 S-1 SS 7-11-14 25 SM - 5 0.9 1.5 S-2 SS 11-13-18 31 90.7 7.0 7.0 - 9.0 λ Very dense, gray, (SM), damp, silty, fine to coarse SAND, little fine to coarse gravel, non-stratified, slight socketing, [TILL, Qvt]. 32-50/4" S-3 SS >50 SM ⇕ 88.7 4.9-inch bit, Mud Rotary 9.0 - 14.0 9.0 ď Very dense, gray, (SM), damp, silty, fine to coarse SAND, little gravel, to fine to coarse SAND, little silt, trace gravel, non-stratified, sandy interbed in [TILL, Qvt]. - 10 ф S-4@10ft %G-11.3 %S-72.1 %F-16.6 0.9 1.3 S-4 SS 26-45-50/3" >50 Φ SM Φ Φ 0.4 S-5 SS >50 50/6" >> Φ φ 83.7 6/23/14 14 0 - 23 0 4 14.0 Very dense, gray, (SM), damp, silty, fine to coarse SAND, trace gravel, non-stratified, slight socketing, [TILL, Qvt]. ST LOG 11393533 ST PROJECT.GPJ 113.93533SOUND TRANSIT.GDT - 15 Φ 0.4 S-6 SS 50/5" >50 Φ Φ SM Φ Φ Φ Φ 20 Log continued on next page 1 in to 3 ft LOGGED: A. Dennison CHECKED: David P. Findley

DRILLING CONTRACTOR: Holt Services Inc.

DRILLER: Derek Patsey

DATE: 5/22/2014

FINAL DESIGN PARTNERS.

SHEET 2 of 7

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING CONTRACTOR: Holt Services Inc.

DRILLER: Derek Patsey

DRILLING METHOD: Mud Rotary DRILLING DATE: 3/20/2013

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,409.3 E: 1,634,019.72 ELEVATION: 97.68 INCLINATION: -90

FINAL DESIGN PARTNERS.

		NUMBER: 113-93533.0320 DRILLIN <u>I: 114th Ave NE - Dead End DRILL R</u>				uck		COORDIN					.,	-	INCLINATION: -90
	РОР	SOIL PROFILE						SAMPLES			PENETR	ATION R BLOWS /	ESISTA	ANCE	
DEPTH (Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT	10 PL L 20	20 3 MC	30 4	10 30	NOTES WATER LEVELS
20 -		14.0 - 23.0 Very dense, gray, (SM), damp, silty, fine to coarse SAND, trace gravel, non-stratified, slight socketing, [TILL, Qvt].	SM			S-7	SS	50/3"	>50	0.3				>>4	
25		23.0 - 27.0 Very dense, gray, (SM), damp, silty, fine to coarse SAND, trace gravel, non-stratified, [TILL, Qvt].	SM		23.0	S-8	SS	50/3"	>50	0.3				>>4	
		27.0 - 33.0 Very dense, gray, (SM), damp, fine to coarse SAND, some silt, [PRE-VASHON FLUVIAL DEPOSITS, Qpnf].			70.7					0.5					Driller's Note: Softer dr at 27 ft bgs.
60	4.9-inch bit, Mud Rotary		SM			S-9	SS	21-50/5.5"	>50	<u>0.9</u> 0.9				>>•	S-9@30ft %G-0.0 %S-85.5 %F-14.5
		33.0 - 35.7 Stiff to very stiff, gray, (CL-CH), damp to moist, low to high plasticity CLAY, trace decayed organics, [PRE-VASHON LACUSTRINE DEPOSITS, QpnI].			64.7										
5		Brown organic layer from 35.5 to 35.7 ft bgs. 35.7 - 40.0 Very dense, gray, (SM), moist, silty, fine SAND, subtle layering, [PRE-VASHON LACUSTRINE DEPOSITS, Qpnl].	CL-CH		62.0 35.7	- S-10	SS	15-40-50/5"	>50	1.4 1.4				>>•	
		B COOTTAIL DE COITO, Ophilj.	SM												Drill chatter from 37 to bgs.
					57.7										

CHECKED: David P. Findley

SHEET 3 of 7

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLER: Derek Patsey

DRILLING METHOD: Mud Rotary DRILLING DATE: 3/20/2013

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,409.3 E: 1,634,019.72 ELEVATION: 97.68 INCLINATION: -90

FINAL DESIGN PARTNERS.

	ĭ	SOIL PROFILE	_	_	1			SAMPLES	1	1	PENE	IRAII BLC	ON RE	=31317 ft ♦	TINGL	
(Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT	10 F 20	»L	MC	LL	40 80	NOTES WATER LEVELS
40 —		40.0 - 43.0 Hard, gray, (ML), damp to moist, SILT, trace sand, non-stratified, lenses of sand, [PRE-VASHON LACUSTRINE DEPOSITS, Qpnl].	ML		40.0	S-11	SS	12-20-35	>50	<u>1.5</u> 1.5					>>•	•
		43.0 - 48.0 Hard, gray, (CH), moist, high plasticity CLAY, trace sand, homogeneous, [PRE-VASHON LACUSTRINE DEPOSITS, Qpnl].	. — — .		54.7 43.0	-										
15			СН			S-12	SS	6-16-16	32	<u>1.5</u> 1.5	_	•		◆ I		
	Aud Rotary	48.0 - 53.0 Very dense, (ML/SM), damp to moist, fine sandy SILT to sifty, fine SAND, trace gravel, fine sand partings in silt, IPRE-VASHON LACUSTRINE DEPOSITS, Qpnil].			49.7 48.0											
60	4.9-inch bit, Mud Rotary		ML /SM			S-13	SS	11-22-34	>50	<u>1.5</u> 1.5					>> 《	•
		53.0 - 58.0 Hard, gray, (CH), damp to moist, high plasticity CLAY, some fine sand, non-stratified, [PRE-VASHON LACUSTRINE DEPOSITS, Qpnl].			44.7 53.0											
55			СН			S-14	SS	21-50/6"	>50	1.0 1.0					>>•	•
60		58.0 - 73.0 Hard, gray, (CH), moist, high plasticity CLAY, trace sand and gravel, fine sand partings, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].	СН		39.7 58.0											

SHEET 4 of 7

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLER: Derek Patsey

DRILLING METHOD: Mud Rotary DRILLING DATE: 3/20/2013

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,409.3 E: 1,634,019.72

ELEVATION: 97.68 INCLINATION: -90

FINAL DESIGN PARTNERS.

	ТНОБ	SOIL PROFILE						SAMPLES			PENETR/	ATION R LOWS /	ESIST	ANCE	
(Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT	10 PL L 20	MC	LL	40 - 80	NOTES WATER LEVELS
60 —		58.0 - 73.0 Hard, gray, (CH), moist, high plasticity CLAY, trace sand and gravel, fine sand partings, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].				S-15	SS	22-42-50/4"	>50	1.3 1.3				>> •	
5			СН			S-16	SS	8-15-17	32	<u>1.5</u> 1.5			•		
0	4.9-inch bit, Mud Rotary					S-17	SS	8-17-22	39	<u>1.5</u> 1.5	⊢ ◆		1	•	
5		73.0 - 77.0 Hard, gray, (CH), moist, high plasticity CLAY, thinly bedded with sandy silt, zones of slickensided fractures at 15° from horizontal, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].	сн		73.0	S-18	SS	16-50/6"	>50	<u>1.0</u> 1.0				>>•	
0		77.0 - 83.0 Hard, gray, (CH), moist, high plasticity CLAY, laminated, zones of slickensided fractures at 20° to 45° from horizontal, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].	CL		20.7										
)		Log continued on next page		11/1//											

SHEET 5 of 7

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLER: Derek Patsey

DRILLING METHOD: Mud Rotary DRILLING DATE: 3/20/2013

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,409.3 E: 1,634,019.72

ELEVATION: 97.68 INCLINATION: -90

FINAL DESIGN PARTNERS.

T	QO	SOIL PROFILE						SAMPLES			PENETR	ATION RI		ANCE	
(Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT	10 PL L 20	20 3 MC	30 4	40 30	NOTES WATER LEVELS
		77.0 - 83.0 Hard, gray, (CH), moist, high plasticity CLAY, laminated, zones of slickensided fractures at 20° to 45° from horizontal, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].	CL			S-19	SS	20-50/5.5"	>50	<u>0.9</u> 0.9				>>	
		83.0 - 88.0			14.7 83.0										
		Very dense, gray, (ML), SILT, moist, non-plastic, massive, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].			00.0										
5			ML			S-20	SS	43-50/3"	>50	0.8 0.8				>>◆	
		88.0 - 100.0			9.7 88.0										
	ud Rotary	Hard, gray, (CH), moist, high plasticity CLAY, moderately fissured, blocky texture, zones of slickensided fractures at 40° to 90° from horizontal, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].			66.0										
0	4.9-inch bit, Mud Rotary					S-21	SS	10-20-27	47	<u>1.5</u> 1.5		•		→	
			СН												
5						S-22	SS	13-18-22	40	<u>1.5</u> 1.5					
00		Log continued on next page	-		-2.3	-									

SHEET 6 of 7

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320 I OCATION: 114th Ave NF - Dead Ford

DRILLING METHOD: Mud Rotary DRILLING DATE: 3/20/2013 DRILL RIG: 8-60 Mobile Drill Truck

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,409.3 E: 1,634,019.72 ELEVATION: 97.68 INCLINATION: -90

	욷	SOIL PROFILE						SAMPLES			PENETRATION RESISTANCE BLOWS / ft ◆
(Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT	10 20 30 40 NOTES WATER LEVEL
00-		100.0 - 107.0 Hard, gray, (CL), moist, low plasticity CLAY, irregular layers of brown sandy silt at 80° from horizontal, slightly fissured and slickensided, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].			100.0	S-23	SS	16-39-36	>50	1.5 1.5	>> \(\phi\)
			CL								
05						S-24	SS	26-50/5"	>50	0.9 0.9	>>•
	ļ				-9.3 107.0						
	ary	Hard, gray, (CL), moist, low plasticity CLAY, scattered slickensided fractures at 10° from horizontal, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].	CL		107.0						
10	4.9-inch bit, Mud Rotary	110.0 - 136.5 Hard, gray, (CH), moist, high plasticity CLAY, laminated, slightly fissured, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpg]].			-12.3 110.0	S-25	SS	14-17-19	36	1.5 1.5	
	7	BEL COMO, Capaji.									
15			СН			S-26	SS	11-13-17	30	<u>1.5</u> 1.5	
20		Log continued on next page									

DRILLING CONTRACTOR: Holt Services Inc. DRILLER: Derek Patsey

CHECKED: David P. Findley

DATE: 5/22/2014

U FINAL DESIGN PARTNERS.

SHEET 7 of 7

PROJECT: Sound Transit East Link/WA
PROJECT NUMBER: 113-93533.0320 DRILLING METHOD: Mud Rotary DRILLING DATE: 3/20/2013 DRILL RIG: 8-60 Mobile Drill Truck DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,409.3 E: 1,634,019.72 ELEVATION: 97.68 INCLINATION: -90

	亨	SOIL PROFILE		1				SAMPLES			PENETRATION RESISTANCE BLOWS / ft ◆	
(Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT	10 20 30 40 PL MC LL 20 40 60 80	NOTES WATER LEVELS
20-		110.0 - 136.5 Hard, gray, (CH), moist, high plasticity CLAY, laminated, slightly fissured, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].				S-27	SS	16-18-20	38	<u>1.5</u> 1.5	•	
225	4.9-inch bit, Mud Rotary	Scattered slickensided fractures at 10° to 60° from horizontal.				S-28	SS	11-13-20	33	<u>1.5</u> 1.5	•	
330	4.9-1		СН			S-29	SS	9-15-15	30	<u>1.5</u> 1.5	•	
335		Borehole completed at 136.5 ft. Backfilled with 3/8-inch bentonite chips, surfaced with cold patch asphalt.			-38.8 136.5	S-30	SS	11-13-10	23	<u>1.5</u> 1.5		
40												

DRILLER: Derek Patsey

SHEET 1 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING CONTRACTOR: Holocene Drilling Inc.

DRILLER: Jerrod Thompson

STLOG

DRILLING METHOD: Mud Rotary DRILLING DATE: 2/15/2013

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,429.28 E: 1,634,424.02 ELEVATION: 91.85 INCLINATION: -90

FINAL DESIGN PARTNERS.

LOC	ATION	NUMBER: 113-93533.0320 DRILLING I: 515 116th Ave NE DRILL RI		E: 2/15/ -81 Truc				OOORDIN	AILO.	. 14. 0					.02	INCLINATION: -90
	ДОН.	SOIL PROFILE			1			SAMPLES		ı	PEN		TION RE		NCE	
(Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC	DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT		PL	MC 40 6	0 4 LL 0 8		NOTES WATER LEVELS
		0.0 - 0.3 Asphalt Pavement.			91.6 0.3											
		0.3 - 3.5 Compact to very dense, tan and gray, (CH), moist to wet, high plasticity CLAY, with seams of wet silty sand, some gravel, iron oxide staining, heterogeneous [LACUSTRINE DEPOSITS, HI].	СН			S-1	ss	22-10-10	20	<u>0.8</u> 1.5			•			
		3.5 - 9.5 Dense, gray-brown, (GW-GM), wet, sandy GRAVEL, little silt, [RECESSIONAL			88.4 3.5	S-2	SS	4-38-32	>50	<u>0.8</u> 1.5	ŀ	•			>>•	Gravelly drilling from 3.5 20 ft bgs.
		GRAVEL, little silt, [RECESSIONAL OUTWASH, Qvro].								0.2						
			GW-GN			S-3	SS	10-21-18	39	<u>0.2</u> 1.5				•		
						S-4	SS	27-50/4"	>50	0.3					>>4	
		9.5 - 19.0 Very dense, gray-green, (SM), wet, silty, fine to coarse SAND, trace to little gravel,			82.4 9.5	0.1		00 50/01	. 50	0.5						S-5@10ft %G-7.0
	Rotary	[TILL, Qvt].		0 0		S-5	SS	33-50/2"	>50	<u>0.5</u> 0.7	•				>>•	%G-7.0 %S-65.9 %F-27.1
	4.9-inch bit, Mud Rotary					S-6	SS	50/6"	>50	0.4 0.5					>>•	
5			SM			S-7	SS	50/5"	>50	0.3	•				>>•	S-7@15ft %G-2.5
										0.4						%S-70.7 %F-26.8
	•			0 6	72.9 19.0											
		Very dense, greenish gray, (SP), wet, fine to coarse SAND, trace silt, sandy interbed in [TILL, Qvt].	SP			S-8	SS	50/6"	>50	0.3					>>4	
				0 0	69.9											
		22.0 - 43.0 Very dense, greenish gray, (SM), wet, silty, fine to coarse SAND, little fine gravel, diamict structure, friable, [TILL, Qvt].	SM	0 0 0	22.0											
5		Log continued on next page		7 6												
	to 3 ft	Log continued on next page		100	GED: I	Mika \	Mole:	7k0						C		0-0

CHECKED: David P. Findley

SHEET 2 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Mud Rotary DRILLING DATE: 2/15/2013

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,429.28 E: 1,634,424.02 ELEVATION: 91.85 INCLINATION: -90

22.0 - 43.0 Very prices, generaling groy, (SM), seet, sity, learner structure, flattle, [Tit.], Cod] Very prices, generaling groy, (SM), seet, sity, learner structure, flattle, [Tit.], Cod] O	LOC		N: 515 116th Ave NE DRILL RI SOIL PROFILE	G: BK	-81 Truc	<u>k</u>			SAMPLES		: N: 5	PEN	TRATIO			<u> </u>
22.3 - 4.3 22.3 - 4.3 22.4 23.5 23	DEPTH (Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH	NUMBER	TYPE	per 6 in	N	REC ATT		D 20	30 IC	40 LL	
35 Sample of the state of the	- 25 —		Very dense, greenish gray, (SM), wet, silty, fine to coarse SAND, little fine gravel,				S-9	SS		>50	0.2		U 40	60		Gravelly drilling at 27 ft
Since the control of	30				0 0		S-10	SS	8-50/5"	>50	0.3 0.9	•			>	%S-61.4
Signature Sign				SM	0 0											
Little gravel. Little gravel. S-12 SS 50/2" >50 0.2 0.2 S-12 SS 50/2" >50 0.2 0.2 S-13 SS 50/2" >50 0.2 0.2 Contact with clay at 43 bgs. inferred from drill action. CLAY, distorted bedding, joint at 45° with parting of fine sand part 18 inch layer of fractured clay, joint at 175° with parting of fine sand, IPRE-VASHON LACUSTRINE DEPOSITS, Qpnl]. CH 43.0 - 48.0 S-13 SS 8-17-19 36 1.5 Log continued on next page	35	4.9-inch bit, Mud Rotary					S-11	SS	50/3"	>50	0.1 0.3				>	Gravelly drilling from 37
43.0 - 48.0 Hard, gray, (CH), moist, high plasticity CLAY, distorted bedding, joint at 45°, with parting of fine sand and 1/8 inch layer of fractured clay, joint at 75° with parting of fine sand, [PRE-VASHON LACUSTRINE DEPOSITS, Qpni]. CH 43.0 S-13 SS 8-17-19 36 1.5 Log continued on next page Contact with clay at 43 bgs, inferred from drill action. Contact with clay at 43.0 S-13 SS 8-17-19 36 1.5 Log continued on next page	40		Little gravel.				S-12	SS	50/2"	>50	0.2				>	>•
CH S-13 SS 8-17-19 36 1.5 43.9 48.0 - 63.0 Hard, gray, (CL), moist, low plasticity CLAY, scattered fine organics, pockets of fractured, slickensided clay, [PRE-VASHON LACUSTRINE DEPOSITS, Qpni]. Log continued on next page			Hard, gray, (CH), moist, high plasticity CLAY, distorted bedding, joint at 45°, with parting of fine sand and 1/8 inch layer of fractured clay, joint at 75° with parting of fine sand, IPRE-VASHON LACUSTRINE													bgs, inferred from drill
48.0 - 63.0 Hard, gray, (CL), moist, low plasticity CLAY, scattered fine organics, pockets of fractured, slickensided clay, [PRE-VASHON LACUSTRINE DEPOSITS, Qpni].	45			СН			S-13	SS	8-17-19	36	1.5 1.5		•			
Log continued on next page	50		Hard, gray, (CL), moist, low plasticity CLAY, scattered fine organics, pockets of fractured, slickensided clay, [PRE-VASHON LACUSTRINE DEPOSITS, Qpnl].	CL												
DRILLING CONTRACTOR: Holocene Drilling Inc. CHECKED: David P. Findley	1 in									<u> </u>	<u> </u>	<u> </u>		14		Φ. Φ

DRILLING METHOD: Mud Rotary DRILLING DATE: 2/15/2013 DRILL RIG: BK-81 Truck

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,429.28 E: 1,634,424.02 INCLINATION: -90

ELEVATION: 91.85

SHEET 3 of 5

OCATION: 515 116th Ave NE SOIL PROFILE SAMPLES PENETRATION RESISTANCE **BORING METHOD** BLOWS / ft ◆ DEPTH (Ft) ELEV. NOTES GRAPHIC LOG **BLOWS** NUMBER REC ATT WATER LEVELS DESCRIPTION per 6 in Ν DEPTH 140 lb hammer 30 inch drop 60 - 50 48.0 - 63.0 48.0 - 63.0 Hard, gray, (CL), moist, low plasticity CLAY, scattered fine organics, pockets of fractured, slickensided clay, [PRE-VASHON LACUSTRINE DEPOSITS, Qpnl]. 27-44-50/6" >50 - 55 Little fine sand. 1.0 1.0 SS 21-50/6" S-15 >50 CL - 60 Very poor recovery Sample S-16 at 60 ft bgs, clay mixed with gravel, likely S-16 SS >50 0.1 slough. 4.9-inch bit, Mud Rotary 63.0 - 68.0 63.0 63.0 - 66.0 Hard, gray, (ML/MH), moist, low to high plasticity SILT, little clay, trace fine sand, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. - 65 ML S-17 SS 25-50/6" >50 ST LOG 11393533 ST PROJECT.GPJ 113.93533SOUND TRANSIT.GDT 6/23/14 68.0 - 73.0 Hard, gray, (CL), moist, low plasticity CLAY, trace fine sand, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. S-18 SS 32-50/5" >50 CL 18.9 73.0 73.0 - 78.0 73.0 - 78.0 Hard, gray, (CH), moist, sitly CLAY, distorted bedding, joint at 70°, highly fractured and blocky, partings and 1-inch seam of silt, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. 75 Log continued on next page 1 in to 3 ft LOGGED: Mike Wolczko DRILLING CONTRACTOR: Holocene Drilling Inc. CHECKED: David P. Findley DRILLER: Jerrod Thompson DATE: 5/22/2014 FINAL DESIGN PARTNERS

SHEET 4 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLER: Jerrod Thompson

DRILLING METHOD: Mud Rotary DRILLING DATE: 2/15/2013

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,429.28 E: 1,634,424.02 ELEVATION: 91.85 INCLINATION: -90

FINAL DESIGN PARTNERS.

	ТНОГ	SOIL PROFILE			1			SAMPLES			PENET		N RES		NCE	
(Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT	10 PI 1 20	20	30 MC 60	LL H		NOTES WATER LEVELS
5 +		73.0 - 78.0 Hard, gray, (CH), moist, silty CLAY, distorted bedding, joint at 70°, highly fractured and blocky, partings and 1-inch seam of silt, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgi].	СН			S-19	SS	12-33-50/6"	>50	<u>1.5</u> 1.5					>>•	•
	•	78.0 - 87.0 Hard, gray (CL), moist, CLAY, trace fine sand, [PRE-VASHON TILL, Qpgt].				-										
0		Sandy, trace gravel, diamict structure, some fractured zones.				S-20	SS	18-50/5"	>50	<u>0.9</u> 0.9					>>•	
			CL													
5				0 0		S-21	SS	33-50/4"	>50	<u>0.6</u> 0.8	•				>>•	•
	.9-inch bit, Mud Rotary	87.0 - 93.0 Very dense, gray, (ML), moist, sandy SILT, trace fine gravel, diamict structure, some micaceous particles, [PRE-VASHON TILL,	-	0 0	4.8	-										Driller's Note: Sand interbeds encountered from 87 to 90 ft bgs.
0	4.9-inch	micaceous particles, [PRE-VASHON TILL, Qpgt].	ML													
					7	S-22	SS	50/4"	>50	0.3					>>•	
		93.0 - 98.0 Very dense, gray, (SM), moist, silty, fine to coarse SAND, trace fine gravel, diamict structure, [PRE-VASHON TILL, Qpgt].			93.0	-										
5			SM	0	7	S-23	SS	50/4"	>50	0.3					>>•	
		98.0 - 120.3 Very dense, gray, (ML), moist, sandy SILT, trace fine gravel, [PRE-VASHON TILL, Qpgt].	ML		-6.2 98.0	_										
00		Log continued on next page		,1 1 1	GED:											

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320 DRILLING METHOD: Mud Rotary DRILLING DATE: 2/15/2013

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,429.28 E: 1,634,424.02 ELEVATION: 91.85 INCLINATION: -90

SHEET 5 of 5

	ATION	NUMBER: 113-93533.0320 DRILLIN N: 515 116th Ave NE DRILL R SOIL PROFILE						SAMPLES			PENETRATION RE	ESISTANCE	1
DEPTH (Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT	PL MC 20 40 6	0 40 LL	NOTES WATER LEVELS
100		98.0 - 120.3 Very dense, gray, (ML), moist, sandy SILT, trace fine gravel, [PRE-VASHON TILL, Qpgt].				S-24	SS	50/3"	>50	0.3		>>	
105				0 0 0 0 0		S-25	SS	50/3"	>50	0.1 0.3		>>	No recovery Sample S- at 105 ft bgs.
· 110	4.9-inch bit, Mud Rotary	Wet, trace fine to coarse sand.	ML			S-26	SS	50/2"	>50	0.1		>>	•
115						S-27	SS	50/2"	>50	0.0		>>	•No recovery Sample S- at 115 ft bgs.
120		Borehole completed at 120.3 ft. Backfilled with 3/8-inch bentonite chips, surfaced with cold patch asphalt.			-28.5 120.3	S-28	SS	100/4"	>50	0.2		>>	•
	to 3 ft	CONTRACTOR: Holocene Drilling	la-		GED: I			zko Findley				M -	0 -0

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320 DRILLING METHOD: Mud Rotary DRILLING DATE: 2/11/2013

DRILLER: Jerrod Thompson

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,442.97 E: 1,634,634.3

ELEVATION: 93.68 INCLINATION: -90

FINAL DESIGN PARTNERS.

SHEET 1 of 5

	HOD H	SOIL PROFILE						SAMPLES			PEN		TON RE		NCE	
(Ft)	BORING METHOD	DESCRIPTION	SOSN	GRAPHIC LOG	DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT		0 2	MC MC	0 40		NOTES WATER LEVELS
		0.0 - 0.1 Asphalt Pavement. 0.1 - 2.0 Very dense, brown and reddish brown, (SP), moist, gravelly, fine to coarse SAND, trace silt, [RECESSIONAL OUTWASH, Qvro].	SP		0.1	S-1	SS	15-28-50/4"	>50	<u>0.8</u> 1.4					>>•	
		2.0 - 8.0 Very dense, brown, (GP-GM), wet, fine to coarse GRAVEL and fine to coarse SAND, little to some silt, iron oxide staining, [RECESSIONAL OUTWASH, Qvro].			91.7	S-2	SS	15-42-35	>50	<u>0.9</u> 1.5	•				>>•	S-2@2.5ft %G-45.6 %S-43.8 %F-10.6
			GP-GM			6.2	66	24 22 44	>50	0.7						Gravelly drilling from 4 ft bgs.
						S-3	SS	21-33-44	>50	<u>0.7</u> 1.5					>>•	No sample at 7.5 ft bgs
	/lud Rotary	8.0 - 14.0 Very dense, gray, (ML), wet, non-plastic SILT, some fine sand, slow dilatancy, [TILL, Qvt].														No sample at 7.5 it by due to caving. Smooth drilling from 8 ft bgs.
0	4.9-inch bit, Mud Rotary		ML			S-4	SS	21-50/6"	>50	<u>0.5</u> 1.0					>>4	
		Slight greenish tint, fine sandy SILT, partings of fine to coarse sand.		0 0 0		S-5	SS	17-32-50/5"	>50	1.0 1.4	ı •				>>•	S-5@12.5ft %G- %S- %F-72.3
5		14.0 - 17.5 Very dense, gray with faint greenish tint, (GM), wet, silty, sandy GRAVEL, [TILL, Qvt].		0 0	14.0											Gravelly drilling from 1-35 ft bgs. Problems with hole car
			GM			S-6	SS	19-50/4"	>50	0.3 0.8					>>•	from 15 to 20 ft bgs.
		17.5 - 22.5 Very dense, greenish gray, (SM), wet, silty, gravelly SAND, diamict structure, [TILL, Qvt].	SM		76.2 17.5											
0		Log continued on next page														

SHEET 2 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Mud Rotary DRILLING DATE: 2/11/2013

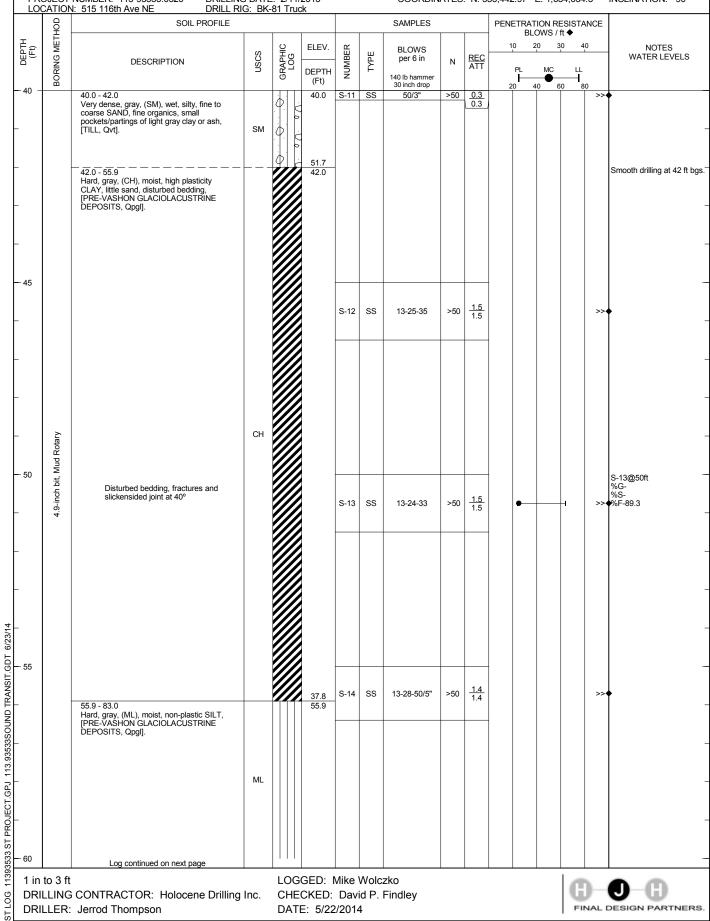
DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,442.97 E: 1,634,634.3

ELEVATION: 93.68 INCLINATION: -90

	9	I: 515 116th Ave NE DRILL RI SOIL PROFILE	O. DIV	01 110	<u>OIC</u>			SAMPLES			PENETRATION RE	SISTANCE	
	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT	PL MC 20 40 66	ft ◆ 0 40 LL	NOTES WATER LEVELS
20		17.5 - 22.5 Very dense, greenish gray, (SM), wet, silty, gravelly SAND, diamict structure, [TILL, Qvt].	SM	0 0 0 0	71.2	S-7	SS	33-50/2"	>50	<u>0.1</u> 0.7		>>	•
25	•	22.5 - 40.0 Very dense, gray, (SM), moist, silty, gravelly fine to coarse SAND, diamict structure, friable, [TILL, Qvt].			22.5								
23						S-8	SS	45-50/2"	>50	<u>0.3</u> <u>0.7</u>	•	>>	S-8@25ft \$\sigma G-19.3 \$\sigma S-58.3 \$\sigma F-22.4
30	4.9-inch bit, Mud Rotary		SM			S-9	SS	50/4"	>50	0.2 0.3		>>	•
35						S-10	SS	50/3"	>50	<u>0.2</u> 0.3		>>	•
40		Log continued on next page		0 0 0 0	53.7								

SHEET 3 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320


DRILLER: Jerrod Thompson

DRILLING METHOD: Mud Rotary DRILLING DATE: 2/11/2013 DRILL RIG: BK-81 Truck

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,442.97 E: 1,634,634.3

ELEVATION: 93.68 INCLINATION: -90

FINAL DESIGN PARTNERS.

330-B-011 SHEET 4 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Mud Rotary DRILLING DATE: 2/11/2013 DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,442.97 E: 1,634,634.3

ELEVATION: 93.68 INCLINATION: -90

LOCA	TION	NUMBER: 113-93533.0320 DRILLING I: 515 116th Ave NE DRILL RI	G: BK-	81 Tru	ick			COORDIN	, tilo	. IN. J	1				INCLINATION: -90
_	된	SOIL PROFILE						SAMPLES			PENETRA B	TION RI LOWS /	ESISTA ft ♦	NCE	
DEPTH (Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT	10 PL L 20	MC	LL 60 80		NOTES WATER LEVELS
		55.9 - 83.0 Hard, gray, (ML), moist, non-plastic SILT, (PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].				S-15	SS	18-50/6"	>50	0.0 1.0				>> 4	
65						S-16	SS	50/5"	>50	0.0				>>4	No recovery Sample S-10 at 85 ft bgs.
70	4.9-inch bit, Mud Rotary		ML			S-17	SS	50/5"	>50	0.4 0.4	•			>>•	S-17@70ft %G-0.0 %S-0.0 %F-100.0
75						S-18	SS	50/5"	>50	0.4				>>4	
80 1 in to	3 ff	Log continued on next page			GGED: I	Mike \	Wolc	zko							n -m

STLOG 1

DRILLING CONTRACTOR: Holocene Drilling Inc. DRILLER: Jerrod Thompson

CHECKED: David P. Findley


SHEET 5 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Mud Rotary DRILLING DATE: 2/11/2013 DRILL RIG: BK-81 Truck

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,442.97 E: 1,634,634.3

ELEVATION: 93.68 INCLINATION: -90

DRILLING CONTRACTOR: Holocene Drilling Inc. DRILLER: Jerrod Thompson

CHECKED: David P. Findley

SHEET 1 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

METHOD

BORING

DEPTH (Ft)

- 0

- 5

Mud Rotary

bit,

4.9-inch

- 10

15

DRILLING METHOD: Mud Rotary DRILLING DATE: 2/10/2013 DATUM: Sound Transit East Coordinate System ELEVATION: 96.62 COORDINATES: N: 555,363.55 E: 1,634,866.06 INCLINATION: -90 DRILL RIG: BK-81 Truck OCATION: 550 116th Ave NE SOIL PROFILE SAMPLES PENETRATION RESISTANCE BLOWS / ft ◆ ELEV. NOTES GRAPHIC LOG **BLOWS** NUMBER REC ATT WATER LEVELS per 6 in DESCRIPTION Ν DEPTH 140 lb hammer (Ft) 30 inch drop 60 0.0 - 0.4 96.2 Asphalt Pavement. 0.4 0.4 - 0.9 95.7 Inch fine gravel road bedding, Very dense, mottled gray and dark brown,(SM), moist, silty, fine to coarse SAND, [FILL, Hf]. 0.9 0.8 1.5 Ф S-1 SS 18-41-36 >50 Very dense, gray-brown, (SM), moist to wet, sitty, gravelly, fine to coarse SAND, [TILL, Qvt]. Φ S-2@2.5ft %G-20.8 %S-60.1 Φ 0.6 Diamict structure, friable, piece of 21-50/4" >50 gravel embedded in tip of sample S-2 at 2.5 ft bgs. %F-19.1 ¢ ¢ ¢ 0.4 S-3 SS 50/5" >50 0.4 4 SM ⇕ Ф 0.3 S-4 SS 50/4" >50 Ф Φ Φ ¢ >> S-5@10ft %G-16.2 %S-61.2 0.3 S-5 SS 50/4" >50 Diamict Structure, half of sample S-5 at 10 ft bgs is friable. %F-22.6 Φ 85 1 11.5 - 17.5 11.5 4 Very dense, gray-brown, (SP-SM), wet, fine to coarse SAND, little silt, trace fine gravel, sandy interbed in [TILL, Qvt]. ф 0.8 1.0 34-50/6" S-6 SS >50 Φ Φ SP-SM Φ S-7@15ft %G-2.3 Φ %S-88.2 S-7 SS 33-45-50/5" >50 **♦**%F-9.5 Φ Φ 17 5 - 22 5 17.5 4 Very dense, gray with faint greenish tint, (SP-SM), wet, fine to coarse SAND, little silt, little fine gravel, diamict structure, Gravelly drilling below 18 ft bgs. friable, [TILL, Qvt]. SP-SM Φ

1 in to 3 ft

20

ST LOG 11393533 ST PROJECT.GPJ 113.93533SOUND TRANSIT.GDT 6/23/14

DRILLING CONTRACTOR: Holocene Drilling Inc.

Log continued on next page

DRILLER: Jerrod Thompson

LOGGED: Mike Wolczko CHECKED: David P. Findley

30-B-012 SHEET 2 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLER: Jerrod Thompson

DRILLING METHOD: Mud Rotary
DRILLING DATE: 2/10/2013

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,363.55 E: 1,634,866.06 ELEVATION: 96.62 INCLINATION: -90

FINAL DESIGN PARTNERS.

l 우	SOIL PROFILE						SAMPLES			PENETRATION RI BLOWS /	ESISTANCE ft ◆	
BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	Z	REC ATT	10 20 3	LL 10 80	NOTES WATER LEVELS
	17.5 - 22.5 Very dense, gray with faint greenish tint, (SP-SM), wet, fine to coarse SAND, little silt, little fine gravel, diamict structure, friable, [TILL, Qvt].	SP-SM			S-8	SS	50/4"	>50	0.3		>>	
	22.5 - 32.5 Very dense, gray, (SM), wet, silty, fine to coarse SAND, little silt, little fine gravel, diamict structure, friable, [TILL, Qvt].			74.1 22.5	S-9	SS	50/5"	>50	0.2		>>	
		SM			5-9	33	30.0	- 30	0.4			
4.9-inch bit, Mud Rotary	Becomes gravelly by 30 ft bgs.				S-10	SS	50/4"	>50	0.2		>>	
	32.5 - 39.0 Very dense, gray, (SP-SM), wet, gravelly, fine to coarse SAND, little silt, diamict structure, friable, [TILL, Qvt]. Cobble encountered at 34 ft bgs.			64.1								
		SP-SM			S-11	SS	50/5"	>50	0.2		>>	
	Log continued on next page	СН		57.6 39.0								Smoother drilling at 39 bgs.

DRILLING METHOD: Mud Rotary DRILLING DATE: 2/10/2013 DRILL RIG: BK-81 Truck

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,363.55 E: 1,634,866.06

ELEVATION: 96.62 INCLINATION: -90

SHEET 3 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320 OCATION: 550 116th Ave NE PENETRATION RESISTANCE BLOWS / ft ◆ SOIL PROFILE SAMPLES **BORING METHOD** DEPTH (Ft) ELEV. NOTES GRAPHIC LOG **BLOWS** NUMBER REC ATT WATER LEVELS per 6 in DESCRIPTION Ν DEPTH 140 lb hammer 30 inch drop - 40 39.0 - 73.0 39:0 - 73:0
Hard, gray, (CH), moist, high plasticity
CLAY, little to some sand, trace fine gravel,
distorted bedding, slickensided,
[PRE-VASHON GLACIOLACUSTRINE 0.0 SS 42-50/5" S-12 >50 No recovery. Sampler filled with slough. DEPOSITS, Qpgl]. - 45 S-13@45ft %G-%S-•**%**F-91.7 1.5 1.5 22-25-38 >50 SS 4.9-inch bit, Mud Rotary - 50 CH Interbedded with lower plasticity SILT SS 22-50/6" (ML), thin joints with diced fractures. ST LOG 11393533 ST PROJECT.GPJ 113.93533SOUND TRANSIT.GDT 6/23/14 - 55 Highly fractured, slickensided, joints at 30° to 45° . S-15 SS 19-50/6" >50 Log continued on next page 1 in to 3 ft LOGGED: Mike Wolczko

DRILLING CONTRACTOR: Holocene Drilling Inc. DRILLER: Jerrod Thompson

CHECKED: David P. Findley

SHEET 4 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING CONTRACTOR: Holocene Drilling Inc.

DRILLER: Jerrod Thompson

STLOG

DRILLING METHOD: Mud Rotary DRILLING DATE: 2/10/2013

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,363.55 E: 1,634,866.06 ELEVATION: 96.62 INCLINATION: -90

FINAL DESIGN PARTNERS.

LOC	ATION	NUMBER: 113-93533.0320 DRILLING I: 550 116th Ave NE DRILL R						000110111	· · · LO	. 11. 0		J L. 1,0			INCLINATION: -90
	НОБ	SOIL PROFILE						SAMPLES		ı	PENET	RATION R BLOWS /	ESISTA ft ♦	NCE	
9 DEPIH	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT	10 PL L 20	MC	LL 60 8		NOTES WATER LEVELS
60 —		39.0 - 73.0 Hard, gray, (CH), moist, high plasticity CLAY, little to some sand, trace fine gravel, distorted bedding, slickensided, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].				S-16	SS	30-47-38	>50	1.5 1.5				>>•	
65		3-inch silt seam in sample S-16 at 60 ft bgs.													S-17@65ft %G-
	Rotary	Slickensided, joint at 60°, silt parting at 75°.	СН			S-17	SS	38-42-50/5"	>50	1.4	•				%G- %S- %F-85.9
0	4.9-inch bit, Mud Rotary	Interbedded with lower plasticity SILT (ML), fine sand partings and micaceous particles.				S-18	SS	26-46-48	>50	<u>1.5</u> 1.5				>>+	
		73.0 - 83.0 Hard, gray, (ML), moist, sandy SILT to SILT and SAND, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].			23.6 73.0										
75			ML			S-19	SS	50/6"	>50	<u>0.5</u> 0.5				>>•	
30															
v I		Log continued on next page								1					

CHECKED: David P. Findley

SHEET 5 of 5

FINAL DESIGN PARTNERS.

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLER: Jerrod Thompson

DRILLING METHOD: Mud Rotary DRILLING DATE: 2/10/2013

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,363.55 E: 1,634,866.06 ELEVATION: -90

		I: 550 116th Ave NE DRILL RI SOIL PROFILE						SAMPLES			PENETR			NCE	
(Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT	10 PL 20	MC	80 4	0	NOTES WATER LEVELS
		73.0 - 83.0 Hard, gray, (ML), moist, sandy SILT to SILT and SAND, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].	ML			S-20	SS	44-50/4"	>50	0.8				>>•	
	Rotary	83.0 - 90.9 Hard gray, (CH), moist, high plasticity CLAY, distorted bedding, fractured and slickensided, [PRE-WASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].			13.6 83.0										
5	4.9-inch bit, Mud Rotary					S-21	SS	25-50/6"	>50	1.0 1.0	•			>>	S-21@85ft %G- %S- %F-94.1
	4.9		СН												
0					5.7	S-22	SS	22-50/5"	>50	<u>0.9</u> 0.9				>>•	
-		Borehole completed at 90.9 ft. Backfilled with 3/8-inch bentonite chips, surfaced with cold patch asphalt.			90.9										
5															
00															

SHEET 1 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320 LOCATION: 555 116th AVE NE

DRILLING METHOD: Mud Rotary DRILLING DATE: 2/6/2013 DRILL RIG: Diedrich D-120 Truck

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,450.45 E: 1,634,948.07 ELEVATION: 98.61 INCLINATION: -90

5		SOIL PROFILE			T			SAMPLES			PENE	TRATI BLC	ON RE	SISTAN t ♦	NCE	
(Ft)	BORING ME	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT	20) 2(PL	MC	0 40 LL		NOTES WATER LEVELS
		0.0 - 0.7 Asphalt Pavement.			97.9											
		0.7 - 21.0 Very dense, gray-brown, (SM), moist, silty, fine to coarse SAND, little to some gravel, diamict structure, friable, [TILL, Qvt].			0.7	S-1	SS	26-50/6"	>50	<u>0.8</u> 1.0					>>•	
		Little gravel, 1-inch seam of fine SAND, little silt, in sample S-3 at 5 ft bgs.		0	,	S-2	ss	27-50/4"	>50	0.8 0.8	•				>>•	S-2@2.5ft %G-9.6 %S-64.4 %F-26.0
4 9-inch bit Mud Rotarv	9-inch bit, iviud Kotary	Becomes gravelly.				S-3	SS	24-50/5"	>50	0.6					>>•	Gravelly drilling at 5 ft bo
4	4	Becomes wet, trace coarse sand.				S-4	SS	6-50/3"	>50	<u>0.1</u> 0.8					>>•	Drill fluid circulation lost drill fluid seen entering adjacent catch basin though highly permeable soil unit from 7 to 11 ft b
			SM			S-5	SS	10-50/6"	>50	<u>0.8</u> 1.0	•				>>4	S-5@10ft %G-19.2 %S-65.5 %F-15.3
ger	ger					S-6	SS	50/5"	>50	<u>0.1</u> <u>0.4</u>					>>•	
4 25-inch inner diameter Hollow Stem Auger	атпетег полом этетт Ац					S-7	SS	50/3"	>50	<u>0.2</u> 0.3					>>•	
4 25-inch inner dia	4.25-inch inner dia															
				0 0												
)	3 ft	Log continued on next page			GED:											

ST LOG 113

DRILLING CONTRACTOR: Holocene Drilling Inc.

DRILLER: Roddy Gilseth

CHECKED: David P. Findley

SHEET 2 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Mud Rotary DRILLING DATE: 2/6/2013

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,450.45 E: 1,634,948.07 ELEVATION: 98.61 INCLINATION: -90

20 07-210 10 10 10 10 10 10 10		원	SOIL PROFILE			1			SAMPLES			PENETRA BI	TION RE		ICE	
Sel SS SOS >50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 —	BORING MET		nscs	GRAPHIC	DEPTH	NUMBER	TYPE	per 6 in	N		PL	MC	LL —		
22.2 - 32.5 Very dense, gray, (SM), moist to wet, silty, gravely, fine to coarse SAND, diamict structure, frable, [TILL, Qvt]. SM SM SM SM SM SM Single Signar Si			Very dense, gray-brown, (SM), moist, silty, fine to coarse SAND, little to some gravel, diamict structure, friable, [TILL, Qvt]. 21.0 - 25.2 Very dense, gray, (SP), wet, fine to medium SAND, trace silt, sandy interbed in [TILL,				S-8	SS	50/6"	>50	0.3					Easier drilling at 21 ft bgs
1-inch seam of silty, fine to coarse sand. SM SM SM SM SIM SIM SIM SIM S	25		Very dense, gray, (SM), moist to wet, silty, gravelly, fine to coarse SAND, diamict		0		S-9	SS	19-50/5"	>50	<u>0.3</u> 1.0	•			>>	%G-27.9 %S-51.9
35.2 - 40.2 Hard, gray, (CL), moist, low plasticity CLAY, trace sand, trace fine gravel, highly disturbed, (observed bottom of sample S-11 at 35 ft and top of sample S-12 at 40 ft), [TillL (Disturbed), Qvt]. SP 66.1 32.5 S-35.2 Very dense, gray, (SP), wet, fine to coarse SAND, trace slit, sandy interbed in [TillL, Qvt]. SP 63.4 35.2 S-11 SS 29-50/4" >50 0.8 Hole collapsing during ye-drill from 35 to 45 ft bg of the collapsing ye-drill from 35 to 45 ft bg of the collapsing ye-drill from 35 to 45 ft bg of the collapsing ye-dr	30	r diameter Hollow Stem Auger		SM			S-10	SS	50/4"	>50	0.3 0.3				>>•	
35.2 - 40.2 Hard, gray, (CL), moist, low plasticity CLAY, trace sand, trace fine gravel, highly disturbed, (observed bottom of sample S-11 at 35 ft and top of sample S-12 at 40 ft), [TILL (Disturbed), Qvt].		4.25-inch inne	Very dense, gray, (SP), wet, fine to coarse SAND, trace silt, sandy interbed in [TILL,	SP												
	35		Hard, gray, (CL), moist, low plasticity CLAY, trace sand, trace fine gravel, highly disturbed, (observed bottom of sample S-11 at 35 ft and top of sample S-12 at 40 ft),	CL			S-11	SS	29-50/4"	>50	<u>0.6</u> 0.8				>>•	Hole collapsing during re-drill from 35 to 45 ft bg

SHEET 3 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Mud Rotary DRILLING DATE: 2/6/2013

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,450.45 E: 1,634,948.07 ELEVATION: 98.61 INCLINATION: -90

LOC		I: 555 116th AVE NE DRILL RI SOIL PROFILE	IG: Die	drich D-	-120 Tru	ck		SAMPLES	ATES		PENETI	RATION F	RESISTA		
DEPTH (Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT	10 PL 	MC	30 4	30	NOTES WATER LEVELS
		40.2 - 45.8 Very dense, gray, (SM), moist to wet, silty, gravelly, fine to coarse SAND, diamict structure, friable, [TILL, Qvt].	SM	0 0 0 0 0 0	58.4 40.2	S-12	SS	16-29-50/4"	>50	0.8 1.3	•			>>•	S-12@40ft %G-15.3 %S-26.5 %F-58.2
- 45	neter Hollow Stem Auger	45.8 - 48.0 Very dense, gray, (ML), wet fine sandy SILT, moderate dilatancy, [TILL, Qvt].	ML	0 0 0 0	52.9 45.8	- S-13	SS	9-15-38	>50	<u>0.8</u> 1.5				>>•	
- 50	4.25-inch inner diameter Hollow	48.0 - 58.0 Very dense, gray, (SM), moist, silty, fine to coarse SAND, little gravel, little clay, [TILL, Qvt].			50.6 48.0	S-14	SS	15-50/1"	>50	0.3 0.6				>>•	
- 55 -	9-inch bit, Mud Rotary		SM		40.6	S-15	SS	50/2"	>50	0.0				>>•	Auger and Rod stuck in hole, hole abandoned at ft bgs on 02/06/2013 Off set 5 ft and drill to 5: bgs, begin sampling on 02/07/2013 No recovery Sample S-4 at 55 ft bgs.
- 60	4.9-inch	58.0 - 63.0 Very dense, gray, (ML), wet, fine sandy SILT, moderate dilatancy, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgi]. Log continued on next page	ML		58.0										
	to 3 ft		-		GED:						, 1	-			Φ. Φ.
		CONTRACTOR: Holocene Drilling Roddy Gilseth	Inc.		CKED: E: 5/22			Findley					FI	NAL I	DESIGN PARTNER

SHEET 4 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Mud Rotary DRILLING DATE: 2/6/2013

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,450.45 E: 1,634,948.07 ELEVATION: 98.61 INCLINATION: -90

LOC		N: 555 116th AVE NE DRILL RI	IG: Die	edrich D	-120 Tru	ck		COORDIN			DENIETDATION DE	-010741105	1
_	THO	SOIL PROFILE						SAMPLES			PENETRATION RE BLOWS / 1	ft ◆	
DEPTH (Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT	10 20 3 PL MC 20 40 6	LL 0 80	NOTES WATER LEVELS
60 -		58.0 - 63.0 Very dense, gray, (ML), wet, fine sandy SILT, moderate dilatancy, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].				S-16	SS	50/5"	>50	0.3	20 70 0	>>	•
			ML		25.6								
		63.0 - 83.0 Hard, gray, (CL), moist, silty, low plasticity CLAY, trace sand, trace fine gravel, highly fractured, slickensided, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].			35.6 63.0								
65						S-17	ss	50/5"	>50	0.3		>>	•
										0.4			
70	4.9-inch bit, Mud Rotary	Trace fine sand locally, 2-inch seam of silt, 1/4-inch vertical band of highly fractured clay in sample S-18 at 70 ft				S-18	SS	31-50/6"	>50	1.0 1.0		>>	S-18@70ft %G- ◆%S-
	4.9-ii	fractured clay in sample S-18 at 70 ft bgs.	CL										%F-99.1
75													
		Partings of silt:				S-19	SS	22-37-50/5"	>50	1.4 1.4		>>	†
80		Log continued on next page				<u> </u>							
	to 3 ft		Inc		GED:							0	0-0
		GCONTRACTOR: Holocene Drilling Roddy Gilseth	IIIC.		E: 5/22			Findley				FINAL	DESIGN PARTNEI

SHEET 5 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLER: Roddy Gilseth

DRILLING METHOD: Mud Rotary DRILLING DATE: 2/6/2013

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,450.45 E: 1,634,948.07 ELEVATION: 98.61 INCLINATION: -90

FINAL DESIGN PARTNERS.

	ДОН.	SOIL PROFILE		1	T			SAMPLES			PENETRATION R BLOWS /	ESISTANCE ft ◆	
(Ft)	BORING METHOD	DESCRIPTION	SOSN	GRAPHIC LOG	DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	Ν	REC ATT	10 20 3	LL 	NOTES WATER LEVELS
		63.0 - 83.0 Hard, gray, (CL), moist, silty, low plasticity CLAY, trace sand, trace fine gravel, highly fractured, slickensided, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].	CL		15.6	S-20	SS	22-50/6"	>50	<u>0.5</u> 1.0		>>-	
5	4.9-inch bit, Mud Rotary	83.0 - 88.0 Very dense, gray, (ML), moist, SILT, slow dilatancy, (PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].			83.0	S-21	SS	50/5"	>50	0.4	•	>>-	S-21@85ft %G-
	4.9-inch		ML										%S- %F-99.7
0 -		88.0 - 91.5 Hard, gray, (CL), moist, silty CLAY, 4-inch silt lens, distorted bedding some fracturing and slickensides, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].	CL		10.6 88.0								
					7.1	S-22	SS	16-32-40	>50	1.5 1.5		>>-	
		Borehole completed at 91.5 ft. Backfilled with 3/8-inch bentonite chips, surfaced with concrete patch.			91.5								
5													
	to 3 ft	CONTRACTOR: Holocene Drilling			GED:			zko Findley				M	0.0

SHEET 1 of 4

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Mud Rotary DRILLING DATE: 3/28/2013

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,521.9 E: 1,635,087.77

ELEVATION: 110.72 INCLINATION: -90

LOC		J: 600 116th St DRILL RI SOIL PROFILE	О. Б-С	O IVIODII	C DIIII III	l		CAMPLEC			DENETRATION	LDEGICTANCE	
DEPTH (Ft)	BORING METHOD	DESCRIPTION	SOSO	GRAPHIC LOG	ELEV. DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in	N	REC ATT	10 20 PL N	N RESISTANCE S / ft ◆ 30 40 10 LL 60 80	NOTES WATER LEVELS
0		0.0 - 0.3 Asphalt Pavement.			0.3			30 IIICII diop			20 40	60 80	
		0.3 - 4.8 Compact, Mottled gray-brown and orange, (SM), moist, silty, fine to coarse SAND, some fine gravel, scattered organics, [FILL, Hf].	SM			S-1	ss	5-9-10	19	<u>0.5</u> 1.5	•		
			Sivi			S-2	SS	4-5-6	11	<u>0.5</u> 1.5	•		
5		4.8 - 7.0 Loose, dark brown, (SM), moist, silty, fine to coarse SAND, some gravel, trace organics, [FILL, Hf].	SM		106.0	S-3	SS	2-3-2	5	<u>1.5</u> 1.5	• •		S-3@5ft %G-24.8 %S-47.5 %F-27.7
		7.0 - 9.5 Firm, gray-green, (ML), moist, low plasticity SILT and SAND, trace organics, [FILL, HF].	ML		7.0	S-4	ss	2-2-6	8	0.3 1.5			S-4@7.5ft %G- %S-
10		9.5 - 12.0 Compact gray (SM) damp silty fine to			101.2					1.5			%F-53.4
		Compact, gray, (SM), damp, silty, fine to coarse SAND, some fine gravel, scattered laminations, [FILL, Hf].	SM		98.7	S-5	SS	6-12-14	26	1.5 1.5		•	
	ary	12.0 - 30.0 Very dense, gray to brown-gray, (SM), damp, fine to coarse SAND and SILT, little fine gravel, [TILL, Qvt].		0	12.0	S-6	SS	50/6"	>50	0.3		>>	
15	4.9-inch bit, Mud Rotary					S-7	SS	15-50/1"	>50	0.3		>>	
	4.9-inch			0 0 0						0.0			
20				0 0		0.0	00	50/5	. 50	0.2			\$\$.8@20ft
			SM	0 0		S-8	SS	50/5"	>50	0.3		>>	S-8@20ft %G-7.6 %S-56.9 %F-35.5
				0 0 0									
25										0.4			
						S-9	SS	50/4"	>50	<u>0.4</u> 4.0		>>	
30		Log continued on next page		Φ	80.7								
	to 4 ft _LING	CONTRACTOR: Holt Services Inc			GED: I			emitsu Findley				0	0-0

SHEET 2 of 4

		l: 600 116th St DRILL R SOIL PROFILE						SAMPLES			PENETRATION RESIST	ANCE	
(Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT	PL MC LI	40 - 80	_ NOTES WATER LEVELS
80 —		30.0 - 33.0 Very dense, gray-brown, (ML), wet SILT, non-plastic, lens in [Till, Qvt].	ML	0 0 0	30.0	S-10	SS	20-50/5"	>50	0.3 0.9		>>	•
:5		33.0 - 38.0 Very dense, gray, (SM), wet, fine to coarse SAND, some silt, crudely interbedded with sandy gravel, lens in [Till, Qvt].	SM			S-11	SS	27-50/4"	>50	0.5 0.8	•	>>	S-11@35ft • G-0.5 %S-83.2 %F-16.3
.0	_	38.0 - 43.0 Very dense, dark gray, (ML), wet, sandy SILT, scattered thin layers of clayey silt, lens in [Till, Qvt].	ML		72.7	S-12	SS	28-50/3"	>50	0.8 0.8		>>	•
5	4.9-inch bit, Mud Rotary	43.0 - 59.0 Very dense, gray, (SM), moist, fine to coarse SAND and SILT, trace to some fine gravel, lenses of clayey silt, [Till, Qvt].			67.7 43.0	S-13	SS	50/3"	>50	0.3		>>	Rough drilling from 46 59 ft bgs.
0			SM			S-14	SS	50/3"	>50	0.3	•	>>	◆S-14@50ft %G-1.1 %S-64.5 %F-34.4
5						S-15	SS	50/3"	>50	0.3		>>	
0			SP-SM	1	51.7 59.0								Change in drill action ft bgs.

DRILLING CONTRACTOR: Holt Services Inc. DRILLER: John Bennet

CHECKED: David P. Findley DATE: 5/22/2014

w FINAL DESIGN PARTNERS.

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,521.9 E: 1,635,087.77

ELEVATION: 110.72 INCLINATION: -90

SHEET 3 of 4

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320 DRILLING METHOD: Mud Rotary DRILLING DATE: 3/28/2013 DRILL RIG: B-60 Mobile Drill Truck OCATION: 600 116th St SOIL PROFILE SAMPLES PENETRATION RESISTANCE **BORING METHOD** BLOWS / ft ◆ DEPTH (Ft) ELEV. 20 30 NOTES GRAPHIC LOG **BLOWS** NUMBER REC ATT WATER LEVELS per 6 in DESCRIPTION Ν DEPTH 140 lb hammer 30 inch drop 60 - 60 59.0 - 63.0 0.9 59:0 - 63:0 Very dense, dark gray, (SP-SM), moist, fine SAND, little silt, thinly bedded with organic rich sandy silt, compressed peat horizon, [PRE-VASHON FLUVIAL DEPOSITS, S-16 SS 35-50/5" >50 SP-SM Change in drill action at 63 ft bgs. 63.0 - 68.0 Hard, gray, (CL), damp, silty CLAY, trace 63.0 sand, low plasticity, laminated at 10° from horizontal, scattered sand seams, scattered slickensided fractures, low plasticity, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. - 65 CL SS 32-33-32 1.5 1.5 S-17 >50 68.0 - 83.0 68.0 - 83.0 Hard, gray, (CL), moist, low plasticity CLAY, trace sand, laminated at 90° from horizontal, fissured, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. - 70 1.5 1.5 S-18 SS 10-19-25 bit, Mud Rotary - 75 S-19@75ft %G- *****%S-%F-94.9 4.9-inch SS 16-26-33 >50 - 80 Coarse gravel lodged in tipof sample S-20 at 80 ft Becomes wet at 80 ft bgs. S-20 SS 14-20-22 42 bgs, blow count may be over stated, sample highly ST LOG 11393533 ST PROJECT.GPJ 113.93533SOUND TRANSIT.GDT 6/23/14 disturbed. os.u - 90.0 Hard, gray, (CL), moist, low plasticity, silty CLAY, homogeneous, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. - 85 S-21 SS 12-27-31 >50 CL 20.7 Log continued on next page 1 in to 4 ft LOGGED: Dave Yonemitsu

DRILLING CONTRACTOR: Holt Services Inc.

DRILLER: John Bennet

CHECKED: David P. Findley

SHEET 4 of 4

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Mud Rotary DRILLING DATE: 3/28/2013

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,521.9 E: 1,635,087.77

ELEVATION: 110.72 INCLINATION: -90

	CATION	NUMBER: 113-93533.0320 DRILLIN I: 600 116th St DRILL R	IG: B-6	<u> </u>	ile Drill Tr	uck						
	НОБ	SOIL PROFILE						SAMPLES			PENETRATION RESISTA BLOWS / ft ◆	INCE
S DEPTH (Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC	DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT	10 20 30 40 PL MC LL 20 40 60 80	WATER LEVELS
- 90 —	ry	90.0 - 101.4 Hard, gray, (ML), moist, SILT, trace sand, low plasticity, laminated at 80° to 90° from horizontal, highly fissured with slickensided fractures, interbedded with clayey silt and sandy silt, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].			90.0	S-22	SS	16-16-21	37	1.5 1.5	•	
- 95	4.9-inch bit, Mud Rotary		ML			S-23	SS	16-32-34	>50	<u>1.5</u> 1.5	•—	S-23@95ft %G- >>♠%S- %F-97.5
· 100		Borehole completed at 101.4 ft.			9.3 101.4	S-24	SS	24-44-50/5"	>50	0.7		Sample S-24 at 100 ft by slightly disturbed by drivi on rocks and pull back from drill.
		Borenole completed at 101.4 π. Backfilled with 3/8-inch bentonite chips, surfaced with cold patch asphalt.			101.4							
105												
110												
115												

STLOG

DRILLING CONTRACTOR: Holt Services Inc.

DRILLER: John Bennet

CHECKED: David P. Findley

SHEET 1 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320 LOCATION: 600 116th St DRILLING METHOD: Mud Rotary DRILLING DATE: 3/29/2013 DRILL RIG: B-60 Mobile Drill Truck

		l: 600 116th St DRILL RI SOIL PROFILE	G: B-0	O IVIODII	e Drill Tri	JCK		SAMPLES			DENIE	TDAT		ESISTAN	`E
_	문 문 무	OOLITIOTILE						C) IIVII EEO				BLC	DWS /	ft ◆	
(Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT	10 1 20	PL	MC	LL 50 80	NOTES WATER LEVELS
' †		0.0 - 0.3 \ Asphalt Pavement. /			113.9			oo mon drop			20		0 0	80	
		0.3 - 3.0 Compact, gray-brown to dark brown, (SM), moist, sitly, fine to coarse SAND, trace fine gravel, trace organics, [FILL, Hf].	SM			S-1	SS	5-6-12	18	<u>0.4</u> 1.5		•			c 162 F#
	_	3.0 - 6.0 Dense, greenish gray, (SM), moist, silty, fine to coarse SAND, some fine gravel, [FILL, Hf].			3.0	S-2	SS	5-9-9	18	1.0 1.5	•	•			S-2@2.5ft %G-21.0 %S-55.5 %F-23.5
			SM		108.2	S-3	SS	5-14-23	37	0.8 1.5				•	
		6.0 - 9.0 Very dense, gray-brown, (ML), damp, sandy SILT, non-plastic, little fine gravel, thinly bedded with silty sand, [TILL, Qvt].		0 0	6.0										
			ML	0 0		S-4	SS	27-50/6"	>50	<u>1.0</u> 1.0					>>•
	.9-inch bit, Mud Rotary	9.0 - 22.5 Very dense, gray-brown, (SM), damp, fine to coarse SAND and SILT, trace to some fine gravel, [TILL, Qvt].		0	9.0										
0	4.9-inch bit,			0 0		S-5	SS	50/4"	>50	0.3					>> •
						S-6	SS	50/6"	>50	0.3 0.5					>>•
				0 0					- 60	0.5					
5			SM	0 0		S-7	SS	25-50/2"	>50	0.3	•				S-7@15ft >> 4 %G-2.7 %S-58.5 %F-38.8
															%F-38.8
				0 0											
				0 0											
0		Log continued on next page		1 1 6	1										

1 in to 3 ft
DRILLING
DRILLER:

DRILLER: John Bennet

DRILLING CONTRACTOR: Holt Services Inc.

nc. CHEC

CHECKED: David P. Findley

DATE: 5/22/2014

FINAL DESIGN PARTNERS.

SHEET 2 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Mud Rotary DRILLING DATE: 3/29/2013

DEPTH (Ft) BORING METHOD										BLOWS /	ıı ♥	
	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT	PL MC	LL 60 80	NOTES WATER LEVELS
20	9.0 - 22.5 Very dense, gray-brown, (SM), damp, fine to coarse SAND and SILT, trace to some fine gravel, [TILL, Qvt].	SM	0 0 0 0	91.7	S-8	SS	50/3"	>50	0.2		>>	
25	22.5 - 27.5 Very dense, gray, (SP-SM), damp, fine to coarse SAND, little silt, trace gravel, [TILL, Qvt].	SP-SM		22.5	S-9	SS	50/3"	>50	0.3		>>	•
	27.5 - 39.0 Very dense, gray, (SM), moist, fine to coarse SAND and SILT, trace to little fine gravel, lenses of fine to coarse sand, [TILL,			86.7								
30 30 4.9-inch bit, Mud Rotary	Qvt].				S-10	SS	50/3"	>50	0.1	•	>>	\$-10@30ft %G-4.3 %S-64.2 %F-31.5 Rough drilling from 30 36 ft bgs.
35		SM			S-11	SS	50/3"	>50	0.0		>>	No recovery Sample S at 35 ft bgs, lithology inferred from drill actio Driller's Note: sandy s from 36 to 39 ft bgs ba on drill action.
40	39.0 - 42.5 Very dense, gray, (SP), wet, fine to coarse SAND, some fine to coarse gravel, stratified, sand lens in [TILL, Qvt]. Log continued on next page	SP		75.2 39.0								

SHEET 3 of 5

FINAL DESIGN PARTNERS.

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING CONTRACTOR: Holt Services Inc.

DRILLER: John Bennet

STLOG

DRILLING METHOD: Mud Rotary DRILLING DATE: 3/29/2013

LOC	ATION	NUMBER: 113-93533.0320 DRILLIN I: 600 116th St DRILL R				uck		COORDIN	AILO	. 14. 0		L. 1,0		.70	INCLINATION: -90
	BORING METHOD	SOIL PROFILE					ı	SAMPLES		ı	PENETR	ATION R BLOWS /	ESISTA ft ◆	NCE	
(Ft)	MET		S	≅,,	ELEV.	Ä	ш	BLOWS		DE0	10	20 :	30 4	0	NOTES
	RING	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH	NUMBER	TYPE	per 6 in	N	REC ATT	PL	MC	LL		WATER LEVELS
40	BOI			ŋ	(Ft)	Z		140 lb hammer 30 inch drop			20	40	60 8	0	
-0		39.0 - 42.5 Very dense, gray, (SP), wet, fine to coarse				S-12	SS	50/4"	>50	0.3				>>4	
		Very dense, gray, (SP), wet, fine to coarse SAND, some fine to coarse gravel, stratified, sand lens in [TILL, Qvt].			1										
			SP	1916											
		42.5 - 52.5			71.7 42.5										
		Very dense, gray-brown, (SM), damp, silty, fine to coarse SAND, some fine to coarse		14 6											
		gravel, [TILL, Qvt].													
					1										
				$ \Phi $											
5						S-13	SS	50/3"	>50	0.3				>>•	Rough, gravelly drilling
					1	3 10	55	35.5	- 50	0.3					Rough, gravelly drilling from 45 to 49 ft bgs.
				$ \Phi _{\mathcal{E}}$											
					1										
			SM	19/6											
			0												
		Cobble encountered at 48 ft bgs.		1	1										
	>			$ \phi _{\epsilon}$											
	Rotar														
	.9-inch bit, Mud Rotary			10 5											
0	bit, P					S-14	SS	50/1"	>50	<u>0.1</u> 0.1				>>•	Very poor recovery Sar S-14 at 50 ft bgs.
	9-inch				1										
	4.			14 6											
					61.7										
	-	52.5 - 64.0		KU	52.5										
		Very dense, gray-brown, (GP), wet, sandy, fine to coarse GRAVEL, [PRE-VASHON FLUVIAL DEPOSITS, Qpnf].		000											
				60 C											
				000											
				₽Õ C											
5				000		S-15	SS	50/4"	>50	0.3				>>	•
				60C						0.5					
			GP	000	1										
				600	-										
				000	1										
				600											
				000	1										
				000											
				000	-										
				60 C											
0		Log continued on next page		000	-										

CHECKED: David P. Findley

SHEET 4 of 5

FINAL DESIGN PARTNERS.

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLER: John Bennet

DRILLING METHOD: Mud Rotary DRILLING DATE: 3/29/2013

		l: 600 116th St DRILL F SOIL PROFILE	D-U	. J. IVIOUII	<i>□</i>			SAMPLES			PENETRATION RES		
(Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT	BLOWS / ft 10 20 30 PL MC 20 40 60	40 LL ——————————————————————————————————	NOTES WATER LEVELS
		52.5 - 64.0 Very dense, gray-brown, (GP), wet, sandy, fine to coarse GRAVEL, [PRE-VASHON FLUVIAL DEPOSITS, Qpnf].	GP			S-16	SS	50/4"	>50	0.0 0.3		>>-	No recovery Sample S- at 60 ft bgs, lithology inferred from drill action and cuttings. Large gravels and cobt observed in drill fluid fro 60 to 64 ft bgs.
5		64.0 - 67.5 Very dense, gray, (ML), moist, SILT, little sand, non-plastic, non-dilatant, massive, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].	ML	00	50.2 64.0	S-17	SS	50/2"	>50	0.3	•	>>-	Change in drill action a ft bgs. S-17@65ft %G-2.5 %S-11.2 %F-86.3
	Rotary	67.5 - 73.0 Hard, gray, (CL), silty CLAY, low plasticity, laminated with sandy silt and clayey silt at 45° from horizontal, scattered slickensided fractures, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].			46.7 67.5								
0	4.9-inch bit, Mud Rotary		CL			S-18	SS	19-30-50/4"	>50	<u>1.5</u> 1.3		>>	
5	-	73.0 - 88.0 Very dense, gray, (ML), wet, non-plastic SILT, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].			41.2 73.0	S-19	SS	50/5"	>50	0.4		>>-	
			ML										
,	l	Log continued on next page											1

SHEET 5 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Mud Rotary DRILLING DATE: 3/29/2013

	НОБ	SOIL PROFILE						SAMPLES	1		PENETRATION RE BLOWS / f		
(Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT	10 20 30 PL MC 20 40 60	LL 	NOTES WATER LEVELS
80 —		73.0 - 88.0 Very dense, gray, (ML), wet, non-plastic SILT, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. Slow dilatancy in Sample S-20.				S-20	SS	50/6"	>50	0.4 0.5	20 40 00	>>	S-20@80ft %G- %S- %F-97.4
85	4.9-inch bit, Mud Rotary	Rapid dilatancy in Sample S-21.	ML			S-21	SS	50/5"	>50	0.4 0.4		>>	
	4.9-inch t				26.2								
90		88.0 - 90.8 Hard, gray, (ML), moist, SILT, low plasticity, interbedded with sandy silt, fissured, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].	ML		88.0	S-22	ss	49-50/4"	>50	0.8 0.8		>>-	
		Borehole completed at 90.8 ft.			23.4 90.8	5-22	33	49-50/4	>50	0.8		33.	Ĭ
95		Backfilled with 3/8-inch bentonite chips, surfaced with cold patch asphalt.											
	to 3 ft	CONTRACTOR: Holt Services Inc			GED:							()	O -(i)

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Mud Rotary DRILLING DATE: 9/11-12/2013

DATUM: Sound Transit East Coordinate System ELEVATION: 116
COORDINATES: N: 555,594 E: 1,635,220 INCLINATION: -90

SHEET 1 of 5

	ГНОБ	SOIL PROFILE						SAMPLES			PENE	TRATION BLOWS	RESISTANCE S / ft ◆	
(Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT	10 F 20	PL MO	30 40 C LL 60 80	NOTES WATER LEVELS
0 -		0.0 - 0.2 Asphalt Pavement. 0.2 - 4.5 Very dense, gray-brown, (GM), moist, silty, fine to coarse GRAVEL and SAND, diamict structure, some iron oxide staining, [TILL, Qvt].	GM		0.2									
				0 0		S-1	SS	11-31-49	>50	0.8 1.5	•		>:	S-1@2.5ft %G-41.1 %S-32.3 ◆%F-26.6
5		4.5 - 9.5 Very dense, gray-brown, (SM), moist, gravelly, silty, fine to coarse SAND, diamict structure, [TILL, Qvt].		0	4.5	S-2	SS	22-50/3"	>50	0.6 0.8			>:	•
			SM	0 6										
	tary	Becomes friable.		0 0		S-3	SS	50/6"	>50	0.2 0.5			>:	+
10	4.9-inch Diameter Bit, Mud Rotary	9.5 - 12.0 Very dense, gray-brown, wet, gravelly, fine to coarse SAND, little silt, sand lens in [TILL, Qvt].	SP-SM		9.5	S-4	SS	50/6"	>50	<u>0.2</u> 0.5			>>	Gravelly drilling at 10 ft
	4.9-inc	12.0 - 23.0 Very dense, gray, (SM), wet, silty, fine to coarse SAND, little gravel, diamict structure, friable, [TILL, Qvt].			104.0	S-5	SS	50/3"	>50	0.0			>:	No recovery Sample S
		Lithology inferred from blow count.												
15			SM			S-6	SS	120/5"	>50	0.3			>:	•
20		Log continued on next page		1411	1									

DRILLING CONTRACTOR: Holt Services Inc.

DRILLER: Larry Inselman

CHECKED: David P. Findley

SHEET 2 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Mud Rotary DRILLING DATE: 9/11-12/2013

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,594 E: 1,635,220 ELEVATION: 116 INCLINATION: -90

LOC	CATION	NUMBER: 113-93533.0320 DRILLIN N: 600 116th Ave NE DRILL R	IG: B-5	9 Mo	bile [Drill Tr	uck		OOONDIN	/ \	14. 0	JO,004 L.	1,635,220	INCLINATION: -90
	НОР	SOIL PROFILE							SAMPLES				ATION RESISTANC LOWS / ft ◆	E
DEPTH (Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC	E D	EPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in	N	REC ATT	10 PL	20 30 40 MC LL	NOTES WATER LEVELS
- 20 -	_	12.0 - 23.0 Very dense, gray, (SM), wet, silty, fine to coarse SAND, little gravel, diamict structure, friable, [TILL, Qvt].		φ	D. 9 O.		S-7	SS	50/5"	>50	0.0	20	40 60 80	No recovery Sample S-9 a 20 ft bgs.
-		23.0 - 38.0 Very dense, gray-brown, (SP-SM/SM), wet, fine to coarse SAND, little silt, little gravel, to silty, fine to coarse SAND, little gravel, diamict structure, friable, [TILL, Qvt].	SM	0 0		93.0 23.0								Driller notes that the soil drills like sand at approximately 23 ft bgs.
- 25				$ \Phi $	0		S-8	SS	150/6"	>50	0.5 0.5			S-8@25ft >> * %G-11.7
				$ \phi $	0 🔾		3-0	33	150/6	>50	0.5			%G-11.7 %S-63.7 %F-24.6
-				$ \phi $	0 (V)									
-				$ \phi $	0 .00									
				0										
•	ary			$ \phi $	0 -									
	ud Rota				0 0									
- 30	er Bit, M				0									
50	4.9-inch Diameter Bit, Mud Rotary		SP-SM /SM		00		S-9	SS	100/4"	>50	0.3			Sravelly drilling from 30 to 35 ft bgs.
-	9-inch I				0									
-	4				0									
					0									
					0									
					0									
0.5					0									
35					0		S-10	SS	80/6"	>50	0.5 0.5			>>•
				$ \Phi $	0 0									
					.00									
				$ \phi $										
		38.0 - 43.0 Very dense, gray, (SM), wet, silty, fine to coarse SAND, little gravel, diamict structure, friable, [TILL, Qvt].	SM	0		78.0 38.0								
- 40		Log continued on next page		$ \phi $	Ċ									
1 in	to 3 ft		1	LO	GGF	ED. I	Mike '	Wolc	zko	1				0-0

STLOG

DRILLING CONTRACTOR: Holt Services Inc.

DRILLER: Larry Inselman

CHECKED: David P. Findley

SHEET 3 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Mud Rotary DRILLING DATE: 9/11-12/2013

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,594 E: 1,635,220

ELEVATION: 116 INCLINATION: -90

LOC		J: 600 116th Ave NE DRILL R	IG: B-5	9 Mobil	e Drill Tr	uck		0.440,50	ATES						
DEPTH (Ft)	BORING METHOD	SOIL PROFILE	SS	JHIC G	ELEV.	BER	Э _С	SAMPLES BLOWS per 6 in		REC	PENET	RATION F BLOWS			NOTES WATER LEVELS
- 40	BORIN	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH (Ft)	NUMBER	TYPE	140 lb hammer 30 inch drop	N	REC ATT	P 20	•	LL 60 80)	
40		38.0 - 43.0 Very dense, gray, (SM), wet, silty, fine to coarse SAND, little gravel, diamict structure, friable, [TILL, Qvt].	SM			S-11	SS	55/6"	>50	0.5 0.5				>>4	
_		43.0 - 45.3 Very dense, gray, (SM), wet, silty, fine to coarse SAND, little gravel, [PRE-VASHON FLUVIAL DEPOSITS, Qpnf].	SM		73.0										Driller notes harder drill at 43 ft bgs.
45		45.3 - 48.0 Very dense, gray, (ML), wet, fine sandy SILT, [PRE-VASHON FLUVIAL DEPOSITS, Qpnf].	ML		70.7 45.3	S-12	SS	100/6"	>50	0.5 0.5				>>+	
50	ter Bit, Mud Rotary	48.0 - 53.0 Very dense, gray, (SP-SM), wet, fine to coarse SAND, some gravel, little silt, [PRE-VASHON FLUVIAL DEPOSITS, Qpnf].			68.0					0.5					S-13@50ft
	4.9-inch Diameter		SP-SM		62.0	S-13	SS	65/6"	>50	<u>0.5</u> 0.5	•			>> •	%G-T4.1 %S-75.8 %F-10.1
55		53.0 - 58.0 Very dense, gray with greenish tint, (SP), wet, fine to coarse SAND, trace silt, little gravel, [PRE-VASHON FLUVIAL DEPOSITS, Qpnf].			53.0					0.5					Gravelly drilling at 54 ft bgs.
			SP			S-14	SS	70/6"	>50	0.5				>>•	
		58.0 - 63.0 Very dense, gray with greenish tint, (ML), moist, fine sandy SILT, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].	ML		58.0										
60		Log continued on next page		1111	0==										
DRII		CONTRACTOR: Holt Services Inc Larry Inselman		CHE	GED: CKED: E: 5/22	Dav	id P.	zko Findley					Œ)—	O-G

DRILLING METHOD: Mud Rotary DRILLING DATE: 9/11-12/2013 DRILL RIG: B-59 Mobile Drill Truck

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,594 E: 1,635,220

ELEVATION: 116 INCLINATION: -90

SHEET 4 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320 OCATION: 600 116th Ave NE SOIL PROFILE SAMPLES PENETRATION RESISTANCE **BORING METHOD** BLOWS / ft ◆ DEPTH (Ft) ELEV. NOTES GRAPHIC LOG **BLOWS** NUMBER USCS REC ATT WATER LEVELS per 6 in DESCRIPTION Ν DEPTH 140 lb hammer 30 inch drop 60 - 60 58.0 - 63.0 0.5 0.5 S-15 SS 95/6" >50 Very dense, gray with greenish tint, (ML), moist, fine sandy SILT, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. ML 53.0 63.0 - 68.0 63.0 63.0 - 68.0 Hard, gray with faint greenish tint, (CL), moist, low plasticity CLAY, with faint interbeds of clayey silt, fracturing and small slickensides, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. - 65 CL 1.5 1.5 S-16 SS 20-25-30 >50 48.0 68.0 - 73.0 68.0 - 73.0 (CH), moist, high plasticity CLAY, fine shell fragments, disturbed zones and small slickensides, thin interbeds of silt, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. Rotary Mud BÏ, - 70 4.9-inch Diameter S-17@70ft %G-%S-S-17 SS 10-18-33 >50 **♦**%F-95.3 73.0 - 78.0 73.0 Hard, gray, (ML), moist, SILT, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. ST LOG 11393533 ST PROJECT.GPJ 113.93533SOUND TRANSIT.GDT 6/23/14 75 ML S-18 SS 36-50/6" >50 38.0 78.0 - 96.5 78.0 - 96.5 Hard, gray, (CH), moist, high plasticity CLAY, highly fractured and slickensided, joints ranging from 45° to 70° from horizontal, [PRE-VASHON] GLACIOLACUSTRINE DEPOSITS, Qpg]]. СН 80 Log continued on next page 1 in to 3 ft LOGGED: Mike Wolczko DRILLING CONTRACTOR: Holt Services Inc.

DRILLER: Larry Inselman

CHECKED: David P. Findley

DRILLING METHOD: Mud Rotary DRILLING DATE: 9/11-12/2013 DRILL RIG: B-59 Mobile Drill Truck

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,594 E: 1,635,220

ELEVATION: 116 INCLINATION: -90

SHEET 5 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320 OCATION: 600 116th Ave NE SOIL PROFILE SAMPLES PENETRATION RESISTANCE **BORING METHOD** BLOWS / ft ◆ DEPTH (Ft) ELEV. NOTES GRAPHIC LOG **BLOWS** NUMBER **USCS** REC ATT WATER LEVELS DESCRIPTION per 6 in Ν DEPTH 140 lb hammer 30 inch drop - 80 78.0 - 96.5 78.0 - 96.5 Hard, gray, (CH), moist, high plasticity CLAY, highly fractured and slickensided, joints ranging from 45° to 70° from horizontal, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpg]]. 1.5 1.5 SS 15-25-29 S-19 >50 - 85 4-inch zone of silt at 85 ft bgs. 15-28-27 SS >50 4.9-inch Diameter Bit, Mud Rotary - 90 S-21@90ft %G-%S-%F-98.8 High angle jointing from 45° to 90° from horizontal. 1.5 1.5 S-21 SS 9-13-19 32 ST LOG 11393533 ST PROJECT.GPJ 113.93533SOUND TRANSIT.GDT 6/23/14 - 95 Some disturbed zones and small slickensides 1.5 1.5 S-22 SS 14-21-34 >50 Borehole completed at 96.5 ft. Backfilled with 3/8-inch bentonite chips. 100 1 in to 3 ft LOGGED: Mike Wolczko CHECKED: David P. Findley

DRILLING CONTRACTOR: Holt Services Inc.

DRILLER: Larry Inselman

RECORD OF BOREHOLE E330-B-016 SHEET 1 of 5 DRILLING METHOD: Mud Rotary DRILLING DATE: 9/12-13/2013 PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320 DATUM: Sound Transit East Coordinate System ELEVATION: 120 COORDINATES: N: 555,602 E: 1,635,300 INCLINATION: -90 DRILL RIG: B-59 Mobile Drill Truck WELL TAG#:BIJ760 OCATION: 600 116th Ave. NE SOIL PROFILE SAMPLES **BORING METHOD** PENETRATION RESISTANCE BLOWS / ft ◆ DEPTH (Ft) ELEV. 30 NOTES GRAPHIC LOG **BLOWS** NUMBER REC ATT WATER LEVELS per 6 in DESCRIPTION Ν DEPTH 140 lb hammer 30 inch drop (Ft) WELL INSTALLATION 60 - 0 0.0 - 0.2 Flush mount Asphalt Pavement. 0.2 - 7.0 steel monument Very dense, gray-brown, (SM), moist, fine to coarse SAND and SILT, little gravel, diamict structure friable, [TILL, Qvt]. cemented to 1 Φ ft bgs. 2-inch diameter PVC riser from 0.3 to 55 ft Ф bgs. Φ Backfilled with bentonite chips from 0.5 to 53 1.1 1.5 S-1 SS 15-25-28 >50 ft bgs. S-1@2.5ft %G-10.2 4 SM %S-59 0 4 %F-30.8 Gravelly drilling at 4.5 ft bgs. - 5 Φ 0.3 S-2 SS 50/6" >50 ¢ ¢ 113.0 d Very dense, gray, (SM), moist, silty, fine to coarse SAND, little gravel, diamict structure, friable, [TILL, Qvt]. 0.5 S-3 SS >50 Φ Rotary Φ Mud SM Φ Bit - 10 Diameter 0.4 S-4 SS 80/6" >50 4 4.9-inch φ Φ 108.0 12 0 - 18 0 <u>|</u> Very dense, gray-brown, (SM), wet, fine to coarse SAND and GRAVEL, some silt, diamict structure, friable, [TILL, Qvt]. 0.5 S-5 SS >50 70/6" Φ Gravelly drilling Φ at 14 ft bgs. ST LOG 11393533 ST PROJECT.GPJ 113.93533SOUND TRANSIT.GDT 6/23/14 Φ 15 SM S-6@15ft %G-38.2 %S-43.7 %F-18.1 0.5 0.5 Φ S-6 SS 65/6" >50 Φ ф Φ 102.0 18.0 - 28.0 18.0 Very dense, gray, (SM), moist to wet, silty, fine to coarse SAND, predominately fine sand, little gravel, [TILL, Qvt]. SM 4 Gravelly drilling φ. at 19 ft bgs 20 Log continued on next page 1 in to 3 ft LOGGED: Mike Wolczko DRILLING CONTRACTOR: Holt Services Inc. CHECKED: David P. Findley DRILLER: Larry Inselman DATE: 5/22/2014 FINAL DESIGN PARTNERS.

RECORD OF BOREHOLE E330-B-016 SHEET 2 of 5 DRILLING METHOD: Mud Rotary DRILLING DATE: 9/12-13/2013 DRILL RIG: B-59 Mobile Drill Truck PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320 DATUM: Sound Transit East Coordinate System ELEVATION: 120 INCLINATION: -90 WELL TAG#:BIJ760 COORDINATES: N: 555,602 E: 1,635,300 OCATION: 600 116th Ave. NE SOIL PROFILE SAMPLES PENETRATION RESISTANCE **BORING METHOD** BLOWS / ft ◆ DEPTH (Ft) ELEV. NOTES GRAPHIC LOG **BLOWS** NUMBER REC ATT WATER LEVELS DESCRIPTION per 6 in Ν DEPTH 140 lb hammer 30 inch drop WELL INSTALLATION 60 - 20 18.0 - 28.0 φ. Very dense, gray, (SM), moist to wet, silty, fine to coarse SAND, predominately fine sand, little gravel, [TILL, Qvt]. 0.7 SS 35-50/3" >50 S-7 φ Ф Φ ¢ Φ Φ - 25 100/4" 0.3 S-8 SS >50 0.3 4 Ф Φ Φ 92.0 28.0 - 38.0 \$ 28.0 26.0 - 36.0 Very dense, gray, (SP-SM), moist, gravelly, fine to coarse SAND, little silt, diamict structure, friable, [TILL, Qvt]. Bit, Mud Rotary ф Gravelly drilling at 29 ft bgs. ф - 30 4.9-inch Diameter 0.4 S-9 SS 100/5 >50 Φ ¢ ф Φ SP-SM Φ Gravelly drilling at 33 ft bgs. Φ Φ - 35 0.5 0.5 S-10 SS 65/6" >50 4 ¢ ¢ 82.0 38.0 - 48.0 38.0 d Very dense, gray with a hint of green, (SM), moist, gravelly, silty, fine to coarse SAND, diamict structure, friable, [TILL, Qvt]. SM 4 φ. 40 Log continued on next page 1 in to 3 ft LOGGED: Mike Wolczko

ST LOG 11393533 ST PROJECT.GPJ 113.93533SOUND TRANSIT.GDT 6/23/14

DRILLING CONTRACTOR: Holt Services Inc.

DRILLER: Larry Inselman

CHECKED: David P. Findley

RECORD OF BOREHOLE E330-B-016 SHEET 3 of 5 DRILLING METHOD: Mud Rotary DRILLING DATE: 9/12-13/2013 DRILL RIG: B-59 Mobile Drill Truck PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320 DATUM: Sound Transit East Coordinate System ELEVATION: 120 COORDINATES: N: 555,602 E: 1,635,300 INCLINATION: -90 WELL TAG#:BIJ760 OCATION: 600 116th Ave. NE SOIL PROFILE SAMPLES **BORING METHOD** PENETRATION RESISTANCE BLOWS / ft ◆ DEPTH (Ft) ELEV. 30 NOTES GRAPHIC LOG **BLOWS** NUMBER REC ATT WATER LEVELS per 6 in DESCRIPTION Ν DEPTH 140 lb hammer 30 inch drop WELL INSTALLATION 60 - 40 38.0 - 48.0 0.5 φ. S-11 SS 70/6" >50 Very dense, gray with a hint of green, (SM), moist, gravelly, silty, fine to coarse SAND, diamict structure, friable, [TILL, Qvt]. φ Φ Φ ¢ SM Φ Gravelly drilling at 43.5 ft bgs. Φ - 45 No recovery Sample S-12 at S-12 SS 0.0 50/3 >50 0.3 4 45 ft bgs. Gravelly drilling Φ at 45.5 bgs. Φ Φ 72.0 48.0 - 53.0 48.0 4 Very dense, gray, (SP-SM), moist to wet, gravelly, fine to coarse SAND, little silt, Rotary diamict structure, friable, [TILL, Qvt]. Φ Mud Bit Φ - 50 Diameter 0.3 100/4" S-13 SS >50 SP-SM Ф 4.9-inch Φ ф Backfilled with 10-20 filter Φ sand from 53 to 67 ft bgs. 53.0 - 58.0 Very dense, blue-gray, (SP-SM), wet, gravelly, fine to coarse SAND, little silt, [PRE-VASHON FLUVIAL DEPOSITS, Qpnf]. 53.0 Gravelly drilling from 53 to 55 ft bgs. - 55 S-14@55ft %G-24.4 %S-64.8 %F-10.8 0.4 0.5 S-14 SS 100/6" >50 SP-SM 2-inch diameter slotted PVC size #10 from 55 to 65 ft bgs. 62.0 58.0 - 60.3 Very dense, greenish gray, (SW), wet, fine to coarse, SAND, trace silt, [PRE-VASHON FLUVIAL DEPOSITS, Qpnf]. SW 60 Log continued on next page 1 in to 3 ft LOGGED: Mike Wolczko

ST LOG 11393533 ST PROJECT.GPJ 113.93533SOUND TRANSIT.GDT 6/23/14 DRILLER: Larry Inselman

DRILLING CONTRACTOR: Holt Services Inc.

CHECKED: David P. Findley

RECORD OF BOREHOLE E330-B-016 SHEET 4 of 5 DRILLING METHOD: Mud Rotary DRILLING DATE: 9/12-13/2013 DRILL RIG: B-59 Mobile Drill Truck PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320 DATUM: Sound Transit East Coordinate System ELEVATION: 120 COORDINATES: N: 555,602 E: 1,635,300 INCLINATION: -90 WELL TAG#:BIJ760 OCATION: 600 116th Ave. NE SOIL PROFILE SAMPLES PENETRATION RESISTANCE **BORING METHOD** BLOWS / ft ◆ DEPTH (Ft) ELEV. 30 NOTES GRAPHIC LOG **BLOWS** NUMBER USCS REC ATT WATER LEVELS DESCRIPTION per 6 in Ν DEPTH 140 lb hammer 30 inch drop (Ft) WELL INSTALLATION 60 - 60 SW 59.8 60.3 0.5 S-15 SS 62/6" >50 60 3 - 63 0 50.3 - 53.0 Very dense, gray, (ML), wet, sandy SILT, rapid dilatancy, brown discoloration possibly from organics, [PRE-VASHON FLUVIAL DEPOSITS, Qpnf]. ML 57.0 63.0 - 69.5 63.0 Very dense, gray-green, (SP), wet, fine to coarse SAND, trace silt, trace gravel, [PRE-VASHON FLUVIAL DEPOSITS, Qpnf]. - 65 0.5 0.5 S-16 SS 50/6" >50 SP Backfilled with bentonite chips from 67 to 85 ft bgs. Rotary Mud 69.5 - 73.0 BÏ, Hard, gray, (CH), moist, silty CLAY, - 70 Diameter disturbed appearance, small shell fragments, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. S-17 SS 11-21-34 >50 >> 4.9-inch 73.0 - 83.0 73.0 73.0 - 83.0
Hard, gray with greenish tint, (ML), moist, SILT, trace clay locally and pieces of highly fractured and slickensided clay mixed in, [PRE-VASHON GLACIOLACUSTRINE ST LOG 11393533 ST PROJECT.GPJ 113.93533SOUND TRANSIT.GDT 6/23/14 DEPOSITS, Qpgl]. 75 S-18@75ft %G-S-18 SS 20-50/6" >50 %S-%F-99.5 ML 80 Log continued on next page 1 in to 3 ft LOGGED: Mike Wolczko DRILLING CONTRACTOR: Holt Services Inc. CHECKED: David P. Findley DRILLER: Larry Inselman DATE: 5/22/2014 FINAL DESIGN PARTNERS.

RECORD OF BOREHOLE E330-B-016 SHEET 5 of 5 DRILLING METHOD: Mud Rotary DRILLING DATE: 9/12-13/2013 DRILL RIG: B-59 Mobile Drill Truck PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320 DATUM: Sound Transit East Coordinate System ELEVATION: 120 COORDINATES: N: 555,602 E: 1,635,300 INCLINATION: -90 WELL TAG#:BIJ760 OCATION: 600 116th Ave. NE SOIL PROFILE SAMPLES PENETRATION RESISTANCE **BORING METHOD** BLOWS / ft ◆ DEPTH (Ft) ELEV. NOTES GRAPHIC LOG **BLOWS** NUMBER **USCS** REC ATT WATER LEVELS DESCRIPTION per 6 in Ν DEPTH 140 lb hammer 30 inch drop WELL INSTALLATION 60 - 80 73.0 - 83.0 0.5 73.0 - 43.0
Hard, gray with greenish tint, (ML), moist, SILT, trace clay locally and pieces of highly fractured and slickensided clay mixed in, [PRE-VASHON GLACIOLACUSTRINE 28-50/6" S-19 SS >50 DEPOSITS, Qpgl]. ML 37.0 83.0 - 89.0 83.0 63.0 - 69.0 Hard, gray, (CH), moist, high plasticity CLAY, disturbed appearance, fine shell fragments, few high angle slickensided joints from 70° to 90° from horizontal, Bit, Mud Rotary [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. - 85 Slough from 85 to 91 ft bgs. 4.9-inch Diameter 1.5 1.5 SS 11-17-21 38 31.0 Drilling on gravel at 89 ft 89.0 - 91.0 Very dense, gray, (ML), moist, sandy SILT, fine shell fragments, diamict structure, [PRE-VASHON GLACIOLACUSTRINE - 90 DEPOSITS, Qpgl]. ML S-21@90ft %G-2.2 • %S-24.9 %F-72.9 1.0 1.0 S-21 SS 25-50/6" >50 29.0 Borehole completed at 91.0 ft. - 95 100 1 in to 3 ft LOGGED: Mike Wolczko

ST LOG 11393533 ST PROJECT.GPJ 113.93533SOUND TRANSIT.GDT 6/23/14

DRILLING CONTRACTOR: Holt Services Inc.

DRILLER: Larry Inselman

LOGGED: Mike Wolczko
CHECKED: David P. Findley

SHEET 1 of 5

PROJECT: Sound Transit East Link/WA
PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Mud Rotary DRILLING DATE: 5/7-5/9 DRILL RIG: B-59 Mobile Drill Truck

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,769.21 E: 1,635,451.4

ELEVATION: 129.64 INCLINATION: -90

0	Air Knife Excavation BORING METHOD	DESCRIPTION 0.0 - 9.0 Air knife excavation, lithology not observed.	SOSO	GRAPHIC	DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT	10 PL F 20	•	30 L		NOTES WATER LEVELS Soils from air knife excavation likely fill due to
0								30 inch drop			20	40	60	80	excavation likely fill due to
															underground utilities.
- 10	otary	9.0 - 11.5 Very dense, gray, (SM), moist, gravelly, silty fine to coarse SAND, diamict structure, [TILL, Qvt]. 11.5 - 14.0 Very dense, gray, (SM), moist, fine to coarse SAND and SILT, trace gravel, diamict structure, very friable, [TILL, Qvt].	SM		120.6 9.0 118.1 11.5	S-1	SS	50/5"	>50	0.3 0.4 0.5 0.5	•			>>-	Water encountered at 9 bgs during air knife excavation. S-2@12.5ft %G-1.5 %S-61.5 %F-37.0
· 15	4.9-inch Diameter Bit, Mud Rot	14.0 - 17.0 Very dense, gray, (SP), wet, fine to coarse SAND, trace silt, trace gravel, diamict structure, includes 2-inch seam of silty fine sand, [TILL, Qvt].	SP		115.6	S-3	SS	40-50/3"	>50	0.8 0.8				>>	Gravelly drilling at 14 ft bgs.
		17.0 - 23.0 Very dense, gray, (ML), moist, sandy SILT, trace gravel, diamict structure, [TILL, Qvt].	ML		17.0										
1 in to	3 ft	Log continued on next page		LOC	GED: I	 Mik≏ '	Wolc.	zko							

SHEET 2 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Mud Rotary DRILLING DATE: 5/7-5/9

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,769.21 E: 1,635,451.4

ELEVATION: 129.64 INCLINATION: -90

	OCATIO	T NUMBER: 113-93533.0320 DRILLIN DN: BNSF S of NE 8th St. DRILL F				uck		COORDIN	ATES	: N: 5	55,769.21 E: 1,63	5,451.4	INCLINATION: -90
		SOIL PROFILE						SAMPLES			PENETRATION RE		
DEPTH	BORI	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT	10 20 3 PL MC 20 40 6	0 40 LL 0 80	NOTES WATER LEVELS
- 20 - -		17.0 - 23.0 Very dense, gray, (ML), moist, sandy SILT, trace gravel, diamict structure, [TILL, Qvt].	ML	0 0 0 0		S-4	SS	50/5"	>50	0.4 0.4	•	>><	S-4@20ft %G-2.7 %S-33.7 %F-63.6
- - 25		23.0 - 33.0 Very dense, gray, (SP-SM), moist, fine to coarse SAND, little silt, trace gravel, diamict structure, friable, [TILL, Qvt].			106.6	S-5	SS	50/3"	>50	0.2		>>0	-
- 30	4.9-inch Diameter Bit, Mud Rotary	No recovery Sample S-6 at 30 ft bgs, lithology inferred from drill action.	SP-SM			S-6	SS	50/4"	>50	0.0		>><	Gravelly drilling from 29 to = 35 ft bgs
11393533 ST PROJECT.GPJ 113.93533SOUND TRANSIT.GDT 6/23/14 1		33.0 - 51.0 Very dense, gray, (SM), moist, fine to coarse SAND and SILT, trace fine gravel, diamict structure, [TILL, Qvt].	SM		96.6	S-7	SS	50/3"	>50	0.3 0.3		>>-	Gravelly drilling from 38 to ⁻
11393533 ST PRC	in to 3	Log continued on next page		LOG	GED: I	Mike '	Wolc	zko				()	0 -0

STLOG DRILLER: Larry Inselman

DRILLING CONTRACTOR: Holt Services Inc.

CHECKED: David P. Findley

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320 DRILLING METHOD: Mud Rotary DRILLING DATE: 5/7-5/9 DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,769.21 E: 1,635,451.4

ELEVATION: 129.64 INCLINATION: -90

SHEET 3 of 5

LO	CATION	NUMBER: 113-93533.0320 DRILLING N: BNSF S of NE 8th St. DRILL RI	G: B-5	=: 5/7-5 59 Mobil	/9 e Drill Tr	uck		COORDIN	ATES	: IN: 5	55,769.21 E: 1,635,451.4	INCLINATION: -90
	QQ	SOIL PROFILE						SAMPLES			PENETRATION RESISTANCE BLOWS / ft ◆	Ē
DEPTH (Ft)	BORING METHOD			2	ELEV.	H.		BLOWS			10 20 30 40	NOTES
DEF.	SING BNG	DESCRIPTION	nscs	GRAPHIC LOG	DEDTU	NUMBER	TYPE	per 6 in	N	REC ATT	PL MC LL	WATER LEVELS
	BOF			G.	DEPTH (Ft)	ž	<u>'</u>	140 lb hammer 30 inch drop			20 40 60 80	
- 40 -		33.0 - 51.0 Very dense, gray, (SM), moist, fine to				S-8	SS	50/4"	>50	0.3		>•
		Very dense, gray, (SM), moist, fine to coarse SAND and SILT, trace fine gravel, diamict structure, [TILL, Qvt].		0	1							
				$ \Phi $								7
-												-
				$ \Phi _{\epsilon}$								
-												-
				7 6								
-				10/6								-
- 45						S-9	SS	50/5"	>50	0.4	• • >	S-9@45ft
		Gravel content increasing.	SM	$ \Phi _{c}$						0.4		S-9@45ft %G-10.3 %S-50.9 %F-38.8
-												-
-				10 6								=
-												-
	tary			Φ _E								
-	d Roi											-
	.9-inch Diameter Bit, Mud Rotary											
- 50	eter B			$ \Phi _{\xi}$		S-10	SS	50/5"	>50	0.4		Interbedded sand and
	Diam	2-inch layer of (SP) gravelly, fine to coarse SAND, trace silt and organics at 50 ft bgs.								0.4		Interbedded sand and gravel layers from 51 to 55 ft bgs based on drill action.
-	-inch	510-630			78.6 51.0							-
	6.4	Very dense, greenish gray, (SM), moist, gravelly, silty, fine to coarse SAND, diamict structure, [TILL, Qvt].		0								
-		Structure, [TILL, QVt].										=
-				1								_
				P K								
23/14												-
./9 TC												
55 E				1915		S-11	SS	50/4"	>50	0.3	>	>
SANS			SM							0.0		
					1							_
SSOU				0 5								
9353												1
113.												
.GPJ				14 6								1
JECT												
PRC												1
533 ST - - - - - - - - -												_
66	to 2 f	Log continued on next page		100	GED:	Mika	١٨١٥١٥	zko				
=	to 3 ft	CONTRACTOR II II C		LUG	GED:	iviike	vvoic	∠KO 			100-	O O

STLOG

DRILLING CONTRACTOR: Holt Services Inc.

DRILLER: Larry Inselman

CHECKED: David P. Findley

SHEET 4 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Mud Rotary DRILLING DATE: 5/7-5/9

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,769.21 E: 1,635,451.4

ELEVATION: 129.64 INCLINATION: -90

LOCATIO	N: BNSF S of NE 8th St. DRILLIN SOIL PROFILE				ruck		SAMPLES			55,769.21 E: 1,6		INCLINATION: -90
DEPTH (Ft) BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT	BLOWS /	ft ◆ 80 40 LL 60 80	NOTES WATER LEVELS
60	51.0 - 63.0 Very dense, greenish gray, (SM), moist, gravelly, silty, fine to coarse SAND, diamict structure, [TiLL, Qvt]. Gravel content decreasing, very friable.	SM			S-12	SS	50/4"	>50	0.3		>>	Gravelly drilling from 60 to 65 ft bgs.
65	63.0 - 68.0 Very dense, greenish gray, (GP), wet, sandy, GRAVEL, [ADVANCE OUTWASH, Qva].				S-13	SS	50/3"	>50	0.3		>>	Water inferred at 65 ft based on wet soil samples.
	68.0 - 73.0	GP			_				0.0			
02 	Very dense, grayish green, (ML), wet, SILT and fine to coarse SAND, fine organics, and micaceous particles, [PRE-VASHON FLUVIAL DEPOSITS, Qpnf].	ML		00.0	S-14	SS	28-50/6"	>50	1.0 1.0		>>	S-14@70ft %G-0.0 %S-40.0 %F-60.0
4.9-inch	73.0 - 78.0			56.6 73.0	_							
75	and SILT, trace fine organics and micaceous particles, [PRE-VASHON FLUVIAL DEPOSITS, Qpnf].	SP /SM /ML			S-15	SS	38-50/5"	>50	0.9		>>	
	78.0 - 83.0 Very dense, greenish gray, (SP-SM), wet, fine to coarse SAND, some gravel, little silt, [PRE-VASHON FLUVIAL DEPOSITS, Qpnf].	SP-SM		51.6 78.0	_							
80	Log continued on next page											
1 in to 3 f		1	100	GED:	Mike	Wolc	zko	1	1	1 1		0 -0

DRILLER: Larry Inselman

STLOG

DRILLING CONTRACTOR: Holt Services Inc.

CHECKED: David P. Findley

SHEET 5 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Mud Rotary DRILLING DATE: 5/7-5/9

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,769.21 E: 1,635,451.4 INCLINATION: -90

LOC		NUMBER: 113-93533.0320 DRILLIN I: BNSF S of NE 8th St. DRILL R SOIL PROFILE	G DATE IG: B-5	9 Mobil	e Drill Tr	uck		SAMPLES			55,769.21 E: 1,63		INCLINATION: -90
DEPTH (Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	ELEV.	NUMBER	TYPE	BLOWS per 6 in	N	REC ATT	BLOWS / 1	it ♦ 0 40	NOTES WATER LEVELS
	BORII		š	GR/	DEPTH (Ft)	Š	<u> </u>	140 lb hammer 30 inch drop		AII	PL MC 20 40 6	LL 0 80	
80 -		78.0 - 83.0 Very dense, greenish gray, (SP-SM), wet, fine to coarse SAND, some gravel, little silt, [PRE-VASHON FLUVIAL DEPOSITS, Qpnf].	SP-SM		46.6	S-16	SS	50/3"	>50	0.3		>>	
85	4.9-inch Diameter Bit, Mud Rotary	83.0 - 90.9 Hard, gray, (CL), moist, interbedded silty CLAY and SILT, thin lamination of fine sand, trace fine gravel and fine organics, clay is highly fractured with small slickensides, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].			46.6 83.0								S-17@85ft
	neter B					S-17	SS	28-50/4"	>50	0.8 0.8		>>	%G- %S- %F-93.9
· 90	4.9-inch Diam		CL										
		2-inch layer of silty clay, highly fractured with small slickensides.			38.7	S-18	ss	34-50/5"	>50	0.9 0.9		>>	
95		Borehole completed at 90.9 ft. Backfilled with 3/8-inch bentonite chips, surfaced with Railroad Ballast.			90.9								
100													
100	to 3 ft			100	GED:	Mika	Wolc	zko					
DRII	LING	CONTRACTOR: Holt Services Inc Larry Inselman	i.	CHE		Dav	id P.	zко Findley				FINAL	O-G DESIGN PARTNE

SHEET 1 of 5

PROJECT: Sound Transit East Link/WA
PROJECT NUMBER: 113-93533.0320

DRILLING CONTRACTOR: Holocene Drilling Inc.

DRILLER: Jerrod Thompson

STLOG

DRILLING METHOD: Mud Rotary
DRILLING DATE: 2/27/2013
DRILL RIG: BK-81 Truck

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,911.65 E: 1,635,467.09 INCLINATION: -90

FINAL DESIGN PARTNERS.

LOC		I: BNSF S of NE 8th St. DRILL R SOIL PROFILE	IG: BK-	-81 Truc	<u>:k</u>			SAMPLES			DENIE	TRATIO	N DECI	STANCE	
_	ΞΤНО	SOLFROFILE						SAIVIF LLS				BLOV	VS / ft ◆		
DEPTH (Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in	N	REC ATT		PL I	•	LL	NOTES WATER LEVELS
0 +		0.0 - 0.5 Loose, brown (GP-GM), moist, fine to coarse GRAVEL, some sand, little silt, [FILL, Hf]. 0.5 - 2.0 Loose, brown, (SM), moist, silty, fine to coarse SAND, trace fine gravel, [FILL, Hf].	GP-GM		143.6	S-1	SS	30 inch drop	8	1.0 1.5	•	40	60	80	
		2.0 - 4.5 Firm, mottled reddish yellow, brown and black, (ML), low plasticity SILT and SAND,			142.1										No recovery in SPT sar S-2 at 2 ft bgs, oversize sampler driven after SS
		some fine gravel, [FILL, Hf].	ML			S-2	ss	5-3-4	7	<u>0.0</u> 1.5	•				sample recovery.
5		4.5 - 7.0 Compact, brown, (SM), moist to wet, silty, fine to coarse SAND, trace fine gravel, dark brown laminations in random orientations,	-		139.6 4.5										S-3@5ft %G-21.4
		[FILL, Hf].	SM			S-3	SS	5-6-10	16	<u>0.0</u> 1.5		• •			%S-54.1 %F-24.5
		7.0 - 28.0			137.1 7.0	-									
	ary	Very dense, light brownish gray, (SM), moist, fine to coarse SAND and SILT, trace to little fine gravel, [TILL, Qvt].		0000		S-4	SS	42-50/4"	>50	0.8 0.8				>>	
0	.25-inch Diameter Bit, Mud Rotary	Heterogeneous.		0 0 0		S-5	SS	50/6"	>50	<u>0.5</u> 0.5				>>	•
	6.25-inch			0 0 0											S-6@12.5ft
		Some fine to coarse gravel, non-stratified.	SM	70 00		S-6	SS	29-40-50/4"	>50	<u>1.1</u> 1.3	•			>>	%G-12.8 %S-55.4 %F-31.8
5		Little fine to coarse gravel.		0 0		S-7	SS	50/6"	>50	<u>0.5</u> 0.5				>>	•
				0 0 0											
20	to 3 ft	Log continued on next page			GED: ،										

CHECKED: David P. Findley

SHEET 2 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING CONTRACTOR: Holocene Drilling Inc.

DRILLER: Jerrod Thompson

STLOG

DRILLING METHOD: Mud Rotary DRILLING DATE: 2/27/2013

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,911.65 E: 1,635,467.09 INCLINATION: -90

FINAL DESIGN PARTNERS.

LOCATION	ION: BNSF S of NE 8th St. DRILLI	RIG: BK	-81 Truc	k					. 11. 0	1		107.00	INCLINATION: -90
의.	SOIL PROFILE						SAMPLES		I	PENETRAT BL0	ION RESIS	STANCE	
OF (Ft) (Ft) BORING METHOD		SOSN	GRAPHIC LOG	DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT	10 2 PL 20 4	МС	40 LL -1 80	NOTES WATER LEVELS
20	7.0 - 28.0 Very dense, light brownish gray, (SM), moist, fine to coarse SAND and SILT, trace to little fine gravel, [TILL, Qvt].		0 0 0		S-8	SS	50/5"	>50	0.5 0.5	-		>>	Distinct color change and noreasing sand and grav between 20 and 25 ft bgs
	Increasing sand and gravel between 20 and 25 ft bgs.												
25		SM	0 0 0		S-9	SS	50/3"	>50	0.3			>>	
			70 V0 V0										
it, Mud Rotary	28.0 - 33.0 Very dense, gray, (SM), moist, fine to coarse SAND and SILT, some fine to coarse gravel, heterogeneous, non-stratified, [TILL, Qvt].		0 0 0	116.1 28.0									
6.25-inch Diameter Bit, Mud Rotary		SM			S-10	SS	50/3"	>50	0.5 0.5	-		>>	
	33.0 - 43.0 Very dense, gray, (SM), moist, fine to coarse SAND and SILT, trace fine gravel, heterogenous, nonstratified, [TILL, Qvt].			111.1 33.0									Gravelly drilling 33 to 35 bgs.
35		SM			S-11	SS	50/2**	>50	0.4	-		>>	
40	Log continued on next page												
1 in to 3		-	100	GED: \	loff S	chwa	nt-z				1		0-0

CHECKED: David P. Findley

SHEET 3 of 5

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Mud Rotary DRILLING DATE: 2/27/2013

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,911.65 E: 1,635,467.09 INCLINATION: -90

LOCAT	TION	I: BNSF S of NE 8th St. DRILL R							AILO	. 11. 0				TINGLINATION: -90
_ 6		SOIL PROFILE						SAMPLES			PENETRA B	TION RESISTA LOWS / ft ◆	ANCE	
(Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT	10 PL 20	MC LL	80	NOTES WATER LEVELS
40		33.0 - 43.0 Very dense, gray, (SM), moist, fine to coarse SAND and SILT, trace fine gravel, heterogenous, nonstratified, [TILL, Qvt].	SM			S-12	SS	50/3"	>50	0.3	•		>>	S-12@40ft %G-3.0 %S-52.0 %F-45.0
5	_	43.0 - 48.0 Very dense, gray, (SM), moist, silty, fine to coarse SAND, little fine to coarse gravel, heterogeneous, non-stratified, [TILL, Qvt].		0 0 0	101.1 43.0									
		Little fine to coarse gravel.	SM			S-13	SS	100/4"	>50	0.3			>>	
0 S	6.25-inch Diameter Bit, Mud Rotary	48.0 - 58.0 Very dense, gray, (SM), moist, fine to coarse SAND and SILT, trace gravel, cobbles, [TILL, Qvt].			96.1	S-14	SS	100/3"	>50	0.3				Intermittent drill chatter
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.25-inch Diame					5-14	35	100/3	>50	0.3			22	from 50 to 55 ft bgs, sample shoe plugged w cobble, Sample S-14 at ft bgs.
5		Some fine to coarse gravel.	SM			S-15	SS	100/4"	>50	0.2			>>	
				0 0 0 0	96.4									Drilling in sand and grav layers from 57.5 to 60 ft
		58.0 - 63.0 Very dense, gray, (GP-GM), wet, fine to coarse GRAVEL, some sand, little silt, cobbles, [ADVANCE OUTWASH, Qva].	GP-GM		86.1 58.0									bgs based on drill action
60	- 1													▼

STLOG

DRILLING CONTRACTOR: Holocene Drilling Inc.

DRILLER: Jerrod Thompson

CHECKED: David P. Findley

SHEET 4 of 5

PROJECT: Sound Transit East Link/WA
PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Mud Rotary
DRILLING DATE: 2/27/2013
DRILL RIG: BK-81 Truck

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,911.65 E: 1,635,467.09 INCLINATION: -90

LOC		N: BNSF S of NE 8th St. DRILL R SOIL PROFILE	ig: BK-	-81 Truc	CK			SAMPLES			PENETR			ANCE	
DEPTH (Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in	N	REC ATT	10 PL	MC	30 4		NOTES WATER LEVELS
- 60	ш	58.0 - 63.0 Very dense, gray, (GP-GM), wet, fine to coarse GRAVEL, some sand, little silt, cobbles, [ADVANCE OUTWASH, Qva].			,	S-16	SS	30 inch drop 100/4"	>50	0.3	20	40	60 8	>>4	Gravelly drilling from 60 65 ft bgs. Wet soil encountered at ft bgs.
		63.0 - 68.0 Very dense, gray, (SP-SM), wet, fine to coarse SAND and GRAVEL, little silt, little cobbles, [ADVANCE OUTWASH, Qva].	GP-GM		81.1 63.0										
- 65			SP-SM			S-17	SS	100/6"	>50	0.5	•			>>•	S-17@65ft %G-37.1 %S-51.1 %F-11.8
70	6.25-inch Diameter Bit, Mud Rotary	68.0 - 78.0 Very dense, gray to dark gray, (SP-SM), wet, fine to coarse SAND, trace silt, layered with fine to coarse SAND, little silt, trace fine gravel, [PRE-VASHON FLUVIAL DEPOSITS, Qpnf].			76.1	-									Smoother drilling at 68 bgs, possibly sand laye between more gravelly layers.
70	6.25-inch Diamet					S-18	SS	65/6"	>50	0.5				>>•	
75			SP-SM			0.40	00	75 (0)	. 50	0.5					
						S-19	SS	75/6"	>50	0.5 0.5				>>•	
· 80		78.0 - 83.0 Very dense, dark gray, (SP-SM), wet, fine to coarse SAND, trace silt, layered with fine to medium SAND, little silt, [PRE-VASHON FLUVIAL DEPOSITS, Qpnf]. Log continued on next page	SP-SM		66.1 78.0	_									
	to 3 ft				GED:										O . O
		CONTRACTOR: Holocene Drilling Jerrod Thompson	Inc.		CKED: E: 5/22			Findley					FI	NAL I	DESIGN PARTNER

SHEET 5 of 5

PROJECT: Sound Transit East Link/WA
PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Mud Rotary
DRILLING DATE: 2/27/2013
DRILL RIG: BK-81 Truck

DATUM: Sound Transit East Coordinate System COORDINATES: N: 555,911.65 E: 1,635,467.09 INCLINATION: -90

LOCATIO	N: BNSF S of NE 8th St. DRILL R													INCLINATION: -90
l 원	SOIL PROFILE						SAMPLES			PENETRAT BL	TION RE OWS / f	ESISTA ft ♦	NCE	
(Ft) BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH (Ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC ATT	PL	MC 40 6	LL —		NOTES WATER LEVELS
30	78.0 - 83.0 Very dense, dark gray, (SP-SM), wet, fine to				S-20	SS	72/6"	>50	<u>0.4</u> 0.5	20 4	40 6	0 8		12-inches of slough in Sample S-20 at 80 ft bg
	Very dense, dark gray, (SP-SM), wet, fine to coarse SAND, trace silt, layered with fine to medium SAND, little silt, [PRE-VASHON FLUVIAL DEPOSITS, Qpnf].	SP-SM												Hole caving between samples.
Mud Rotary	83.0 - 88.0 Very dense, gray, (SM), wet, fine to coarse SAND, some silt, [PRE-VASHON FLUVIAL DEPOSITS, Qpnf].			61.1 83.0										
oter Bit,					S-21	SS	70/6"	>50	0.4	•			>>	S-21@85ft %G-0.9 %S-82.0
o 6.25-inch Diameter Bit, Mud Rotary		SM							0.5					%S-82.0 %F-17.1
	88.0 - 90.5 Hard, gray grading to greenish gray, (ML), moist, low plasticity SILT, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].	ML		56.1 88.0										
0				53.6	S-22	SS	50/6"	>50	0.2				>>•	
	Borehole completed at 90.5 ft. Backfilled with 3/8-inch bentonite chips, surfaced with Railroad Ballast.			90.5										
5														
00														
in to 3 f			LOG	GED: .	Jeff S	Schwa	ırtz					C		_

ST LOG 113

11110311

DRILLING CONTRACTOR: Holocene Drilling Inc.

DRILLER: Jerrod Thompson

CHECKED: David P. Findley

PF	ROJECT	: Sound Transit East Link/WA DRILLING NUMBER: 113-93533.0320 DRILLING	G MET	HOD: \$	Sonic 1/2013-1			DATUM:		UU1 sit East Coordinate 554,837 E: 1,633,		ELEVATION: 150 INCLINATION: -50
		N: 110th and 4th Ave. NE DRILL RI SOIL PI			<u>; </u>			SAM	IPLES	PENETRATION R	ESISTANCE	WELL TAG # BIJ796
DISTANCE ALONG BOREHOLE (Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	DISTANCE ALONG BOREHOLE (Ft)	RUN	REC ATT	NUMBER	ТҮРЕ	20 40 PL MC		NOTES WATER LEVELS GRAPHIC
-0		0.0 - 0.6 Asphalt Pavement.								20 40		12-inch
		0.6 - 0.9 Crushed gravel.	GP		0.9							diameter flush mount steel monument
_	Air Knife Excavation	O.9 - 3.0 Compact, brown, (GP), fine to coarse GRAVEL, some sand, [FILL, Hf].	GP		0.9							cemented in place to 1 ft along angle borehole. Backfilled with bentonite chips
_ _ 5	Air Knife E	3.0 - 5.5 Very dense, gray-brown, moist, (SM), fine to coarse SAND, some silt, some gravel, [TILL, Qvt].	SM		3.0							from 0.5 to 24 ft along angle borehole.
_		5.5 - 18.0 Very dense, gray-brown, (SM), moist, silty, fine to medium SAND, some fine gravel, [TILL, Qvt].										
_						1	<u>4.5</u> 4.5					
INCLINED SONIC 11393533 ST PROJECT.GPJ 113.93533SOUND TRANSIT.GDT 9/8/14 Columbia	Sonic-6-inch Diameter Core/6-inch Diameter Casing		SM			2	<u>8.0</u> 8.0					
NIC 11393533 ST PROJECT		18.0 - 30.0 Very dense, gray, (SM), moist, silty, fine to medium SAND, some fine gravel, [TILL, Qvt]. Log continued on next page	SM		18.0	3	7.0 7.0					
OS 1 ir DR DR				CHE		: Dav	Yoner rid P. F 4				FINAL	O-H DESIGN PARTNERS

RECORD OF BOREHOLE E335-AN-001 SHEET 2 of 7 DRILLING METHOD: Sonic DRILLING DATE: 9/30/2013-10/2/2013 DRILL RIG: TSI 150CC DATUM: Sound Transit East Coordinate System COORDINATES: N: 554,837 E: 1,633,073 PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320 ELEVATION: 150 INCLINATION: -50 LOCATION: 110th and 4th Ave. NE WELL TAG # BIJ796 DISTANCE ALONG
DOREHOLE (Ft) SOIL PROFILE SAMPLES PENETRATION RESISTANCE BLOWS / ft ◆ **BORING METHOD** DISTANCE ALONG BOREHOLE (Ft) NOTES WATER LEVELS 40 80 GRAPHIC LOG NUMBER TYPE RUN REC ATT DESCRIPTION GRAPHIC 18.0 - 30.0 Very dense, gray, (SM), moist, silty, fine to medium SAND, some fine gravel, [TILL, Qvt]. ф ¢ Φ 7.0 7.0 ¢ 3 ¢ ¢ Backfilled with bentonite/ceme arout from 24 - 25 to 133 ft along angle borehole. Scattered lenses of fine to medium 4 Ф Φ <u>5.0</u> 5.0 Sonic-6-inch Diameter Core/6-inch Diameter Casing Φ Ф Φ Massive structure. - 30 30.0 - 39.0 30.0 4 Very dense, gray, (GM), moist, sandy, silty, fine to coarse, GRAVEL, faceted, subrounded, particles up to 3-inches in diameter, massive, [TILL, Qvt]. Φ ф ¢ Φ Φ 9.0 9.0 GM 5 Φ 35 Φ ¢ Friable from 37 to 39 ft along angle borehole. ф Φ 39.0 d Very dense, gray, (GP-GM), moist, fine to coarse GRAVEL, some fine to coarse sand, 1.0 1.0 GP-GM 6 little silt, [TILL, Qvt]. 40

1 in to 3 ft

11393533 ST PROJECT.GPJ 113.93533SOUND TRANSIT.GDT 9/8/14

INCLINED SONIC

DRILLING CONTRACTOR: Holt Services Inc.

DRILLER: Pete Rosenburg

Log continued on next page

LOGGED: Dave Yonemitsu CHECKED: David P. Findley

		REC	COR	DO	F BC	DRE	HOL	E E33	35-AN-0	001	SHEET 3	3 of 7
P	ROJECT	Sound Transit East Link/WA DRILLIN NUMBER: 113-93533.0320 DRILLIN I: 110th and 4th Ave. NE DRILL RI	G DATE	E: 9/30/	/2013-10	0/2/201	13			sit East Coordinat 54,837 E: 1,633		ELEVATION: 150 INCLINATION: -50 WELL TAG # BIJ796
			ROFILE					SAM	PLES	PENETRATION F		
ALC DLE	ORING METHOD			O	E (F)			œ		BLOWS 20 40	7π ◆ 60 80	NOTES WATER LEVELS
ANCE	NG	DESCRIPTION	nscs	GRAPHIC LOG	TANG	RUN	REC ATT	NUMBER	TYPE			GRAPHIC
DISTANCE ALONG BOREHOLE (Ft)	BOR			GR	DISTANCE ALONG BOREHOLE (Ft)		/	2	F	PL MC	LL 60 80	
40		40.0 - 46.8 Dense, gray, (SP-SM), moist to wet, silty,			40.0					20 40	1 1	
		SAND, some faceted, subrounded gravel, disturbed, friable, appears dilated with pin										
-		size voids, [TILL, Qvt].		$ \phi $								
F				Y 6								
				$ \phi _{\epsilon}$								
-												
			SP-SM		1							
-				d _	1	7	<u>8.0</u> 8.0]
- 45				0 5								
					-							
F												
				Ψ								
-		46.8 - 48.0 Hard, gray, (MH), moist, plastic SILT, thinly			46.8							l
		laminated with sandy silt, slickensided fractures 40° to 50° from core axis, stringers	МН									
F	Casing	and lenses of organic rich sandy silt, [PRE-VASHON GLACIOLACUSTRINE]	 		48.0]
	eter (DEPOSITS, Qpgl]. 48.0 - 50.0		φ .	70.0							
-	Diam	Very dense, gray, (SM), moist, silty, fine to coarse SAND, little fine to coarse, faceted,	SM			8	<u>2.0</u> 2.0]
	inch	subrounded gravel, [TILL, Qvt].					2.0					
- 50	Core/6-inch Diameter	Sub-vertical, polished shear surface at 49 ft along angle borehole.	-	Φ -	50.0							l
	eter C	50.0 - 55.0 Very dense, gray-brown, (SP-SM), moist, gravelly, fine to medium SAND, little silt,		Φ	30.0							
-	Sonic-6-inch Diameter	[TILL, Qvt].]
	inch	6-inch thick friable Till zone at 51 ft along angle borehole.										
-	nic-6-	3. 3		$ \Phi $]
	So		SP-SM									
<u>.</u> -					1]
9/8/17				$ \Phi _{S}$								
<u>1</u>]
SIT.0												
NA 55		Becomes wet.		19 5	55.0	9	10.0					
		55.0 - 59.0 Dense, brown, (SP-SM), moist, SAND, trace to little silt, scattered gravel, trace			55.0		10.0					
380		organics, trace iron oxide staining, [ADVANCE OUTWASH, Qva].										
9353		planting out mon, quaj.										
113			SP-SM									
GP.												
TECT]
PRO												
33 ST												
39350		59.0 - 63.5 Very dense, brown, (SM), moist, silty SAND,	SM		59.0							
0 - 60		some gravel, [ADVANCE OUTWASH, Qva].	- Civi									
₹-	n to 2 ff	Log continued on next page		100	CED:	Dave	Yoner	miteu				
	n to 3 ft RILLING	CONTRACTOR: Holt Services Inc					· Yoner ·id P. F				O -	O - C
DF		Pete Rosenburg			E: 3/1						FINAL	DESIGN PARTNERS.

RECORD OF BOREHOLE E335-AN-001 SHEET 4 of 7 PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320 DRILLING METHOD: Sonic DATUM: Sound Transit East Coordinate System ELEVATION: 150 DRILLING MIETTIOD: 30/110 DRILLING DATE: 9/30/2013-10/2/2013 DRILL RIG: TSI 150CC COORDINATES: N: 554,837 E: 1,633,073 INCLINATION: -50 OCATION: 110th and 4th Ave. NE WELL TAG # BIJ796 DISTANCE ALONG

BOREHOLE (Ft) SOIL PROFILE SAMPLES METHOD PENETRATION RESISTANCE BLOWS / ft ◆ NOTES WATER LEVELS £ DISTANCE ALONG BOREHOLE (F 40 60 80 GRAPHIC LOG REC ATT TYPE DESCRIPTION GRAPHIC 59.0 - 63.5 Very dense, brown, (SM), moist, silty SAND, some gravel, [ADVANCE OUTWASH, Qva]. Compact to dense at 61 ft along angle borehole. SM Becomes gray. 63.5 63.5 - 67.5 53.5 - 67.5

Sense to very dense, gray, (SW), moist to wet, SAND, some faceted, subrounded gravel, trace silt, [PRE-VASHON FLUVIAL DEPOSITS, Qpnf]. - 65 SW Vibrating Wire Piezometer installed at 67 67.5 - 68.5 67.5 Core/6-inch Diameter Casing Compact, gray, (SM), moist to wet, clayey, silty SAND, some gravel, [PRE-VASHON FLUVIAL DEPOSITS, Qpnf]. ft along angle borehole. SN:1302425 SM 68.5 - 71.0 68.5 Hard, gray, (CL/CH), moist, silty CLAY to CLAY, some sand, trace coarse gravel, disturbed texture, polished shear surfaces, disturbed [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. CL/CH - 70 Sonic-6-inch Diameter 71.0 - 73.0 71.0 Dense, gray, (ML), moist, clayey SILT, low plasticity, scattered slickensides, disturbed [PRE-VASHON GLACIOLACUSTRINE ML DEPOSITS, Qpgl]. 73.0 - 77.0 Hard, gray, (CL), moist, silty CLAY, some sand, trace coarse gravel, flakey texture, scattered slickensides and polished shear surfaces, disturbed [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. 73.0 10.0 10.0 75 CL 11 Fractures at 90° from core axis. 77.0 - 80.0 Hard, gray, (CH), moist, CLAY, high plasticity, irregular bedding, disturbed shearing slickensided fractures at 80° to 90° from core axis, lenses of sandy silt, sheared texture, disturbed [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. 80 Log continued on next page 1 in to 3 ft LOGGED: Dave Yonemitsu

NCLINED SONIC

11393533 ST PROJECT.GPJ 113.93533SOUND TRANSIT.GDT

DRILLING CONTRACTOR: Holt Services Inc.

DRILLER: Pete Rosenburg

LOGGED: Dave Yonemitsu CHECKED: David P. Findley

RECORD OF BOREHOLE E335-AN-001 SHEET 5 of 7 DRILLING METHOD: Sonic DRILLING DATE: 9/30/2013-10/2/2013 DRILL RIG: TSI 150CC PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320 DATUM: Sound Transit East Coordinate System COORDINATES: N: 554,837 E: 1,633,073 ELEVATION: 150 INCLINATION: -50 LOCATION: 110th and 4th Ave. NE WELL TAG # BIJ796 DISTANCE ALONG

BOREHOLE (Ft) SOIL PROFILE SAMPLES PENETRATION RESISTANCE METHOD BLOWS / ft ◆ NOTES WATER LEVELS DISTANCE ALONG BOREHOLE (F 40 GRAPHIC LOG USCS REC ATT TYPE DESCRIPTION GRAPHIC 80.0 - 82.5 80.0 Hard, gray, (ML), moist, clayey SILT, low plasticity, thinly interbedded with sandy silt, disturbed [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. ML Sandy silt seam from 81.5 to 82.5 ft along angle borehole. 60° and 80° fractures at 82.5 ft along angle borehole. 82.5 82.5 - 92.5 Hard, gray, (ML), moist, SILT, polished shear surfaces, highly fractured from drill action, disturbed [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. - 85 ML Sonic-6-inch Diameter Core/6-inch Diameter Casing Angular clasts of fine sand at 89.5 ft - 90 along angle borehole. Block texture, with rotated, sub-vertical fractures. 92.5 - 98.0 92.5 - 90.0 (LL), moist, silty CLAY, thin laminations of sandy silt, fractured, polished shear surfaces, slickensided, 0° to 30° from core axis, disturbed [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpg]]. 10.0 10.0 95 13 CL 98.0 - 100.0 98.0 Very dense, grayish-brown, (ML), moist, non-plastic SILT, rapid dilatancy, disturbed [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. ML

1 in to 3 ft

100

INCLINED SONIC

11393533 ST PROJECT.GPJ 113.93533SOUND TRANSIT.GDT

DRILLING CONTRACTOR: Holt Services Inc.

Log continued on next page

DRILLER: Pete Rosenburg

LOGGED: Dave Yonemitsu

CHECKED: David P. Findley

PR	OJECT	: Sound Transit East Link/WA DRILLIN NUMBER: 113-93533.0320 DRILLIN	G MET G DATI	HOD: \$	Sonic /2013-10			DATUM:		UU1 SH sit East Coordinate Syst 554,837 E: 1,633,073	HEET 6	ELEVATION: 150 INCLINATION: -50
		N: 110th and 4th Ave. NE DRILL R	IG: TS ROFILE		<u> </u>			SAM	PLES	PENETRATION RESIST	TANCE	WELL TAG # BIJ796
DISTANCE ALONG S BOREHOLE (Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	DISTANCE ALONG BOREHOLE (Ft)	RUN	REC ATT	NUMBER	TYPE	BLOWS / ft ◆ 20 40 60 PL MC L	80	NOTES WATER LEVELS GRAPHIC
<u> </u>		100.0 - 101.6 Very dense, grayish-brown, (ML), moist, SILT with sand, rapid dilatancy, disturbed [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].	ML		100.0					20 40 60	80	Vibrating Wire Piezometer installed at 100 ft along angle borehole.
- 105 	Sonic-6-inch Diameter Core/6-inch Diameter Casing	101.6 - 133.0 Hard, gray, (ML/CL), moist, clayey SILT to silty CLAY, moderately fractured with angles 40° to 80° from core axis, occasional slickensided fractures, disturbed [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].			101.6	14	<u>10.0</u> 10.0					SN:1303403
NOCINED SONIC 11393553 ST PROJECT GPJ 113,93533SOUND TRANSIT GDT 9/8/14	Sonic-6-inch Diameter Cor	Blocky texture, slickensides at 20° to 60° from core axis. Mechanical partings, lenses of light brown silt. Friable from 113 to 116 ft along angle borehole.	ML/CL			15	<u>10.0</u> 10.0					
1 in	to 3 ft	Log continued on next page		LOG	GED:	Dave	Yoner	nitsu			D	•
DRI DRI		CONTRACTOR: Holt Services Inc Pete Rosenburg).		CKED E: 3/1			indley		19	INAL	DESIGN PARTNERS.

RECORD OF BOREHOLE E335-AN-001 SHEET 7 of 7 DRILLING METHOD: Sonic DRILLING DATE: 9/30/2013-10/2/2013 DRILL RIG: TSI 150CC DATUM: Sound Transit East Coordinate System COORDINATES: N: 554,837 E: 1,633,073 PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320 ELEVATION: 150 INCLINATION: -50 LOCATION: 110th and 4th Ave. NE WELL TAG # BIJ796 DISTANCE ALONG
BOREHOLE (Ft) SOIL PROFILE SAMPLES PENETRATION RESISTANCE BLOWS / ft ◆ **BORING METHOD** DISTANCE ALONG BOREHOLE (Ft) NOTES WATER LEVELS 40 GRAPHIC LOG NUMBER **USCS** TYPE RUN REC ATT DESCRIPTION GRAPHIC 101.6 - 133.0 Hard, gray, (ML/CL), moist, clayey SILT to silty CLAY, moderately fractured with angles 40° to 80° from core axis, occasional slickensided fractures, disturbed [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. Casing Sonic-6-inch Diameter Core/6-inch Diameter - 125 ML/CL Hole overdrilled from 130 to 133 ft along angle borehole prior to VWP installation. - 130 Boring completed at 133.0 ft. 133.0 135 140 1 in to 3 ft LOGGED: Dave Yonemitsu

INCLINED SONIC 11393533 ST PROJECT.GPJ 113.93533SOUND TRANSIT.GDT 9/8/14

DRILLING CONTRACTOR: Holt Services Inc.

DRILLER: Pete Rosenburg

CHECKED: David P. Findley

RECORD OF BOREHOLE E335-AN-002 SHEET 1 of 6 DRILLING METHOD: Sonic DRILLING DATE: 10/7/2013 DRILL RIG: TSI 150CC PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320 DATUM: Sound Transit East Coordinate System ELEVATION: 149 COORDINATES: N: 554,815.00 E: 1,633,076.00 INCLINATION: -60 LOCATION: 110th and 4th Ave. NE WELL TAG # BIJ797 DISTANCE ALONG BOREHOLE (Ft) SOIL PROFILE SAMPLES PENETRATION RESISTANCE BLOWS / ft ◆ METHOD NOTES WATER LEVELS £ DISTANCE ALONG BOREHOLE (F GRAPHIC LOG TYPE REC ATT DESCRIPTION GRAPHIC 0.8 - 0.0 12-inch diameter flush Air knife Excavation mount steel monument cemented in place to 1 ft along angle borehole. Backfilled with bentonite/cemer grout from 24 to 133 ft along Air Knife Excavation angle borehole. - 5 8.0 - 9.0 Compact, brown, (SM), moist, silty SAND, trace gravel, [FILL, Hf]. 9.0 - 12.0 9.0 Loose, gray, (GP), GRAVEL, trace silt, drain rock, [FILL, Hf]. 4.5 4.5 - 10 GΡ Sonic-6-inch Diameter Core/6-inch Diameter Casing 12 0 - 17 0 12.0 ф Very dense, gray, (SM), moist, silty, fine to medium SAND, some fine gravel, [TILL, Qvt]. Φ Φ 5.0 5.0 SM Φ 2 15 ¢ ¢ ¢ Lenses of fine to medium sand, trace silt from 16.5 to 17 ft along angle 17.0 - 2000 chole. 17.0 d Very dense, gray-brown, (SM), moist, silty, fine to medium SAND and fine GRAVEL, friable, well developed sockets around gravel clasts, local iron oxide staining, [TILL, Qvt]. Φ 3.0 SM 3 Φ Φ

1 in to 3 ft

20

INCLINED SONIC

11393533 ST PROJECT.GPJ 113.93533SOUND TRANSIT.GDT 8/18/14

DRILLING CONTRACTOR: Holt Services Inc.

DRILLER: Pete Rosenburg

Log continued on next page

LOGGED: Dave Yonemitsu CHECKED: David P. Findley

SHEET 2 of 6

호표	阜	SOIL P	ROFILE					SAM	PLES	PENETRATION RESISTANCE BLOWS / ft ◆	
DDISTANCE ALONG DOREHOLE (Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	DISTANCE ALONG BOREHOLE (Ft)	RUN	REC ATT	NUMBER	TYPE	20 40 60 80 PL MC LL 20 40 60 80	NOTES WATER LEVEL GRAPHIC
20 →		17.0 - 22.0 Very dense, gray-brown, (SM), moist, silty, fine to medium SAND and fine GRAVEL, friable, well developed sockets around gravel clasts, local iron oxide staining, [TILL, Qvt].	SM	0 0 0							
		22.0 - 43.9 Very dense, gray, (SM), moist, silty, fine to medium SAND, some fine gravel, friable, [TILL, Qvt].			22.0	4	<u>5.0</u> 5.0				
25	er Casing	Grades to sand, some gravel, little silt from 25 to 26 ft along angle borehole. Some fine to coarse gravel, 2 to 3-inch diameter.				5	4.0 5.0				
30	Sonic-6-inch Diameter Core/6-inch Diameter Casing	Compact, moist to wet zone from 29 to 30 ft along angle borehole.	SM								
35	Sonic	Scattered cobbles, 6-inch diameter.				6	<u>5.0</u> 5.0				
						7	<u>5.0</u> 5.0				
40		Log continued on next page									

RECORD OF BOREHOLE E335-AN-002 SHEET 3 of 6 DRILLING METHOD: Sonic DATUM: Sound Transit East Coordinate System PROJECT: Sound Transit East Link/WA ELEVATION: 149 DRILLING DATE: 10/7/2013 DRILL RIG: TSI 150CC PROJECT NUMBER: 113-93533.0320 COORDINATES: N: 554,815.00 E: 1,633,076.00 INCLINATION: -60 WELL TAG # BIJ797 OCATION: 110th and 4th Ave. NE DISTANCE ALONG
BOREHOLE (Ft) SOIL PROFILE SAMPLES PENETRATION RESISTANCE METHOD BLOWS / ft ◆ NOTES WATER LEVELS DISTANCE ALONG BOREHOLE (F 40 60 GRAPHIC LOG REC ATT TYPE DESCRIPTION GRAPHIC 22.0 - 43.9 Very dense, gray, (SM), moist, silty, fine to medium SAND, some fine gravel, friable, [TILL, Qvt]. ф SM 5.0 8 Φ Φ 43.9 - 45.0 43.9 Dense, gray, (SP-SM), moist to wet, fine to medium SAND, trace to little silt, SP-SM interbedded with SILT, [PRE-VASHON LACUSTRINE DEPOSITS, Qpnl]. 45 45.0 43.0 - 40.2 (ML), moist, clayey SILT to silty CLAY, laminated with blocky texture, angular clasts of Pre-Vashon Lacustrine deposits in sandy silt matrix, [PRE-VASHON] ML/CL GLACIOLACUSTRINE DEPOSITS, Qpgl]. 46.2 Wet seam from 45.9 to 46.2 ft along CL/CH 46.2 - 47.4 Hard, gray, (CL/CH), moist, silty CLAY to CLAY, laminated with silt, slickensided, angular clasts of Pre-Vashon Lacustrine 5.0 47.4 9 Core/6-inch Diameter Casing Vibrating wire piezometer SM deposits in sandy silt matrix, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. installed at 47.4 ft along angle borehole. 48.5 47.4 - 48.5 47.4 - 40.5 Dense, gray, (SM), wet, silty, fine SAND, distorted bedding, rotated fragments of silty clay, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. SN:1303404 ML Disturbed zone, chaotic stratigraphy from 43.9 to - 50 Hard, gray, (ML), moist, clayey SILT, low plasticity, laminated silt, sandy silt and lenses of fine to medium sand, slicked and 50.0 ф 57.5 ft along angle borehole Sonic-6-inch Diameter polished sub-vertical surfaces SM PRE-VASHON GLACIOLACUSTRINE Φ DEPOSITS, Qpgl]. 50.0 - 51.5 Very dense, gray, (SM), moist, silty, fine to medium SAND, little fine gravel, [TILL, 51.5 λ SP/SP-SM 51.5 - 53.2 Dense, gray, (SP/SP-SM), moist to wet, SAND, trace to little silt, trace gravel, diamict structure, [TILL, Qvt?]. 53.2 53.2 - 57.0 ф Very dense, gray, (SP-SM), moist, SAND, little silt. trace faceted, subrounded gravel, well developed sockets in matrix around gravel clasts, diamict structure, [TILL, Qvt?]. 55 Λ 10 SP-SM Φ 57.0 Ъ SM Very dense, gray, (SM), silty, fine to medium SAND, some fine gravel, [TILL, Qvt?]. 57.5 57.5 - 60.0 Very dense, gray-brown, (SM), damp to moist, silty, fine to medium SAND, some fine to coarse gravel, iron oxide staining, rubbly texture, [ADVANCE OUTWASH,

1 in to 3 ft

60

NCLINED SONIC

8/18/14

11393533 ST PROJECT.GPJ 113.93533SOUND TRANSIT.GDT

DRILLER: Pete Rosenburg

DRILLING CONTRACTOR: Holt Services Inc.

Log continued on next page

LOGGED: Dave Yonemitsu CHECKED: David P. Findley

DATUM: Sound Transit East Coordinate System

ELEVATION: 149 INCLINATION: -60

SHEET 4 of 6

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320 DRILLING METHOD: Sonic DRILLING DATE: 10/7/2013 DRILL RIG: TSI 150CC COORDINATES: N: 554,815.00 E: 1,633,076.00 LOCATION: 110th and 4th Ave. NE WELL TAG # BIJ797 DISTANCE ALONG
BOREHOLE (Ft) SOIL PROFILE SAMPLES METHOD PENETRATION RESISTANCE BLOWS / ft ◆ NOTES WATER LEVELS £ DISTANCE ALONG BOREHOLE (F 40 60 GRAPHIC LOG **USCS** REC ATT TYPE BORING DESCRIPTION GRAPHIC 60.0 - 62.0 60.0 Dense, brown, (SP), moist to wet, SAND, trace silt, [ADVANCE OUTWASH, Qva]. SP 62.0 - 63.3 62.0 62.U - 63.3 Very dense, gray-brown, (SM), moist to wet, silty, fine to medium SAND, micaceous particles, oxide staining along sub-vertical zones, [ADVANCE OUTWASH, Qva]. SM 63.3 - 65.0 63.3 Very dense, gray,(GP), wet, sandy GRAVEL, trace silt, [ADVANCE OUTWASH, Qva]. 0 GP - 65 11 65.0 - 67.5 65.0 Dense, brown, (SP), moist to wet, fine to medium SAND, trace silt, [ADVANCE OUTWASH, Qva]. SP Little faceted, subrounded gravel, trace to little silt. 67.5 Sonic-6-inch Diameter Core/6-inch Diameter Casing Very dense, gray, (GP), moist, sandy, fine to coarse GRAVEL, trace clay, matrix supported, [TILL, Qvt?] or [Diamict, Qpgd?]. 900 - 70 11393533 ST PROJECT.GPJ 113.93533SOUND TRANSIT.GDT 8/18/14 10°C 74.7 - 80.0 75 Hard, gray, (CL), silty CLAY, thinly bedded with silt and sandy silt, trace gravel, well 12 developed sockets in matrix around gravel clasts, polished shear surfaces, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. Interbed of gravelly sand from 75.5 to 77.8 ft along angle borehole. CL 80 INCLINED SONIC Log continued on next page 1 in to 3 ft LOGGED: Dave Yonemitsu

DRILLING CONTRACTOR: Holt Services Inc.

DRILLER: Pete Rosenburg

CHECKED: David P. Findley

SHEET 5 of 6

PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320

DRILLING METHOD: Sonic DRILLING DATE: 10/7/2013

DATUM: Sound Transit East Coordinate System ELEVATION: 149 COORDINATES: N: 554,815.00 E: 1,633,076.00 INCLINATION: -60

Thinly laminated with silt and sandy silt, scattered slickensides. 88.0 - 92.0 Hard, gray, (ML), moist to wet, sandy SILT, trace fine gravel slow (slatancy, PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Opgil. ML 92.0 - 100.0 Hard, gray, (ML), damp to moist, clayey SiLT, scattered faint, distorted, sub-vertical aminations of sandy silt, face fine gravel as dropstones, rubbly texture, IPRE-VASHON GLACIOLACUSTRINE DEPOSITS, Opgil. 14 12.0	[[QO	N: 110th and 4th Ave. NE DRILL R SOIL P	ROFILE					SAM	PLES	PENETRA	ATION RE	ESISTANC	CE
Facil gray, Mil. Indict clayey SIT. Tow plasticity, scattered flare grave, ubbly, blocky induse, pPRE-VASHON GARIOLACUSTRINE DEPOSITS, Opgil. MIL. 13 8.0. 88.0 - 92.0 Mil. moist to was, sandy SIT. Township of the control of the		ЛЕТН			Ŋ	:: (Ft)			œ					NOTES WATER I EVELS
Facility (any, Mil.L.), most, clayery (SIT, Tow placetric), scattered flare grows, utable, blocky induser, pPRE-VASHON (GACIOLACUSTRINE DEPOSITS, Opgil) MIL. 13 8.0. 88.0 - 92.0 (Mil.), moist to wat, sandy SIT. Thirdy laminated with sill and sandy sill, scattered activeraction. 88.0 - 92.0 (Mil.), moist to wat, sandy SIT. The pre-VASHON (GACIOLACUSTRINE DEPOSITS, Opgil). MIL. 88.0 - 92.0 (Mil.), moist to wat, sandy SIT. The pre-VASHON (GACIOLACUSTRINE DEPOSITS, Opgil). MIL. 92.0 - 100.0 (Mil.) damp to moist, dayey SIT. The pre-VASHON (GACIOLACUSTRINE DEPOSITS, Opgil). 92.0 - 100.0 (Mil.), damp to moist, dayey SIT. The pre-VASHON (GACIOLACUSTRINE DEPOSITS, Opgil). 92.0 (Mil.) damp to moist, dayey SIT. The pre-VASHON (GACIOLACUSTRINE DEPOSITS, Opgil). 92.0 (Mil.) damp to moist, dayey SIT. The pre-VASHON (GACIOLACUSTRINE DEPOSITS, Opgil). 14 12.0 (Mil.) damp to moist, dayey SIT. The pre-VASHON (GACIOLACUSTRINE DEPOSITS, Opgil).	BOREHC	BORING	DESCRIPTION	nscs	GRAPHI	DISTANC ALONG BOREHOLE	RUN	REC ATT	NUMBE	TYPE	PL	MC	LL —	
Thinly laminated with silt and sandy silt, scattered slickensides. 88.0 - 92.0 Hard, gray, (ML), moist to wat sandy SiLT, Hard, gray, (ML), moist to wat sandy SiLT, Indian gray, (ML), Indian gray,	80 →		80.0 - 88.0 Hard, gray, (ML), moist, clayey SILT, low plasticity, scattered fine gravel, rubbly, blocky texture, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].			80.0								based on drill action at 80 along angle
SILT, scattered faint, distorted, sub-vertical laminations of sandy silt, trace fine gravel as dropstones, rubbly texture, IPRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. 14 12.0 12.0	85	би	Thinly laminated with silt and sandy silt, scattered slickensides.	ML			13	<u>8.0</u> 8.0						
SILT, scattered faint, distorted, sub-vertical laminations of sandy silt, trace fine gravel as dropstones, rubbly texture, IPRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. 14 12.0	90	6-inch Diameter Core/6-inch Diameter Casi	88.0 - 92.0 Hard, gray, (ML), moist to wet, sandy SILT, trace fine gravel, slow dilatancy, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].	ML		88.0								
	95	Sonic-	Hard, gray, (ML), damp to moist, clayey SILT, scattered faint, distorted, sub-vertical laminations of sandy silt, trace fine gravel as dropstones, rubbly texture, [PRE-VASHON]	ML		92.0	14							

DRILLING CONTRACTOR: Holt Services Inc.

DRILLER: Pete Rosenburg

LOGGED: Dave Yonemitsu CHECKED: David P. Findley

RECORD OF BOREHOLE E335-AN-002 PROJECT: Sound Transit East Link/WA DRILLING METHOD: Sonic

SHEET 6 of 6

£ £	무	SOIL PF	ROFILE					SAM	PLES	PENETRATION RESISTAL BLOWS / ft ◆	NCE
) E	MET			<u>0</u>	CE E (Ft)			œ		20 40 60 80	NOTES WATER LEVELS
S BOREHOLE (Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	DISTANCE ALONG BOREHOLE (Ft)	RUN	REC ATT	NUMBER	TYPE	PL MC LL 20 40 60 80	GRAPHIC
	Sonic-6-inch Diameter Core/6-inch Diameter Casing	100.0 - 110.0 Hard, gray, (CL), moist, silty CLAY, thinly laminated with clayey silt and sandy silt, moderately fissured with polished surfaces oriented sub-parallel to core axis and normal to core axis, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. Randomly oriented polished surfaces.	CL		100.0	15	10.0 10.0				
10	Sor	Boring completed at 110.0 ft.			110.0						
15											

DRILLING CONTRACTOR: Holt Services Inc.

DRILLER: Pete Rosenburg

CHECKED: David P. Findley

	PRC	JECT	RE(Sound Transit East Link/WA DRILLIN NUMBER: 113-93533.0320 DRILLIN i: 110th and 4th Ave. NE DRILL R	G MET G DATE	HOD: \$	Sonic /2013	ORE	HOL	DATU	:335- IM: Soui RDINATE	nd Trans	003 sit East Coordinat 54,864 E: 1,633	SHEET of System 1,075	1 of 3 ELEVATION: INCLINATION: WELL TAG #	: -90
				ROFILE		,				SAMPLES	3	PENETRATION F		1	<u>DI37 90</u>
	(Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH (Ft)	RUN	REC ATT	NUMBER	TYPE	N-VALUE	PL MC	30 40 LL 60 80	NOTE WATER LE WELL INSTA	EVELS
- 0 - - - - 5		Air Knife Excavation	0.0 - 6.0 Air knife excavation to 6 ft bgs.			144.0								3-inch diameter PVC casing installed from 0.3 to 60 ft bgs for downhole shearwave test. Backfilled with bentonite/cemer grout from 1 to 60 ft bgs.	nt -
-		6	6.0 - 31.3 Very dense, gray-brown, (SM), moist, silty, fine to medium SAND, some fine gravel, [TILL, Qvt].			6.0	1								
ANSIT.GDT 8/18/14		inch Diameter Core/6 to 8-inch Diameter Casing	Becomes friable.				2	0.5 0.5	S-1	SS	>50		>>		
533SOUND TR		Sonic-6-i		SM		,	3	2.5 2.5							
113.93					0			0.8 0.3	S-2	SS	>50		>>	<u> </u>	
ROJECT.GPJ					0		4	2.5 2.5							
33 ST F	.0							0.5	S-3	SS	>50		>>	†	-
H SPT 113935					0		5	2.5 2.5							
RECORD OF SONIC BOREHOLE WITH SPT 11393533 ST PROJECT.GPJ 113.93533SOUND TRA	25		Mottled gray from 23 to 25 ft bgs.				6	0.8 0.8 2.5 2.5	S-4	SS	>50		>>		
S JO OF SC	l in t	o 3 ft	Log continued on next page CONTRACTOR: Holt Services Inc			⊥ GED: ECKED				l	1		M-	0 0	
RECOF			Pete Rosenburg	·-		E: 3/1			inuley				FINAL	DESIGN PAR	TNERS.

RECORD OF BOREHOLE E335-AN-003 SHEET 2 of 3 PROJECT: Sound Transit East Link/WA PROJECT NUMBER: 113-93533.0320 DRILLING METHOD: Sonic DATUM: Sound Transit East Coordinate System ELEVATION: 150 DRILLING DATE: 10/9/2013 DRILL RIG: TSI 150CC COORDINATES: N: 554,864 E: 1,633,075 INCLINATION: -90 WELL TAG # BIJ798 OCATION: 110th and 4th Ave. NE SOIL PROFILE SAMPLES PENETRATION RESISTANCE METHOD BLOWS / ft ◆ DEPTH (Ft) ELEV. NOTES GRAPHIC LOG N-VALUE SSS WATER LEVELS BORING RUN REC ATT DESCRIPTION DEPTH WELL INSTALLATION 60 - 25 >50 6.0 - 31.3 0.2 S-5 SS Very dense, gray-brown, (SM), moist, silty, fine to medium SAND, some fine gravel, [TILL, Qvt]. 2.5 2.5 7 ¢ Φ 0.5 S-6 SS >50 SM Φ 2.5 2.5 8 Fine to coarse gravel. Φ - 30 Φ 0.5 0.5 S-7 SS >50 Dense to compact zone from 31 to Φ 118.7 2.5 2.5 31.3 - 33.0 31.3 φ Very dense, gray-brown, (SC), moist, clayey, fine to medium SAND, some gravel, friable, [TILL, Qvt]. SC Φ 1.0 1.0 S-8 SS >50 33.0 - 35.0 33.0 Very dense, gray, (SM), moist, silty, fine to medium SAND, some fine to coarse gravel, Φ 10 [TILL, Qvt]. Casing 115.0 - 35 35.0 0.1 S-9 SS >50 Diameter Core/6 to 8-inch Diameter d Very dense, moist, (SM), gravelly, silty, SAND, trace clay, diamict structure, [TILL, SM Qvt]. 113.7 2.5 2.5 11 36.3 - 39.3 36.3 Hard, gray, (ML), clayey SILT, low plasticity, thinly bedded, moderately fractured with blocky texture and distorted bedding, diamict structure, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl]. ML 8/18/14 1.5 1.5 S-10 SS >50 2.5 2.5 12 Wet seam of sand, trace silt from 38.5 to 39.3 ft bgs. 110.7 SONIC BOREHOLE WITH SPT 11393533 ST PROJECT GPJ 113.93533SOUND TRANSIT GDT Sonic-6-inch 39.3 39.3 - 40.0 SM Dense, gray, (SM), moist, silty, fine to medium SAND, trace fine gravel, irregular lenses of fine to medium sand, [PRE-VASHON GLACIOLACUSTRINE] 110.0 40 40.0 S-11 SS >50 DEPOSITS, Qpgl] and Diamict. 2.5 2.5 40.0 - 45.0 Very dense/hard, gray, (ML/SM), moist to 13 wet, interbeds of clayey SILT, and fine to medium SAND, trace to some silt and clayey silt thinly laminated with bedding at 20° from horizontal, trace subrounded ML/SM gravel clasts, disturbed diamict shear and slickensided surfaces, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl] 1.5 1.5 2.5 2.5 S-12 SS >50 14 105.0 45.0 - 50.0 45.0 S-13 SS >50 Very dense, gray, (SW), moist, fine to coarse SAND, fine to coarse gravel and cobbles, matrix supported, [ADVANCE OUTWASH, Qva]. Vibrating wire oiezometer nstalled at 45 ft bgs. SN:1302426 <u>5.0</u> 5.0 SW 15 100.0 50 Log continued on next page 1 in to 3 ft LOGGED: Dave Yonemitsu DRILLING CONTRACTOR: Holt Services Inc. CHECKED: David P. Findley

RECORD OF

DRILLER: Pete Rosenburg

DATE: 3/11/2014

			REC	COR	DO	F BO	DRE	HOI	LE E	335-	-AN-(003	SHEET :	3 of 3
	PRO	OJECT	: Sound Transit East Link/WA DRILLIN NUMBER: 113-93533.0320 DRILLIN I: 110th and 4th Ave. NE DRILL R	G DATE	E: 10/9	/2013			DATU	IM: Sou RDINATI	nd Trans ES: N: 5	sit East Coordinat 554,864 E: 1,633	e System ,075	ELEVATION: 150 INCLINATION: -90 WELL TAG # BIJ798
		гнор	SOIL P	ROFILE		I	I			SAMPLES	S	PENETRATION F	RESISTANCE / ft ◆	
	DEPTH (Ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH (Ft)	RUN	REC ATT	NUMBER	TYPE	N-VALUE	PL MC	30 40 LL 60 80	NOTES WATER LEVELS WELL INSTALLATION
	 50 - -	Casing	50.0 - 55.0 Dense, brown, (SP-SM), moist, fine to medium SAND, trace to little silt, trace subrounded gravel, subtle stratified 1 to 2-inch layers of sub-horizontal, micaceous, silty sand, [PRE-VASHON FLUVIAL DEPOSITS, Qpnf].	SP-SM		50.0		<u>1.5</u> 1.5	S-14	SS	>50		>>	•
	- 55 - -	Sonic-6-inch Diameter Core/6 to 8-inch Diameter	55.0 - 56.0 Very dense, gray-brown, (ML/SM), damp, sandy SILT to sifty SAND, [PRE-VASHON FLUVIAL DEPOSITS, Qpnf]. 56.0 - 58.5 Very dense, (GP), damp, sandy, fine GRAVEL, trace clay, [ADVANCE OUTWASH, Qva].	ML/SM		95.0 55.0 94.0 56.0	16	<u>10.0</u> 10.0						
	- 60		58.5 - 60.0 Hard, gray, (ML), moist, clayey SILT, low plasticity, thinly bedded, [PRE-VASHON GLACIOLACUSTRINE DEPOSITS, Qpgl].	ML		90.0 60.0								
RECORD OF SONIC BOREHOLE WITH SPT 11393533 ST PROJECT.GPJ 113.93533SOUND TRANSIT.GDT 8/18/14	- - - - - - - - - - - - - - - - - - -													
RECORD OF	DRI		CONTRACTOR: Holt Services Inc		CHE	GED: CKED E: 3/1	: Dav	id P. F					FINAL	DESIGN PARTNERS.

BORING NUMBER:

B-C-BTC-3p

SHEET 1 OF 2

SOIL BORING LOG

PROJECT : Sound Transit East Link

LOCATION: 110th Ave NE between NE 4th & NE 6th, Bellevue. (227173.2 N, 1304932.1 E, South State Plane)

ELEVATION: 161.4 feet (NAVD88)

DRILLING CONTRACTOR: Gregory Drilling, Inc., Redmond, Washington

				(7/7/2010). See (graph for additios ATAS Tails 6/19/2010	END : 6/20/	
PTH BE	LOW GRO	OUND SUR	FACE (ft)	STANDARD	SOIL DESCRIPTION		COMMENTS
	INTERV	AL (ft)		PENETRATION TEST RESULTS			
		RECOVE	ERY (ft)		SOIL NAME (USCS GROUP SYMBOL COLOR, MOISTURE CONTENT, RELATIVE D		DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND
			#TYPE	6"-6"-6" (N)	CONSISTENCY, SOIL STRUCTURE, MINE		INSTRUMENTATION
-					Surface is 10"-thick asphalt concrete.	-	Potholed top 9' to clear utilities.
-						- - - -	Potholed soil is silty sand with gravel (SM). Gravels up to 6-inches in diamater observed during potholing.
5						- - - -	
-						- - - - -	
10	10.0					-	Began drilling at 8:37am on 6/19/2010 with hollow-stem auger.
=	11.5	1.5	SS-1	10-22-38 (60)	<u>SILTY SAND. SM.</u> brown, moist, very dense medium sand, nonplastic fines, fine to coars subrounded gravel.		See laboratory results for SS-1.
- - - -						- - - -	
5	15.0			10-26-45	SILTY SAND (SM). brown, moist, very dens	e, fine to	
-	16.5	0.7	SS-2	(71)	coarse sand, predominantly fine to medium estimated 30% nonplastic fines, estimated I 10% fine to coarse subrounded gravel, 1" rogravel at bottom of sample.	ess than	
, - - -	20.0					- - -	
20	20.0	0.4	SS-3	20-50/3" (50/3")	SILTY SAND, SM, brown, moist, very dense medium sand, predominantly fine sand, non fines, fine subrounded gravel scattered thro	plastic	See laboratory results for SS-3.
-					sample.	- - - -	Very chattery drilling at 22'. Driller notes hard drilling, probably large gravel.
25	25.0		00.	50/5 5"			
+	25.5	0.3	SS-4	50/5.5" (50/5.5")	SILTY SAND WITH GRAVEL (SM), brown, in very dense, fine to coarse sand, predominal medium sand, estimated 30% nonplastic finestimated 15-20% fine subrounded gravel.	ntly fine to	
-						- - -	Cuttings have higher moisture content.

BORING NUMBER:

B-C-BTC-3p

SHEET 2 OF 2

SOIL BORING LOG

PROJECT : Sound Transit East Link

LOCATION: 110th Ave NE between NE 4th & NE 6th, Bellevue. (227173.2 N, 1304932.1 E, South State Plane)

ELEVATION: 161.4 feet (NAVD88)

DRILLING CONTRACTOR: Gregory Drilling, Inc., Redmond, Washington

				(7/7/2010). See g	raph for additios@all/Adlettails6/19/2010 END: 6/20			
DEPTH B	ELOW GRO	DUND SUR	FACE (ft)	STANDARD	SOIL DESCRIPTION	COMMENTS		
	INTERVA	RECOVE	ERY (ft)	PENETRATION TEST RESULTS	SOIL NAME (USCS GROUP SYMBOL). COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND		
			#TYPE	6"-6"-6" (N)	CONSISTENCY, SOIL STRUCTURE, MINERALOGY	INSTRUMENTATION		
- - -	38:8	0.5	SS-5	42-50/3" (50/3")	SILTY SAND WITH GRAVEL, SM, brown with orange iron-oxide staining, moist, very dense, predominantly fine to medium sand, nonplastic fines, fine to coarse subrounded gravel.	See laboratory results for SS-5.		
35 - -	35.0 35.7	0.5	SS-6	45-50/2" (50/2")	SILTY SAND WITH GRAVEL (SM), same as above.			
40	40.0	0.3	SS-7	50/6" \ (50/6") /	WELL GRADED GRAVEL WITH SILT AND SAND (GW-GM), brown and gray, dry, very dense, fine to coarse subrounded gravel, estimated 5-10% nonplastic fines, fine to coarse sand.	Very chattery drilling at 37'.		
45	45.0 45.3	0.2	SS-8	50/3" (50/3")	WELL GRADED GRAVEL WITH SILT AND SAND (GW-GM), similar to above, except moist.	Switched to mud rotary drilling after SS-8.		
50	50.0	0.0	SS-9	50/0" (50/0")	NO RECOVERY.	Sampler bouncing on rock. Drilled to 55', very chattery drilling, grinding on cobble at 53'.		
55 - - - -					Bottom of hole at 55.0 ft below ground surface.	Hole caved in to 50' after pulling rods. Driller notes gravel is continually caving in. Hole abandoned at 55'. PIEZOMETER INSTALLATION LOG: Ecology Tag: BBK 238. Well is 2-inch diameter schedule 40 PVC with 0.01" slotted screen installed from 30' to 40'.		
- - - - 60					- - -	0' to 2' - Flush concrete monument. 2' to 25' - 3/8" Bentonite chips. 25' to 41' - Colorado silica sand. 41' to 50' - 3/8" Bentonite chips. 50' to 55' - Collapsed native material.		

BORING NUMBER:

B-C-BTC-4p

SHEET 1 OF 5

SOIL BORING LOG

PROJECT : Sound Transit East Link

LOCATION: Int. 110th Ave NE & NE 6th, Bellevue. (227372.0 N, 1304945.7 E, South State Plane)

ELEVATION: 166 feet (NAVD88)

DRILLING CONTRACTOR: Gregory Drilling, Inc., Redmond, Washington

EPTH BELOW GF				raph for additios ARETERIS / 21/2010 END: 6/2 SOIL DESCRIPTION	23/2010 LOGGER : T. Valentine COMMENTS
INTER	AL (ft)		STANDARD PENETRATION TEST RESULTS	SOIL NAME (USCS GROUP SYMBOL).	DEPTH OF CASING, DRILLING RATE,
	RECOVER'	Y (ft) FTYPE	6"-6"-6"	COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEFIN OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION
			(N)	Surface is 12"-thick asphalt.	Potholed top 9' to clear utilities.
5				-	
10 10.0	0.8	SS-1	16-50/6" (50/6")	SILTY SAND (SM), brown, moist, very dense, fine sand, estimated 25-35% nonplastic fines, estimated 10-15% fine to coarse subangular to subrounded gravel.	Began drilling at 9:00am on 6/21/2010 with hollow-stem auger.
1515.0 15.3	- 0.2	SS-2 ,	50/3"	SILTY SAND (SM), similar to above, except dry,	Very chattery drilling from 10' to 15'.
20 20.0			(50/3")	estimated 15-25% nonplastic fines.	
20 20.0	0.3	SS-3	50/3" \ (50/3") /	SILTY SAND. SM. brown, moist, very dense, fine to medium sand, predominantly fine sand, nonplastic fines, fine subangular to subrounded gravel.	See laboratory results for SS-3.
25 25.0 25.4 25.4	0.4	SS-4	50/5" (50/5")	SILTY SAND (SM), same as above.	

393372.H3.03.04.04.01

BORING NUMBER:

B-C-BTC-4p

SHEET 2 OF 5

SOIL BORING LOG

PROJECT : Sound Transit East Link

LOCATION: Int. 110th Ave NE & NE 6th, Bellevue. (227372.0 N, 1304945.7 E, South State Plane)

ELEVATION: 166 feet (NAVD88)

DRILLING CONTRACTOR: Gregory Drilling, Inc., Redmond, Washington

WATER					auger/Mud rotary drilling, 140-lb auto hamm raph for additio ß: II <i>N</i> IRTails6/21/2010	END : 6/23	
	ELOW GRO			STANDARD	SOIL DESCRIPTION		COMMENTS
	INTERVA	AL (ft)	ERY (ft)	PENETRATION TEST RESULTS	SOIL NAME (USCS GROUP SY COLOR, MOISTURE CONTENT, RELA		DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND
			#TYPE	6"-6"-6" (N)	CONSISTENCY, SOIL STRUCTURE		INSTRUMENTATION
- - - - -	30.0	0.4	SS-5	50/5" \(50/5")/	SILTY SAND WITH GRAVEL, SM, da moist, very dense, fine to coarse sand fines, fine to coarse subangular to sub	I, nonplastic	See laboratory results for SS-5. Many 1" diameter subrounded gravel in cuttings from 30' to 35'.
35 - - - - - -	35.0 35.3	0.3	<u>SS-6</u>	50/4" \(50/4")/	SILTY GRAVEL WITH SAND (GM), great, very dense, fine to coarse subant estimated 15% nonplastic fines, estim fine to coarse sand, soil in split-spoon	gular gravel, lated 30-40%	Possible perched water between 35' and 40'. Augers and split spoon are dry when pulled however sample is slightly wet (SS-7).
40 - - - - - -	40.0	0.2	SS-7	50/5" \ (50/5") /	SILTY GRAVEL WITH SAND (GM), gravel, estimated 15-20% nonplastic f 20-30% fine to medium sand.	e subangular	-
- - -						- - -	Very chattery drilling from 40' to 45'. Abundant cobble-sized gravel in cuttings.
45 - - - -	45.0 45.4	0.4	SS-8	50/5" (50/5")	WELL GRADED SAND WITH SILT AT SW-SM, dark brown, moist to wet, ver to medium sand, nonplastic fines, fine gravel.	y dense, fine	See laboratory results for SS-8.
50	50.0 50.3					- - - -	Very chattery drilling from 45' to 50'.
- - - - - -		0.2	<u>SS-9</u>	50/3" \(50/3")/	WELL GRADED GRAVEL WITH SILT (GW-GM), dark brown, wet, very dens coarse subangular gravel, estimated sonoplastic fines, estimated 15-25% fir sand.	e, fine to 5-15%	Very chattery drilling at 51'.
55 - - - - - -	55.0 55.7	0.7	SS-10	29-50/2" (50/2")	SILTY SAND WITH GRAVEL, SM, gramoist, very dense, fine to coarse sand fines, fine to coarse subangular grave	l, nonplastic	See laboratory results for SS-10.
60						=	

393372.H3.03.04.04.01

BORING NUMBER:

B-C-BTC-4p

SHEET 3 OF 5

SOIL BORING LOG

PROJECT : Sound Transit East Link

LOCATION: Int. 110th Ave NE & NE 6th, Bellevue. (227372.0 N, 1304945.7 E, South State Plane)

ELEVATION: 166 feet (NAVD88)

DRILLING CONTRACTOR: Gregory Drilling, Inc., Redmond, Washington

WATER	LEVELS	: High of	56.5' bgs	(7/7/2010). See g	raph for additional Aletails6/21/2010 END: 6/23	3/2010 LOGGER : T. Valentine
DEPTH B	ELOW GRO	OUND SURF	ACE (ft)	STANDARD	SOIL DESCRIPTION	COMMENTS
	INTERVA	AL (ft)	RY (ft)	PENETRATION TEST RESULTS	SOIL NAME (USCS GROUP SYMBOL). COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND
			#TYPE	6"-6"-6" (N)	CONSISTENCY, SOIL STRUCTURE, MINERALOGY	INSTRUMENTATION
-	60.0 60.9	8.0	SS-11	35-50/5" (50/5")	WELL GRADED SAND WITH SILT AND GRAVEL, SW-SM, dark gray, wet, very dense, predominantly medium to coarse sand, nonplastic fines, fine to	See laboratory results for SS-11. Drilling stopped at 14:30pm on 6/21/2010. Drilling resumed at 7:30am on 6/22/2010.
65	65.0 66.0	1.2	SS-12	27-50/6" (50/6")	coarse angular to subrounded gravel. SILTY SAND, SM, dark gray, wet, very dense, fine sand, nonplastic fines, homogeneous appearance.	See laboratory results for SS-12.
70	70.0 70.8	1.0	SS-13	40-50/4" (50/4")	SILTY SAND (SM), similar to above, except fine sand with silt lens from 70.6' to 70.8'.	Driller notes gravels at 69'.
- - - - - 75	75.0 75.4	0.5	SS-14	50/5"	SILTY SAND (SM), dark gray, wet, very dense, fine	- - - - - - -
80	80.0			(50/5") <i>/</i>	to medium sand, estimated 15-25% nonplastic fines.	
85	80.5	0.5	SS-15	50/6" (50/6") /	SANDY SILT, ML, dark brownish-gray, wet, hard, nonplastic fines, fine sand.	See laboratory results for SS-15. Switched to mud rotary drilling after SS-15.
90	COV.	0.2	SS-16)	50/2" (50/2")	SILTY SAND (SM), dark gray, wet, very dense, fine to medium sand, estimated 15-25% nonplastic fines.	

393372.H3.03.04.04.01

BORING NUMBER:

B-C-BTC-4p

SHEET 4 OF 5

SOIL BORING LOG

PROJECT : Sound Transit East Link

LOCATION: Int. 110th Ave NE & NE 6th, Bellevue. (227372.0 N, 1304945.7 E, South State Plane)

ELEVATION: 166 feet (NAVD88)

DRILLING CONTRACTOR: Gregory Drilling, Inc., Redmond, Washington

WATER	LEVELS	: High of	56.5' bgs	(7/7/2010). See o	graph for additions I Martails 6/21/2010 END: 6/23	3/2010 LOGGER : T. Valentine
		DUND SUR		STANDARD	SOIL DESCRIPTION	COMMENTS
1	INTERV	AL (ft)		PENETRATION TEST RESULTS		
		RECOVE	RY (ft)	TEOT REGOETO	<u>SOIL NAME (USCS GROUP SYMBOL).</u> COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND
			#TYPE	6"-6"-6"	CONSISTENCY, SOIL STRUCTURE, MINERALOGY	INSTRUMENTATION
				(N)		
_	90.0	0.4	SS-17	50/5"	SILTY SAND (SM), same as above.	-
-				(50/5")	-	-
-					-	1
					- -	
_					-	Driller notes silt at 93'.
_					-	Briller flotes silt at so .
95	9 <u>5</u> .0 95.3	0.2	SS-18	50/3"	SILT, ML, gray, moist, hard, nonplastic to low	See laboratory results for SS-18.
=		0.2	00-10	(50/3")	plasticity, fine sand, homogeneous appearance.	Gee laboratory results for GG-10.
-					-	-
1 -					-	1
						Driller notes gravel at 98' but soft drilling.
_					-	-
100	100.0				-	-
_	100.0 100.3	0.2	SS-19	50/3"	SILTY SAND WITH GRAVEL (SM), gray, moist,	
_				(50/3")	very dense, fine to coarse sand, predominantly fine to medium sand, estimated 15% nonplastic fines,	Daillen netes silt at 4041
-					estimated 25% fine subrounded gravel scattered	Driller notes silt at 101'.
-					throughout sample.	<u> </u>
_					_	
_					-	-
_					-	-
105	105.0					
_		1.5	SS-20	37-42-50/4"	LEAN CLAY, CL, gray, moist, hard, plastic, fine sand, homogeneous appearance.	See laboratory results for SS-20.
=	106.3			(92/10")		-
_					_	
_					-	-
1 -					-	1
1 -]
110	110.0				-	
110_	110.0	0.4	SS-21	50/5"	LEAN CLAY (CL), similar to above, except dry to	
				(50/5")	slightly moist, estimated less than 5% fine sand.]
1 -					-	-
1 -					-	1
1 -]
-					-	-
-					-	1
115_]
-					-	-
-					-	-
]
-					-	Driller notes sand at 117'.
1 -					-	1
					_]
100 -					-	-
120		l				

BORING NUMBER:

B-C-BTC-4p

SHEET 5 OF 5

SOIL BORING LOG

PROJECT : Sound Transit East Link LOCATION : Int. 110th Ave NE & NE 6th, Bellevue. (227372.0 N, 1304945.7 E, South State Plane)

ELEVATION: 166 feet (NAVD88)

DRILLING CONTRACTOR: Gregory Drilling, Inc., Redmond, Washington

				(7/7/2010). See (D : 6/23	
DEPTH B	BELOW GROUND SURFACE (ft) STANDARD PENETRATION TEST PEST ITS				SOIL DESCRIPTION		COMMENTS
	INTERVA	RECOVI		TEST RESULTS	SOIL NAME (USCS GROUP SYMBOL). COLOR, MOISTURE CONTENT, RELATIVE DENSITY	Y OR	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND
			#TYPE	6"-6"-6" (N)	CONSISTENCY, SOIL STRUCTURE, MINERALOG	SY	INSTRUMENTATION
-	120.0	0.2	SS-22	50/3" \ (50/3")	POORLY GRADED SAND WITH SILT (SP-SM), gray, wet, very dense, fine to coarse sand, predominantly fine to medium sand, estimated 10%	6	Drilling completed at 13:37pm on 6/22/2010. Continued with piezometer installation on 6/23/2010.
-					nonplastic fines.	/ _	PIEZOMETER INSTALLATION LOG: Ecology Tag: BBK 239.
-					Bottom of hole at 120.3 ft below ground surface.	-	Well is 2-inch diameter schedule 40 PVC with 0.01" slotted screen installed from 80' to 90'.
125						-	0' to 2' - Flush concrete monument. 2' to 78' - Bentonite-cement grout.
_						_	78' to 92' - Colorado silica sand. 92' to 94' - 3/8" Bentonite chips.
_						-	94' to 120.3' - Bentonite-cement grout.
_						-]
_						_	
-						-	
130						_	-
-						-	
-						-	
_						-	
_						-	
135_						_	
_						-	
-						-	
_						-	
-						-	
140						-	-
-						_	-
_						-	
						-]
_						-	1
145 -						-	1
145						_	-
_						-	
_						-	
						-	1
-						-	
150						_	1

393372.H3.03.04.04.01

BORING NUMBER:

B-C-ES-10p

SHEET 1 OF 4

SOIL BORING LOG

PROJECT : Sound Transit East Link

LOCATION: Parcel NE of Bellevue City Hall, NE 6th St. (227399.5 N, 1305311.1 E, South State Plane)

ELEVATION: 137.4 feet (NAVD88)

DRILLING CONTRACTOR: Gregory Drilling, Inc., Redmond, Washington

WATER	LEVELS	: High of	33.3' bgs	(12/8/2010). See	graph for additionTakRetails/13/2010 END: 8/16	S/2010 LOGGER : S. Brancheau
DEPTH B	ELOW GRO	DUND SUR	FACE (ft)	STANDARD	SOIL DESCRIPTION	COMMENTS
	INTERVA	AL (ft)		PENETRATION TEST RESULTS	COLL NAME (1900 CROUP OVARDOL)	
		RECOVE	ERY (ft)		<u>SOIL NAME (USCS GROUP SYMBOL).</u> COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND
			#TYPE	6"-6"-6"	CONSISTENCY, SOIL STRUCTURE, MINERALOGY	INSTRUMENTATION
-				(N)	Surface is topsoil with long grass and weeds.	Began drilling at 12:03pm on 8/13/2010 with
						hollow-stem auger.
_					-	-
-					-	†
_					-]
-					-	†
					- -]
5	5.0				SILTY SAND (SM), bluish-gray from 5'-5.5', light	┪
_		1.2	SS-1	7-14-20 (34)	gray with brown interbedding from 5.5'-6.3', dry to]
-	6.5			(0.1)	slightly moist, medium dense, fine to medium sand, predominantly fine sand, estimated 20-25% nonplastic	-
_					fines, estimated 5% fine subangular to subrounded]
-					gravel.	-
_					_	j
10	10.0]
10		0.9	SS-2	23-50/5"	SILTY SAND, SM, light brownish-gray, dry to slightly	See laboratory results for SS-2.
_	10.9	0.9	33-2	(50/5")	moist, very dense, predominantly fine sand, nonplastic fines, fin to coarse subangular to	
-					subrounded gravel.	+
]
-					-	-
_					- -]
15	15.0				-	-
13	15.5	0.4	SS-3	50/6"	SILTY SAND (SM), same as above.	_
-				(50/6")	-	-
_					_	_
_					-	-
-					-	Driller notes coarse gravels at 18'. Slightly
] =					- -	chattery drilling.
20 -	20.0				-	-
	20.8	0.7	SS-4	44-50/3"	SILTY SAND WITH GRAVEL, SM, dark	See laboratory results for SS-4.
-	20.0			(50/3")	brownish-gray, dry to moist, very dense, fine to coarse sand, nonplastic fines, fine angular to subrounded	-
					gravel, gravel lodged in split spoon shoe.]
-					-	Slightly chattery drilling from 20' to 25'.
					_	Singing oraciery driving norm 20 to 20.
] -					-	-
25_	25.0 25.4				-	1
	25.4	0.4	SS-5	50/5' (50/5") /	SILTY SAND WITH GRAVEL (SM), dark bluish-gray, moist to slightly wet, very dense, fine to	Vory chattony drilling, coarse grayele at 25 5!
-				(30/3)	coarse sand, predominantly fine to medium sand,	Very chattery drilling, coarse gravels at 25.5' Gravels up to 6" in diameter visible in cuttings.
					estimated 30% nonplastic fines, estimated 30% fine to coarse subangular to subrounded gravel.]
-					Coarse subangular to subnounted graver.	-
					_]
-					-	-
30						-

393372.H3.03.04.04.01

BORING NUMBER:

B-C-ES-10p

SHEET 2 OF 4

SOIL BORING LOG

PROJECT : Sound Transit East Link

LOCATION: Parcel NE of Bellevue City Hall, NE 6th St. (227399.5 N, 1305311.1 E, South State Plane)

ELEVATION: 137.4 feet (NAVD88)

DRILLING CONTRACTOR: Gregory Drilling, Inc., Redmond, Washington

WATER	LEVELS	: High of	33.3' bgs	(12/8/2010). See	graph for addition Tak Retails/13/2010 END: 8/16	2010 LOGGER : S. Brancheau
DEPTH BI	ELOW GRO	DUND SUR	FACE (ft)	STANDARD	SOIL DESCRIPTION	COMMENTS
	INTERV	AL (ft)		PENETRATION TEST RESULTS	OOU NAME (USOS OPOUR SYMPOL)	
		RECOVE	ERY (ft)		<u>SOIL NAME (USCS GROUP SYMBOL).</u> COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND
			#TYPE	6"-6"-6" (N)	CONSISTENCY, SOIL STRUCTURE, MINERALOGY	INSTRUMENTATION
_	30.0	0.2	SS-6	50/3"	SILTY SAND (SM), brownish-gray, dry to slightly	
- - - - -				(50/3")	moist, very dense, predominantly fine to medium sand, estimated 30% nonplastic fines, estimated 10% fine subangular gravel.	Very chattery drilling from 30' to 33'.
35 <u> </u>	35.0 35.5	0.3	SS-7	50/6" (50/6")	SILTY GRAVEL WITH SAND, GM, dark gray, wet, very dense, fine to coarse angular to subrounded gravel, nonplastic fines, fine to coarse sand.	See laboratory results for SS-7.
- - - -						Very chattery drilling from 35' to 40'. Driller notes that gravels are loose.
40	40.0					_
- - - -	41.5	1.5	SS-8	8-24-40 (64)	40'-41' - A: SILT (ML), olive-gray to gray, moist, hard, nonplastic to low plasticity fines, trace fine sand. 41'-41.5' - B: POORLY GRADED SAND WITH SILT (SP-SM), dark gray, wet, very dense, fine to medium sand, estimated 10-15% nonplastic fines.	
- - - 45	45.0 45.9	0.9	SS-9	47-50/5" (50/5")	SILT WITH SAND, ML, dark gray, wet, hard, nonplastic fines, fine sand, trace medium sand at	Drilling rate increases from 42.5' to 45'. Driller notes 3" of heave before SS-9. See laboratory results for SS-9. 12" of sand heave on top of sample.
	50.0				bottom of sample.	
50	50.0	1.4	SS-10	20-45-50/5" (95/11")	SILT WITH SAND (ML), similar to above, 3" fine to medium sand at 50.5'.	9" of sand heave on top of sample. Drilling stopped at at 15:45pm on 8/13/2010
- - - -	51.4			()	- - - - -	Resumed drilling 8:12am on 8/16/2010 with mud rotary.
55	55.0					
- - -	56.0	1.0	SS-11	30-50/6" (50/6")	SANDY SILT, ML, dark gray with 1/8" dark brown lenses from 55' to 55.2', wet, hard, nonplastic fines, fine sand.	See laboratory results for SS-11.
- - -					- - -	
60					-	
60		l				l .

393372.H3.03.04.04.01

BORING NUMBER:

B-C-ES-10p

SHEET 3 OF 4

SOIL BORING LOG

PROJECT : Sound Transit East Link

LOCATION: Parcel NE of Bellevue City Hall, NE 6th St. (227399.5 N, 1305311.1 E, South State Plane)

ELEVATION: 137.4 feet (NAVD88)

DRILLING CONTRACTOR: Gregory Drilling, Inc., Redmond, Washington

WATER	LEVELS	: High of	33.3' bgs	(12/8/2010). See	graph for additi@rak@etai&:13/2010 END: 8/16			
DEPTH BI	ELOW GRO	OUND SUR	FACE (ft)	STANDARD	SOIL DESCRIPTION	COMMENTS		
1	INTERVA	AL (ft)		PENETRATION TEST RESULTS	SOIL NAME (LISCS CROUP SYMPOLY	DEDTH OF CACING POWERS PATE		
1		RECOVE	RY (ft)		SOIL NAME (USCS GROUP SYMBOL). COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND		
			#TYPE	6"-6"-6" (N)	CONSISTENCY, SOIL STRUCTURE, MINERALOGY	INSTRUMENTATION		
	60.6	0.5	SS-12	50/6"	SILT WITH SAND (ML), dark gray, wet, hard,	_		
1 -				(50/6")	nonplastic fines, estimated 20-30% fine sand.	-		
1 1					_			
-					-	-		
					_			
1]					-	=		
65	65.0				-	-		
1 7		1.0	SS-13	33-50/6"	65'-65.5' - A: SILT WITH SAND (ML), same as			
1 -	66.0			(50/6")	above. 65.5'-66' - B: SILT (ML), dark olive-gray, moist to	-		
1 1					slightly wet, hard, nonplastic fines, estimated 10-15%]		
-					fine sand.	-		
1 =					_]		
-					-	-		
70_	70.0				-	-		
1 7		0.0	SS-14	50/0"	NO RECOVERY.			
1 -				(50/0")	-	-		
1]]		
-					-	-		
1 1					_]		
1 -					-	-		
75	75.0				-	1		
1 7	75.8	0.6	SS-15	43-50/4" (50/4")	<u>SILTY SAND, SM,</u> dark gray, wet, very dense, predominantly fine sand, nonplastic fines, trace fine	See laboratory results for SS-15.		
-				(30/4)	gravel.	4" of sand and gravel slough on top of sample.		
1]]		
1 -					-	-		
1 1					_]		
1 -					-	-		
80	80.0							
-	80.4	0.3	SS-16	50/5" \ (50/5")	SILTY SAND (SM), same as above.	4" of sand and gravel slough on top of sample.		
1 -				(30/3)	-	1		
1]					-	Duilling rate claus significantly at 001 duillages		
1 -					-	Drilling rate slows significantly at 82', driller notes possibly grinding on boulder.		
1 1					- -]		
					-	-		
85	85.0 85.4				-	-		
-	85.4	0.4	SS-17	50/5" (50/5")	SANDY SILT (ML), dark gray, dry to moist, hard, nonplastic fines, estimated 30-35% fine sand.	Sampler bounced final 20 blows with no advancement.		
1 -				(30/3)	nonpiasuo iiries, esumateu 30-33 // iirie sanu.	auvanociliciii.		
]					-]		
1 -					-	-		
					_]		
-					-	-		
90					<u> </u>			

393372.H3.03.04.04.01

BORING NUMBER:

B-C-ES-10p

SHEET 4 OF 4

SOIL BORING LOG

PROJECT : Sound Transit East Link

LOCATION: Parcel NE of Bellevue City Hall, NE 6th St. (227399.5 N, 1305311.1 E, South State Plane)

ELEVATION: 137.4 feet (NAVD88)

DRILLING CONTRACTOR: Gregory Drilling, Inc., Redmond, Washington

WATER LEVELS: High of 33.3' bgs (12/8/20) DEPTH BELOW GROUND SURFACE (ft) STAN				(12/8/2010). See		2010 LOGGER : S. Brancheau COMMENTS				
DEPIHB			FACE (ft)	STANDARD PENETRATION	SOIL DESCRIPTION					
	INTERV	RECOVE	ERY (ft)	TEST RESULTS 6"-6"-6"	SOIL NAME (USCS GROUP SYMBOL). COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION				
_	90.0	0.3	SS-18	(N) 50/5" (50/5")	SANDY SILT (ML), similar to above except estimated 40% fine to medium sand.	-				
- - - - -				(1000)						
95	95.0 95.3	0.2	SS-19	50/3" \(50/3")/	SANDY SILT or SILT WITH SAND (ML), dark gray, dry to slightly moist, hard, nonplastic fines, estimated 25-35% fine sand, 1/4" fine to medium sand lens at 95.1'.	- - - - - - -				
100	100.0 100.3	0.0	SS-20	50/4" (50/4") /	NO RECOVERY.	-				
- - - -					Bottom of hole at 100.3 ft below ground surface.	PIEZOMETER INSTALLATION LOG: Ecology Tag: BBT 709. Well is 1-inch schedule 40 PVC with bottom at 80' and 0.01" slotted screen installed from 30' to 40'.				
105 <u> </u>					-	0' to 1' - Flush concrete monument. 1' to 26' - 3/8" Bentonite chips. 26' to 41' - Colorado silica sand. 41' to 60' - 3/8" Bentonite chips. 60' to 100.3' - Portland cement-grout.				
- - - -						- VIBRATING WIRE PIEZOMETER INFORMATION: Installed at 80' in Portland cement-grout mix. SN: 10-2938.				
110 - -					-	- - - -				
-										
115 - - -										
- - - - 120										

BORING NUMBER:

B-C-ES-11p

SHEET 1 OF 3

SOIL BORING LOG

PROJECT : Sound Transit East Link

LOCATION: Windermere Building, 112th Ave NE & NE 6th St, Bellevue. (227492.8 N, 1305709.3 E, South State Plane)

ELEVATION: 113.6 feet (NAVD88)

DRILLING CONTRACTOR: Gregory Drilling, Inc., Redmond, Washington

WATER	LEVELS	: High of	10.5' bgs	(12/8/2010). See	graph for additional END: 6/24	4/2010 LOGGER : S. Brancheau		
DEPTH BE	ELOW GRO	UND SURI	FACE (ft)	STANDARD	SOIL DESCRIPTION	COMMENTS		
	INTERVAL (ft)		PENETRATION TEST RESULTS	COIL NAME (1900 CROUP CYGEROL)	DEDTILOF CACINO DOULING DATE			
		RECOVE	RY (ft)		SOIL NAME (USCS GROUP SYMBOL). COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND		
			#TYPE	6"-6"-6" (N)	CONSISTENCY, SOIL STRUCTURE, MINERALOGY	INSTRUMENTATION		
				. ,	Surface is 4"-thick asphalt.	Began drilling at 7:39am on 6/24/2010 with		
-					-	hollow-stem auger.		
-					-	-		
					- -			
-					-	-		
					-			
_					-	-		
5	5.0				SILTY SAND or CLAYEY SAND (SM/SC),	-		
		1.0	SS-1	3-4-7 (11)	bluish-gray with orange iron-oxide staining throughout	_		
-	6.5			(11)	sample, slightly moist to moist, medium dense, fine to medium sand, estimated 20-35% nonplastic to low	-		
					plasticity fines.	-		
					-]		
-					-	-		
-					-	-		
10	10.0				OIL TV OAND OM	-		
-		1.2	SS-2	16-30-34	<u>SILTY SAND, SM.</u> medium gray, moist, very dense, predominantly fine sand, nonplastic fines, fine	See laboratory results for SS-2.		
1 1	11.5	1.2	00 2	(64)	subangular to subrounded gravel.]		
l					-	-		
-					-	-		
-					-	-		
15	15.0				-	-		
~	15.0 15.4	0.4	SS-3	50/5"	SILTY SAND (SM), same as above, possibly less]		
-				(50/5")	fines.	Very chattery drilling at 16'.		
-					-	very chartery drilling at 10.		
					-			
-					-	-		
					_]		
20]	20.0				-	-		
20	20.0			07.07.50	SILTY SAND, SM, light to medium gray, moist to	See laboratory results for SS-4.		
		1.6	SS-4	37-37-50 (87)	slightly wet, very dense, fine to medium sand,]		
+	21.5			· · · /	predominantly fine sand, nonplastic fines.	-		
-					-]		
]					-			
-					-	-		
					_]		
25	25.0				DOODLY COADED SAND WITH SILT (SD SM)	-		
-		1.8	SS-5	32-40-44	POORLY GRADED SAND WITH SILT (SP-SM), light to medium gray, wet, very dense, fine to medium	-		
1	26.5	_		(84)	sand, predominantly fine sand, estimated 10%]		
-					nonplastic fines.	-		
					-	-		
					_]		
I ⊣					-	Slight decrease in drill rate from 28' to 30'.		
30					-	Silgrit decrease in unii rate from 28 to 30.		

393372.H3.03.04.04.01

BORING NUMBER:

B-C-ES-11p

SHEET 2 OF 3

SOIL BORING LOG

PROJECT : Sound Transit East Link

LOCATION: Windermere Building, 112th Ave NE & NE 6th St, Bellevue. (227492.8 N, 1305709.3 E, South State Plane)

ELEVATION: 113.6 feet (NAVD88)

DRILLING CONTRACTOR: Gregory Drilling, Inc., Redmond, Washington

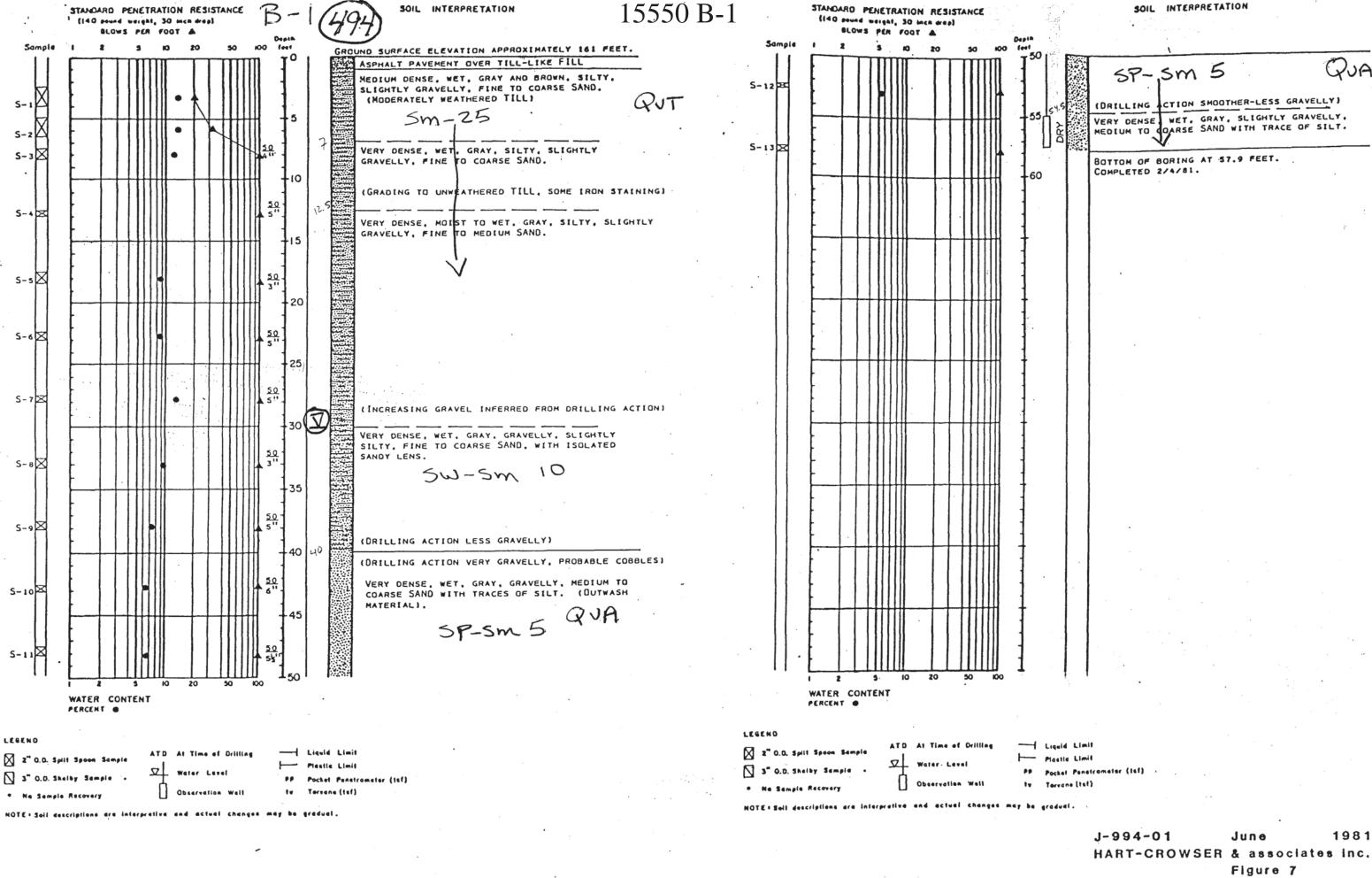
WATER	LEVELS	: High of	10.5' bgs	(12/8/2010). See	graph for additional Retails 24/2010 END: 6/24	4/2010 LOGGER : S. Brancheau
DEPTH BI	ELOW GRO	OUND SUR	FACE (ft)	STANDARD	SOIL DESCRIPTION	COMMENTS
	INTERVA	AL (ft)		PENETRATION TEST RESULTS	COLL NAME (LICCE CROUP OVARDOL)	DEDTU OF 040MG
	RECOVERY (ft)			SOIL NAME (USCS GROUP SYMBOL). COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND	
			#TYPE	6"-6"-6" (N)	CONSISTENCY, SOIL STRUCTURE, MINERALOGY	INSTRUMENTÁTION
-	30.0 31.3	2.0	SS-6	17-43-50/4" (93/10")	POORLY GRADED SAND WITH SILT, SP-SM, dark gray, wet, very dense, predominantly fine sand, nonplastic fines, 1/4" clay chunk at 30.5'.	See laboratory results for SS-6. Switched to mud rotary drilling after SS-6. Driller notes 8' of heave after SS-6.
35	35.0			33-36-45	INTERBEDDED POORLY GRADED SAND WITH	
-	36.5	1.5	SS-7	(81)	SILT and SILTY SAND (SP-SM, SM), dark gray, wet, very dense, interbedded in layers from 1" to 3" thick, SP-SM is fine to medium sand, estimated 10% nonplastic fines, SM is fine sand, estimated 25-35% nonplastic fines.	
40	41.5	1.5	SS-8	34-26-40 (66)	SILT, ML, 40'-40.5' is light gray and wet, 40.5'-41' is brown and dry to slightly moist, 41'-41.5' is olive gray and dry to slightly moist, hard, nonplastic fines, fine sand.	See laboratory results for SS-8.
45 - - - - - -	45.0 46.5	1.5	SS-9	36-38-50/6" (88/12")	SILTY SAND (SM), olive-gray, wet, very dense, fine to medium sand, estimated 20-25% nonplastic fines. Top 1" is silt.	- - - - - - - - - - - - - - - - - - -
50	50.0 50.3	0.0	SS-10	50/3" \ (50/3")	NO RECOVERY.	Chattery and grindy drilling at 50'.
55	55.0 56.5	1.6	SS-11	50-34-42 (76)	SANDY SILT (ML), dark gray, dry to slightly moist, hard, nonplastic fines, estimated 35% fine sand, homogeneous appearance.	
60 -						

BORING NUMBER:

B-C-ES-11p

SHEET 3 OF 3

SOIL BORING LOG


PROJECT : Sound Transit East Link

LOCATION: Windermere Building, 112th Ave NE & NE 6th St, Bellevue. (227492.8 N, 1305709.3 E, South State Plane)

ELEVATION: 113.6 feet (NAVD88)

DRILLING CONTRACTOR: Gregory Drilling, Inc., Redmond, Washington

WATER	LEVELS	: High of	10.5' bgs	(12/8/2010). See	graph for additional Retails 24/2010 END: 6/2	4/2010 LOGGER : S. Brancheau
DEPTH B	ELOW GRO	OUND SUR	FACE (ft)	STANDARD	SOIL DESCRIPTION	COMMENTS
	INTERVAL (ft) RECOVERY (ft) PENE IRA TEST RES		PENETRATION TEST RESULTS	SOIL NAME (USCS GROUP SYMBOL). COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND	
			#TYPE	6"-6"-6" (N)	CONSISTENCY, SOIL STRUCTURE, MINERALOGY	INSTRUMENTÁTION
-	60.0 61.5	1.6	SS-12	31-29-31 (60)	SANDY SILT, ML, similar to above except slightly moist, less fines and trace fine subrounded gravel.	See laboratory results for SS-12.
65	65.0 66.5	1.6	SS-13	29-17-30 (47)	SANDY SILT (ML), same as above.	
70	70.0	1.5	SS-14	18-17-21 (38)	70'-70.5' - A: SANDY SILT (ML), same as above. 70.5'-71.5' - B: FAT CLAY (CH), dark brown, moist, hard, plastic, trace fine sand, homogeneous appearance.	
75	75.0 76.5	1.5	SS-15	13-16-19 (35)	FAT CLAY, CH, same as above except 1/2" gravel piece at 75.5' and 1/8" sand lens at 76.2'.	See laboratory results for SS-15.
80	80.0	1.0	SS-16	37-50/6" (50/6")	SILT (ML), dark gray, dry to moist, hard, nonplastic to low plasticity fines, estimated 10% fine sand, trace fine subrounded gravel.	Drilling completed at 12:52pm on 6/24/2010. PIEZOMETER INSTALLATION LOG:
85					Bottom of hole at 81.0 ft below ground surface.	Ecology Tag: BBK 240. Well is 1-inch diameter schedule 40 PVC with 0.01" slotted screen installed from 40' to 50'. 0' to 1' - Flush concrete monument. 1' to 36' - 3/8" Bentonite chips. 36' to 50' - Colorado silica sand. 50' to 52' - 3/8" Bentonite chips. 52' to 81' - Bentonite-cement grout.

SOIL INTERPRETATION

STANDARD PENETRATION RESISTANCE

HART-CROWSER & associates inc.

SOIL INTERPRETATION

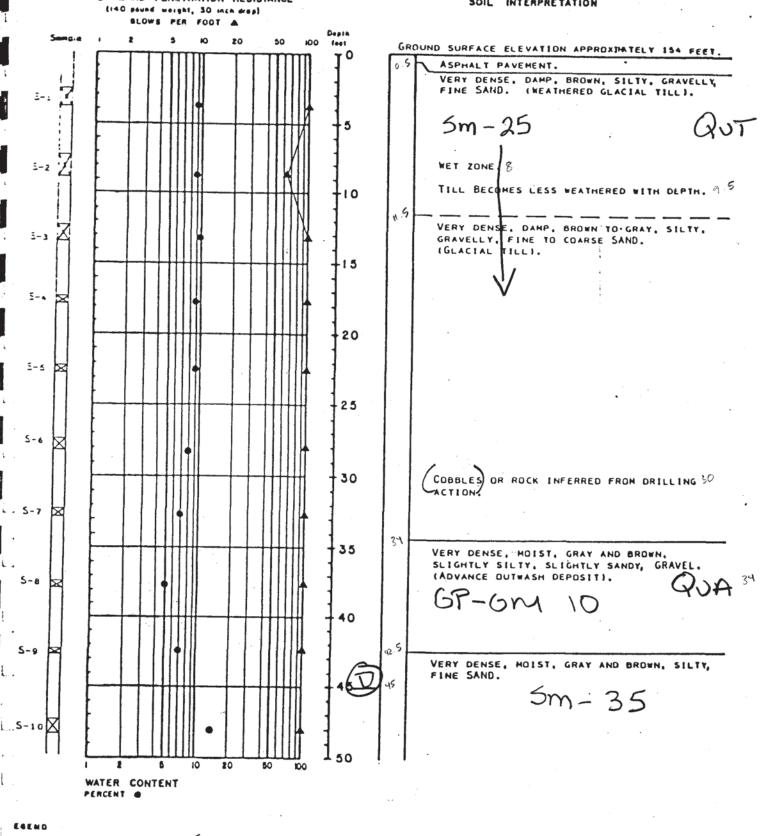
Sample

STANDARD PENETRATION RESISTANCE

MOTE: Soil descriptions are interpretive and actual changes may be graduel.

(140 sound weight, 30 mcn drap)

BLOWS PER FOOT A


J-984-01

June

Figure 10

HART-CROWSER & secoclates inc.

VERY DENSE, MOIST TO BET, BROWN, SLIGHTLY, SILTY, FINE GRAVELLY, FINE TO COARSE SAND. QUA 5-11 5w-sm 6 5-12 - 60 VERY STIFF TO HARD DAMP, GRAY, SILTY, CLAY. S-13 CL-ML 95 (PP & 4.5 TSF) 68 5-15 (PP=4.3 TSF. 3.6 TSF) 73 5-16 - THIN SANDY SILT PARTINGS OBSERVED IN 75 5-17 X CL-ML 90 S-18 X HARD, DAMP, GRAY, SILT. ML-95 (PP 2 4.5 TSF) 82.5 5-19 5-20 (PP ≥ 4.5 TSF) 88 5-21 5-22 +90 S-23 X BOTTOM OF BORING 93.5 FEET. +95 COMPLETED 5/15/81. WATER CONTENT PERCENT . LESEND 2" O.D. Spill Speen Sample Plestic Limit Water Level 3" O.D. Shelby Semple . PP Poctot Penetrometer (tsf) Observation Wall tv Torvens (taf) . Ne Semple Recovery

8" O.D. Spitt Spoon Sample

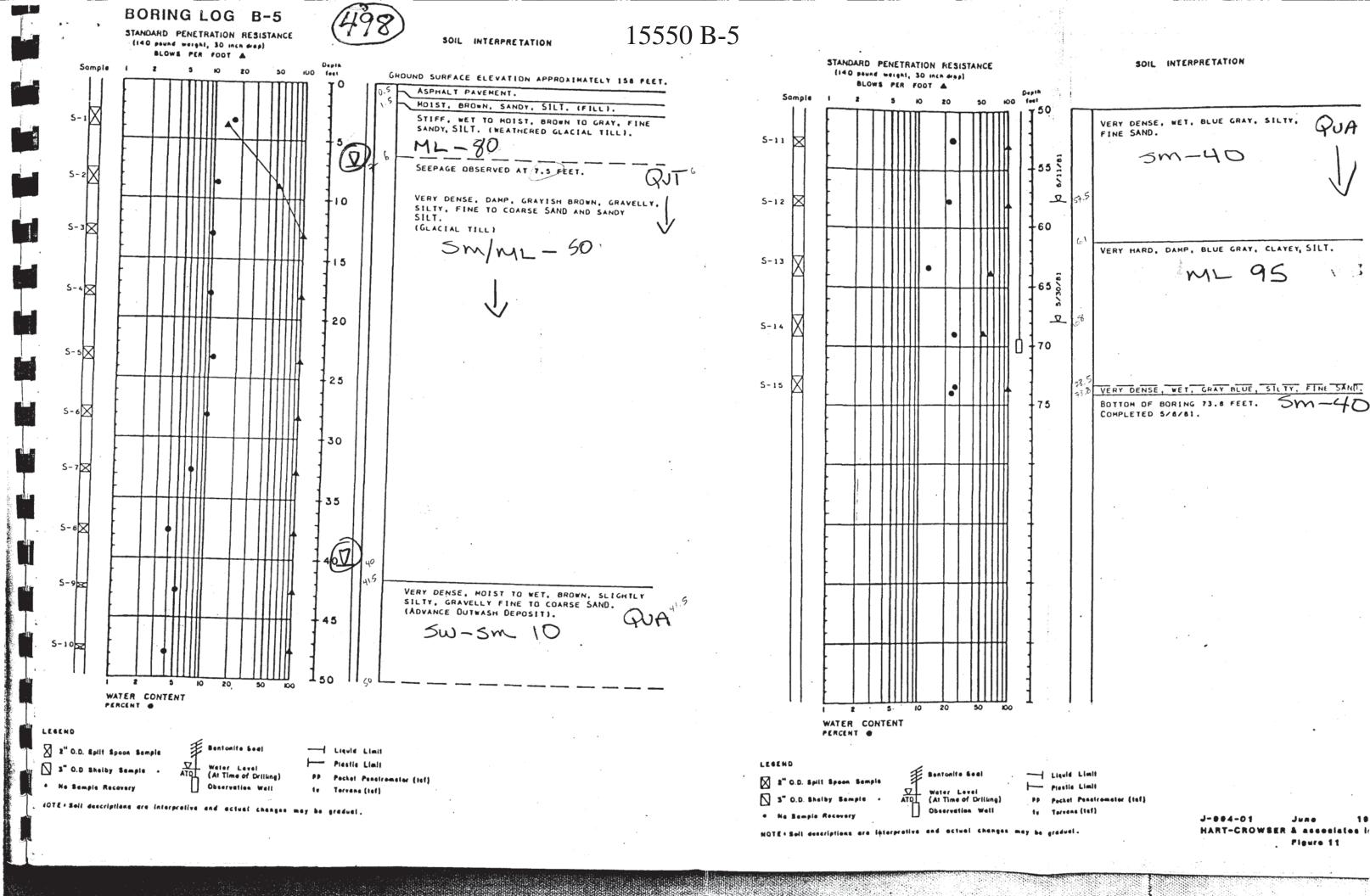
Bentonite Seat

Liquid Limit

Picetic Limit

Water Level

ATO


(At Time of Dilitical)

PR Protect Special Special

ATO (At Time of Drilling) PP Pocket Penatromator (tell)
Observation Walt to Torvana (tell)

MOTE : Soli descriptions are interpretive and actual changes may be gradual.

Ne Sample Recovery

Report ID 16860

Key to Exploration Logs

Sample Description

Classification of soils in this report is based on visual field and laboratory observations which include density/consistency, moisture condition, grain size, and plasticity estimates and should not be construed to imply field nor laboratory testing unless presented herein. Visual-monucl classification methods of ASTM D 2488 were used as an identification guide.

Soil descriptions consist of the following:

Density/consistency, moisture, color, minor constituents, MAJCR CONSTITUENT, additional remorks.

Density/Consistency

Soil density/consistency in borings is related primarily to the Standard Penetrotion Resistance. Soil density/consistency in test pits is estimated based on visual observation and is presented parenthetically on the test pit logs.

SAND or GRAVEL Density	Standard Penetration Resistance (N) in Blaws/Foot	SILT or CLAY Consistency	Standard Penetration Resistance (N) in Blows/Foot	Approximate Shear Strength in TSr
Very laose	0 - 4 .	Very soft	0 - 2	<0.125
Locse	4 - 10	Soft	2 - 4	0.125 - 0.25
Medium dense	10 - 30	Medium stiff	4 - 8	0.25 - 0.5
Dense	30 - 50	Stiff	8 - 15	0.5 - 1.0
Very dense	>50	Very stiff	15 - 30	1.0 - 2.0
		Hard	>30	>2.0

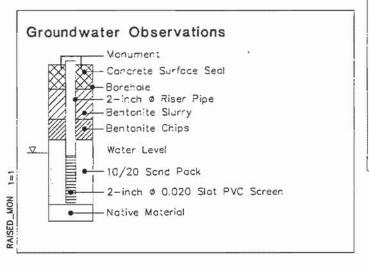
Moisture

Dry Little perceptable maisture

Dcmp Some perceptable moisture, probably below aptimum

Moist Probably near optimum maisture content

We: Much perceptable moisture, probably above optimum

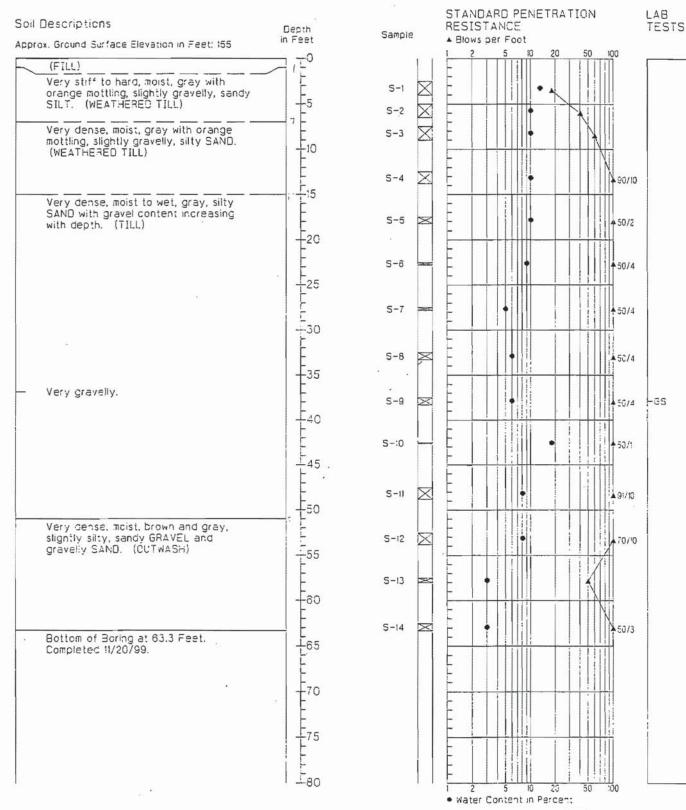

Minor Constituents	Estimated Percentage
Not identified in description	0 - 5
Slightly (cloyey, silty, etc.)	5 - 12
Clayey, silty, sandy, gravelly	12 - 30
Very (ćlayey, silty, etc.)	30 - 50

Legends

* No Somple Recovery

Tube Pushed, Not Driven

Sampling Test Symbols BORING SAMPLES TEST PIT SAMPLES Split Spoon Grab (Jar) She:by Tube Bag M Cuttings Shelby Tube T Core Run Bucket Sample



Test Symbols Grain Size Classification Consolidation TUU Trioxial Unconsolidated Undrained TCU Triaxial Consolidated Undrained TCD Triaxial Consolidated Drained QU DS Direct Snear K Permecbilty Pocket Penetrometer Approximate Compressive Strength in TSF PP Approximate Shear Strength in TSF CBR California Bearing Ratio MD Moisture Density Relationship AL Atterberg Limits Water Content in Percent Liquid Limit Natural Plastic Limit Photoionization Reading PID CA Chemical Analysis

J-7263 Figure A-1 2/00

Boring Log HC-3 16860 HC-3

1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

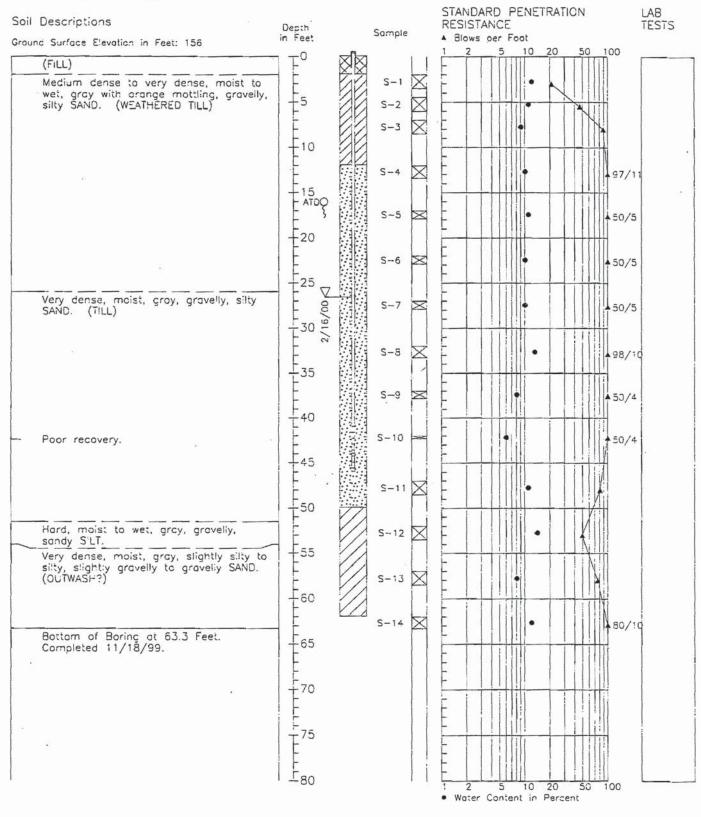

3. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

Figure A-4

11/99

Boring Log HC-6 16860 HC-6

1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil descriptions and stratum lines are interpretive

and actual changes may be gradual.

3. Graundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

CVD 12/15/99 7257\HC06

33

Report ID 17923

MAJ	OR DIVISIO	ONS	GRAPH SYMBOL	LETTER SYMBOL	TYPICAL DESCRIPTION
	Gravel And	Clean Gravels			Well-Graded Gravels, Gravel-Sand Mixtures, Little Or No Fines
Coarse	Gravelly Soils	(little or no fines)		GP gp	Poorly-Graded Gravels, Gravel- Sand Mixtures, Little Or No Fines
Grained Soils	More Than 50% Coarse	Gravels With		GM gm	Silty Gravels, Gravel - Sand - Silt Mixtures
	Fraction Retained On No. 4 Sieve	Fines (appreciable amount of fines)		GC gc	Clayey Gravels, Gravel - Sand - Clay Mixtures
	Sand And	Clean Sand		SW sw	Well-Graded Sands, Gravélly Sands, Little Or No Fines
More Than 50% Material	Sandy Soils	(little or no fines)		SP sp	Poorly-Graded Sands, Gravelly Sands, Little Or No Fines
Larger Than No. 200 Sieve Size	More Than 50% Coarse Fraction	Sands With		SM sm	Silty Sands, Sand - Silt Mixtures
	Passing No. 4 Sieve	Fines (appreciable amount of fines)		SC sc	Clayey Sands, Sand - Clay Mixtures
				ML ml	Inorganic Silts & Very Fine Sands, Rock Flour, Silt Clayey Fine Sands; Clayey Silts w/ Slight Plasticity
Fine Grained Soils	Silts And	Liquid Limit Less Than 50		CL cl	Inorganic Clays Of Low To Medium Plasticity, Gravelly Clays, Sandy Clays, Silty Clays, Lean
Soils	Clays			OL OI	Organic Silts And Organic Silty Clays Of Low Plasticity
More Than				MH mh	Inorganic Silts, Micaceous Or Diatomaceous Fine Sand Or Silty Soils
50% Material Smaller Than No. 200 Sieve	Silts And Clays	Liquid Limit Greater Than 50		CH ch	Inorganic Clays Of High Plasticity, Fat Clays
Size				OH oh	Organic Clays Of Medium To High Plasticity, Organic Silts
	Highly Organic	Soils		PT pt	Peat, Humus, Swamp Soils With High Organic Contents

Topsoil	The state of the s	Humus And Duff Layer
Fill		Highly Variable Constituents

The Discussion In The Text Of This Report Is Necessary For A Proper Understanding
Of The Nature Of The Material Presented In The Attached Logs

Notes:

Dual symbols are used to indicate borderline soil classification. Upper case letter symbols designate sample classifications based upon laboratory testing; lower case letter symbols designate classifications not verified by laboratory testing.

I 2°O.D. SPLIT SPOON SAMPLER
2.4°I.D. RING SAMPLER OR
SHELBY TUBE SAMPLER
P SAMPLER PUSHED

* SAMPLE NOT RECOVERED

WATER LEVEL (DATE)

WATER OBSERVATION WELL

C TORVANE READING, tsf

qu PENETROMETER READING, tsf

W MOISTURE, percent of dry weight

pcf DRY DENSITY, pounds per cubic ft.

LL LIQUID LIMIT, percent

PI PLASTIC INDEX

LEGEND

Proj. No. 2576 Date

ate Apr. '85

Plate Al

17923 B-2

BORING NO. 2

Logged By __JB_ Date __3/7/85

ELEV. 137.5±

Graph	US CS	Soil Description	Depth (ft.)	Sample	(N) Blows Ft.	W (%)	
	sm	tan/orange mottled silty SAND, fine, with gravel, moist, medium dense	5	エ	28	15	
		becomes gray with increased gravel	10	エ	100+	11	
		content, very dense	15	工	100+	10	
		becomes tan	20	工	100+	10	
			25	一	100+	8	
			30	=	100+	9	
	 sp	apparent water bearing sand lense in this zone from 28-32'	35	主	100+	12	
	 sp	gravelly SAND, fine, with iron staining	3/27/8	工	100+	11	
	 sm	moist to wet, very dense tan gravelly silty SAND, fine, moist to wet, very dense			100+	16	<u> </u>

Boring terminated at 42.75' below existing grade. Groundwater encountered at 30' during drilling. 3/4" PVC standpipe installed to bottom of boring, lower 30' slotted. A bentonite seal was placed at 2' below the surface and the hole backfilled with soil cuttings.

Earth
Consultants Inc.

GEOTECHNICAL ENGINEERING & GEOLOGY

BORING LOG

GLOBE CENTER BELLEVUE, WASHINGTON

Proj. No. 2576

Date Apr.'85

Plate A3

BORING NO. 4

Logged By ___FC_ Date ______

ELEV. 141±

Graph	US CS	Soil Description	Depth (ft.)	Sample	(N) Blows Ft.	W (%)	
		tan silty SAND, fine to medium with gravel, moist, dense, sand becomes coarse below 4'	_5	I	30	11	
			10	エ	49	10	*
		grades to trace gravel	15	I	88	10	
	SM	with increased gravel		=	100	7	
	J. I	becomes gray in color	20	=	100+	7	i i
		zone of both gray and tan coloration	3/27/8	=	100+	10	
			35	=	100+	8	
		becomes gray	= 33		100+	7	

Boring terminated at 37.8' below existing existing grade. No groundwater seepage encountered while drilling. 3/4" PVC standpipe installed to bottom of boring, lower 25' slotted. A bentonite seal was placed at 2' below the existing ground surface. Boring was backfilled with soil cuttings.

Earth
Consultants Inc.

GEOTECHNICAL ENGINEERING & GEOLOGY

BORING LOG

GLOBE CENTER BELLEVUE, WASHINGTON

Proj. No. 2576

Date Apr. '85

Plate A5

BORING NO. 5

Logged By DA Date __3/11/85__

ELEV. 141.5±

Graph	US CS	Soil Description	Depth (ft.)	Sample	(N) Blows Ft.	W (%)	
	sm	brown silty SAND, fine to medium, with gravel and concrete rubble (FILL)	_5	I	52	8	
		gray silty SAND, fine to medium, with gravel, moist, very dense	_10	エ	76	10	
		free water encountered in a sand lense	□ 15	=	100+	10	
		at 13.5' water bearing sand lenses encountered	3/27/85 20	=	100+	17	= <u>F</u>
	sm	in this strata to 28'	_25	-	100+	17	E 20
			_30	=	100+	11	
			35	=	100+		ř
			40	=	100+	7	2
		cobbles encountered	45	=	100+	.8	1
		CODDIES enconnected	50	=	100+	9	-
			= 30	<u></u>	100+	13	

Boring terminated at 53' below existing grade. Groundwater encountered from 12-28' during drilling. 3/4'' PVC standpipe installed to bottom of boring, lower 40' slotted. A bentonite seal was placed at 2-3' and the boring was backfilled with soil cuttings.

BORING LOG

GLOBE CENTER BELLEVUE, WASHINGTON

Proj. No. 2576

Date Apr. '85

Plate A6

BORING NO. 6

Logged By __DA__ Date __3/11/85

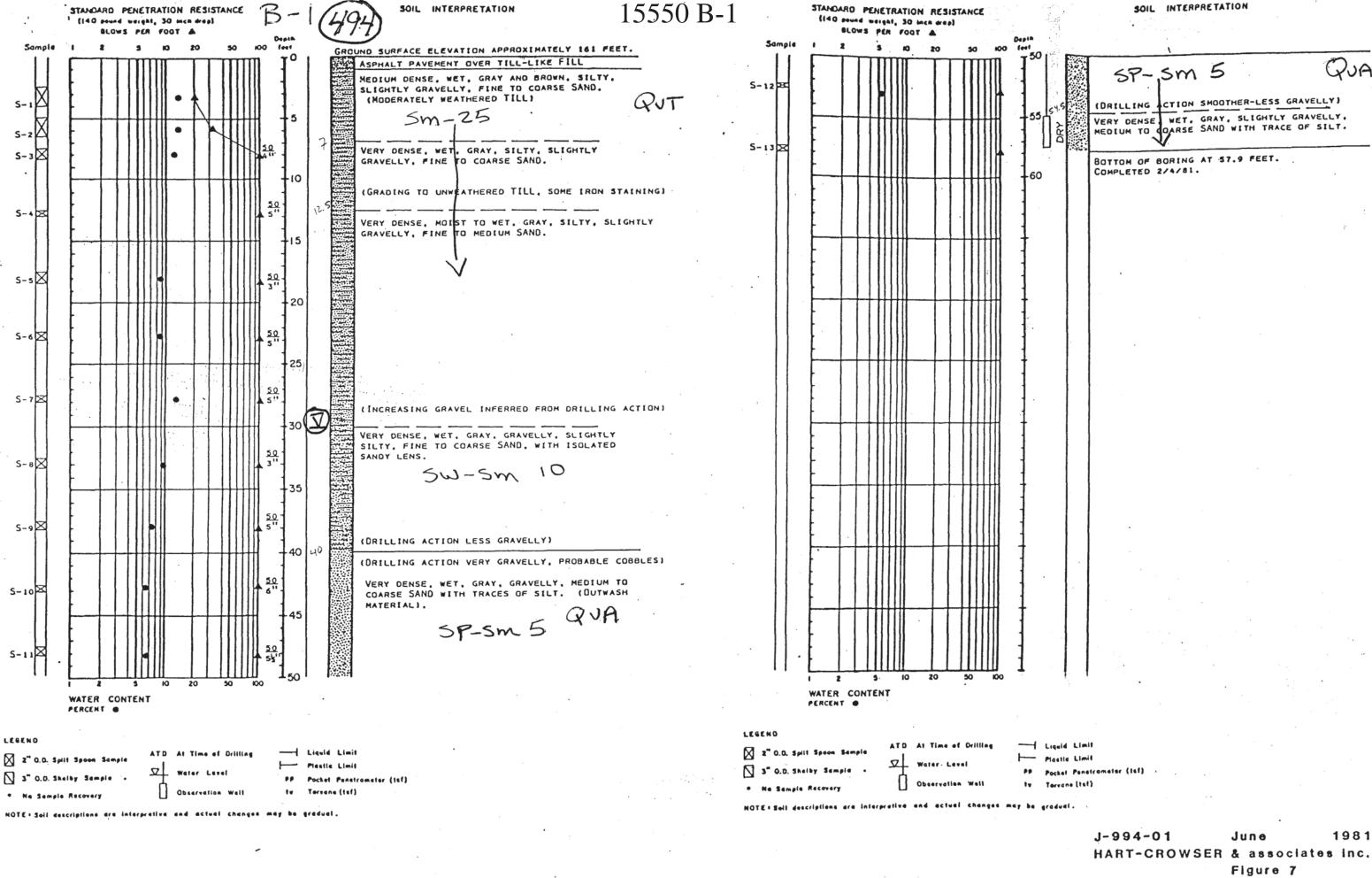
ELEV. 147.5±

Graph	US CS	Soil Description	Depth (ft.)	Sample	(N) Blows Ft.	W (%)	
		brown silty SAND, fine to medium, with gravel and concrete fragments, moist, loose (FILL)	-5	T	100+	10	
	sm	gray/tan mottled silty SAND, fine to medium, with gravel and isolated cobbles, moist, very dense	10	エ	100+	11	
	SM ML	grades from silty SAND to sandy SILT, seepage encountered in sand lenses at	-15	エ	100+	10	-
	L	gray/tan mottled silty SAND, fine to		=	100+	6	
		medium, with gravel, moist, very dense no seepage encountered	20	=	100+	8	
	sm	becomes gray with increased gravel gray/tan mottled gravelly silty SAND,	—25 -	-	100+	8	- 2
		fine, moist, very dense, some seepage encountered in sand lenses (minor sand lense at 28') (becomes gray at 32.5')	30 3/27/ 2 35	85 ==	100+	6	
	sp sm	gray SAND, fine to medium, with silt lenses, moist very dense	40	=	100+	17	,
		gray silty SAND, fine to medium with gravel, moist, very dense	45	=	100+	9	
			50	_	100+	9	
	sm	cobbles encountered at 51'	55	=	100+		
			Ē	=	100+	76	
			F 60		100+	66	

Boring terminated at 63' below existing grade. Slight groundwater seepage encountered at various levels as indicated. 3/4" PCV standpipe installed to bottom of boring, lower 50' slotted. A bentonite seal was placed at 2' and the boring was backfilled with cuttings.

Earth
Consultants Inc.

GEOTECHNICAL ENGINEERING & GEOLOGY


BORING LOG

GLOBE CENTER BELLEVUE, WASHINGTON

Proj. No. 2576

Date Apr. '85

Plate A7

SOIL INTERPRETATION

STANDARD PENETRATION RESISTANCE

HART-CROWSER & associates inc.

SOIL INTERPRETATION

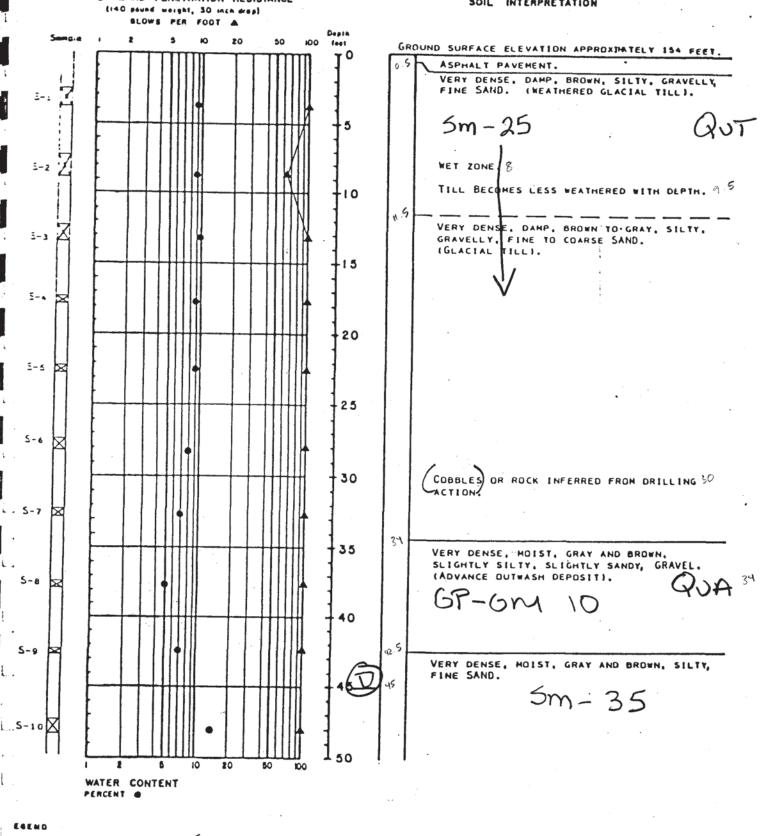
Sample

STANDARD PENETRATION RESISTANCE

MOTE: Soil descriptions are interpretive and actual changes may be graduel.

(140 sound weight, 30 mcn drap)

BLOWS PER FOOT A


J-984-01

June

Figure 10

HART-CROWSER & secoclates inc.

VERY DENSE, MOIST TO BET, BROWN, SLIGHTLY, SILTY, FINE GRAVELLY, FINE TO COARSE SAND. QUA 5-11 5w-sm 6 5-12 - 60 VERY STIFF TO HARD DAMP, GRAY, SILTY, CLAY. S-13 CL-ML 95 (PP & 4.5 TSF) 68 5-15 (PP=4.3 TSF. 3.6 TSF) 73 5-16 - THIN SANDY SILT PARTINGS OBSERVED IN 75 5-17 X CL-ML 90 S-18 X HARD, DAMP, GRAY, SILT. ML-95 (PP 2 4.5 TSF) 82.5 5-19 5-20 (PP ≥ 4.5 TSF) 88 5-21 5-22 +90 S-23 X BOTTOM OF BORING 93.5 FEET. +95 COMPLETED 5/15/81. WATER CONTENT PERCENT . LESEND 2" O.D. Spill Speen Sample Plestic Limit Water Level 3" O.D. Shelby Semple . PP Poctot Penetrometer (tsf) Observation Wall tv Torvens (taf) . Ne Semple Recovery

8" O.D. Spitt Spoon Sample

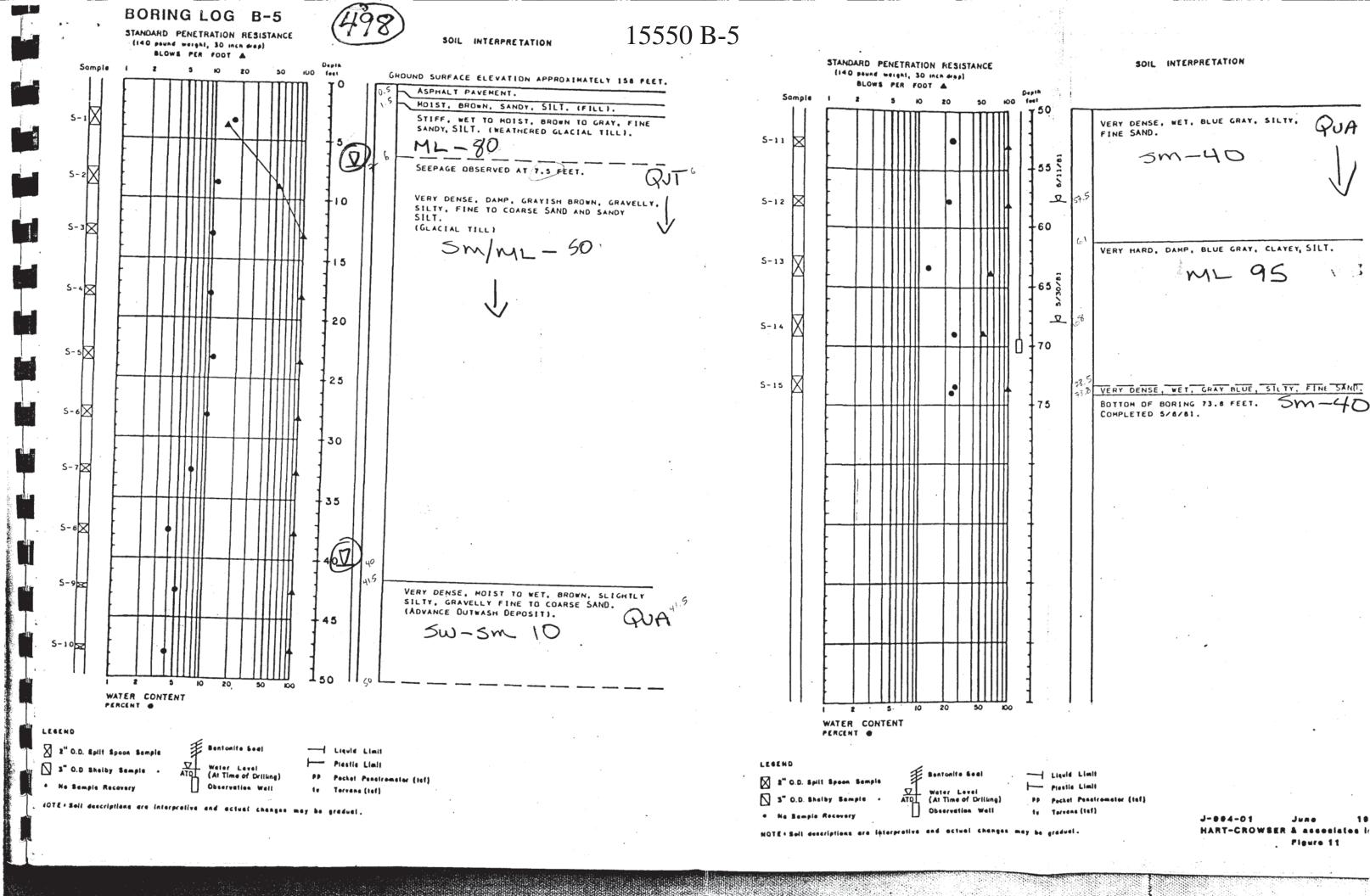
Bentonite Seat

Liquid Limit

Picetic Limit

Water Level

ATO


(At Time of Dilitical)

PR Protect Special Special

ATO (At Time of Drilling) PP Pocket Penatromator (tell)
Observation Walt to Torvana (tell)

MOTE : Soli descriptions are interpretive and actual changes may be gradual.

Ne Sample Recovery

APPENDIX A.2

LABORATORY TEST RESULTS

Moisture Contents

Sound Transit East Link - Golder Asociates-E330

			Sound Transit L	Laot Ellin Con	101 7 10001410	0000			
НМА	Golder		Date	Date of		Wt of	Tare+	Tare+	
Sample #	Sample #	Location	Received	Test	Tare #	Tare	Wet	Dry	Moisture %
7499-23	S-3	E320-B-160, 5'	3/21/2013	3/26/2013	BB	621.8	1057.5	1010.1	12.2
7499-24	S-7	E320-B-160, 15'	3/21/2013	3/26/2013	X10	235	684.8	643.4	10.1
7499-25	S-11	E320-B-160, 35'	3/21/2013	3/26/2013	S7	116.2	474.9	451.4	7.0
7499-26	S-3	E320-B-161, 5'	3/21/2013	3/26/2013	9A	162	766.7	699.4	12.5
7499-27	S-8	E320-B-161, 20'	3/21/2013	3/26/2013	3A	213.8	463.4	447.8	6.7
7499-28	S-16	E320-B-161, 35.5'	3/21/2013	3/26/2013	X7	193	639.3	577.6	16.0
74941	S-14	E330-B-001, 34'	1/25/2013	1/30/2014	Х9	230.8	1135	1069.1	7.9
7494m	S-18	E330-B-001, 45'	1/25/2013	1/30/2014	S1	118.3	912	861.4	6.8
7494n	S-21	E330-B-001, 53'	1/25/2013	1/30/2014	S8	113.3	782.4	722.6	9.8
7499-29	S-2	E330-B-002, 9'	3/21/2013	3/26/2013	X2	596	1650.2	1555.3	9.9
7499-30	S-8	E330-B-002, 29.5'	3/21/2013	3/26/2013	2A	217.6	1013.8	954	8.1
7499-31	S-13	E330-B-002, 54.5'	3/21/2013	3/26/2013	1A	213.2	1282.4	1212	7.0
7494h	S-10	E330-B-003, 24.5'	1/25/2013	1/30/2014	AJ	165	559.3	524.9	9.6
7494i	S-16	E330-B-003, 39'	1/25/2013	1/30/2014	X7	193.1	869.2	819.9	7.9
7494j	S-21	E330-B-003, 52'	1/25/2013	1/30/2014	9A	162.2	650.3	612.6	8.4
7494k	S-25	E330-B-003, 62'	1/25/2013	1/30/2014	X10	234.8	781.8	739.8	8.3
7510-7	S-3B	E330-B-003A, 7.5'	5/3/2013	5/7/2013	5A	114.2	719.8	654.2	12.1
7510-8	S-5	E330-B-003A, 12.5'	5/3/2013	5/7/2013	В3	115.3	658.2	595.5	13.1
7510-9	S-10	E330-B-003A, 30'	5/3/2013	5/7/2013	6A	114.7	450.3	408.9	14.1
7510-10	S-16	E330-B-003A, 60'	5/3/2013	5/7/2013	S10	114	543.5	500.3	11.2
7510-11	S-20	E330-B-003A, 80'	5/3/2013	5/7/2013	S4	118.4	623.2	552.9	16.2
7510-12	S-23	E330-B-003A, 90.5'	5/3/2013	5/7/2013	M6	117	450.8	425.1	8.3
7513-31	S-2	E330-B-004, 4'	5/24/2013	5/28/2013	Х6	196.1	1630.2	1510.4	9.1
7513-32	S-7	E330-B-004, 17.5'	5/24/2013	5/28/2013	S8	113.4	1343.4	1267.3	6.6
7513-33	S-9	E330-B-004, 26'	5/24/2013	5/28/2013	X7	193.1	1065.1	1002.9	7.7
7513-34	S-12	E330-B-004, 33'	5/24/2013	5/28/2013	X5	198.1	1240.2	1147.7	9.7

Moisture Contents

Sound Transit East Link - Golder Asociates-E330

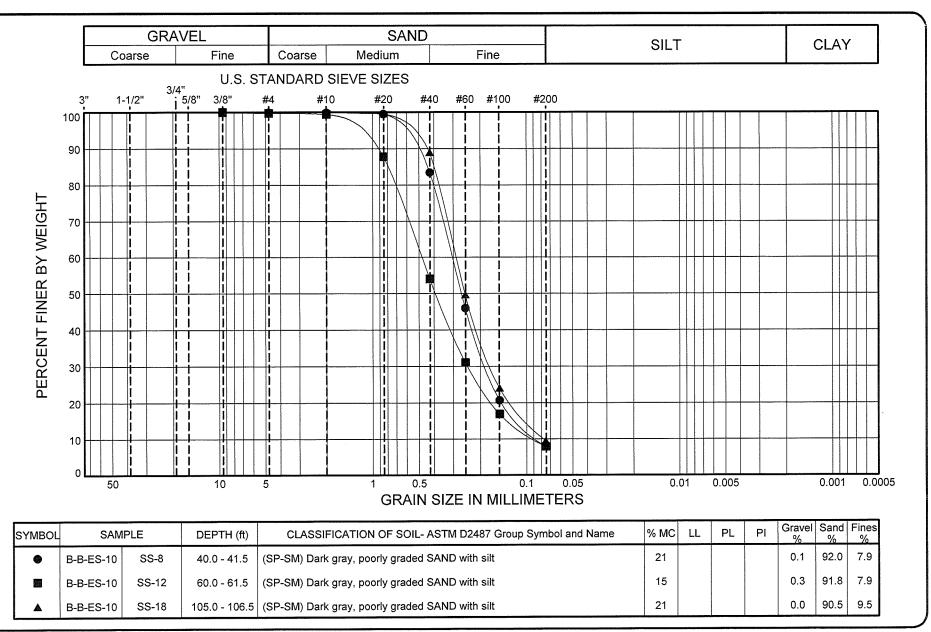
			Data	Doto of		\A/4 of	Toro.	Toro	
HMA	Golder		Date	Date of	_	Wt of	Tare+	Tare+	
Sample #	Sample #	Location	Received	Test	Tare #	Tare	Wet	Dry	Moisture %
7513-35	S-16	E330-B-004, 42'	5/24/2013	5/28/2013	X8	194.1	1208	990.9	27.2
7513-36	S-21	E330-B-004, 68'	5/24/2013	5/28/2013	X9	231	1726.6	1428.9	24.9
7513-37	S-24	E330-B-004, 81'	5/24/2013	5/28/2013	X10	234.9	1380.4	1175.7	21.8
7499-32	S-1	E330-B-005, 6.5'	3/21/2013	3/26/2013	BG	313.2	1364.7	1290.2	7.6
7499-33	S-12	E330-B-005, 34'	3/21/2013	3/26/2013	MG1	363.8	1174.3	1138.5	4.6
7499-34	S-19	E330-B-005, 48'	3/21/2013	3/26/2013	89	37.2	109.4	97	20.7
7499-35	S-23	E330-B-005, 61'	3/21/2013	3/26/2013	16	36.3	87.1	75.7	28.9
7499-7	Run 2	E330-B-006, 15'	3/21/2013	3/26/2013	С	775.5	2731.1	2649.2	4.4
7499-8	Run 7	E330-B-006, 52'	3/21/2013	3/26/2013	X2	595.9	2604.7	2526.5	4.1
7499-9	Run 10	E330-B-006, 72'	3/21/2013	3/26/2013	5A	114.3	589.4	536.4	12.6
7499-10	Run 11	E330-B-006, 76.7'	3/21/2013	3/26/2013	SR	31	84.5	77.9	14.1
7510-13	S-2	E330-B-006A, 10'	5/3/2013	5/7/2013	M5	120.2	547.8	489.5	15.8
7510-15	S-4	E330-B-006A, 20'	5/3/2013	5/7/2013	S6	118	593.6	542	12.2
7510-14	S-6	E330-B-006A, 30'	5/3/2013	5/7/2013	S7	116.1	529.5	498.9	8.0
7510-16	S-8	E330-B-006A, 40'	5/3/2013	5/7/2013	M7	123.5	279.3	271.2	5.5
7510-17	S-14	E330-B-006A, 70'	5/3/2013	5/8/2013	Z1	13.7	77.6	61.8	32.8
7510-18	S-17	E330-B-006A, 80'	5/3/2013	5/8/2013	S10	118.4	340.6	313.9	13.7
7510-19	S-2	E330-B-006B, 65'	5/3/2013	5/8/2013	S 3	118.5	697	577.1	26.1
7510-20	S-4	E330-B-006B, 75'	5/3/2013	5/8/2013	3M	13.7	78.7	61.7	35.4
7510-21	S-6	E330-B-006B, 85'	5/3/2013	5/8/2013	72M	13.7	71	57.1	32.0

	Depth (ft)	MOISTURE CONTENT (%)	ATTERBERG LIMITS		EL			:	TY)	C (%)	TION¹		
SAMPLE IDENTIFICATION			LL	PL	PI	% GRAVEL	% SAND	% FINES	Hd	RESISTIVITY (\O - cm)	ORGANIC CONTENT (%)	ASTM CLASSIFICATION ¹	SAMPLE DESCRIPTION ¹
B-B-ES-10, SS-2	10.0- 11.5	22						5.2				SP- SM	Dark brown, poorly graded SAND with silt
B-B-ES-10, SS-5	25.0- 26.5	19						4.3				SP	Dark gray, poorly graded SAND
B-B-ES-10, SS-8	40.0- 41.5	21				0.1	92.0	7.9				SP- SM	Dark gray, poorly graded SAND with silt
B-B-ES-10, SS-12	60.0- 61.5	15				0.3	91.8	7.9				SP- SM	Dark gray, poorly graded SAND with silt
B-B-ES-10, SS-15	80.0- 81.5	22						8.3				SP- SM	Dark gray, poorly graded SAND with silt
B-B-ES-10, SS-18	105.0- 106.5	21				0.0	90.5	9.5				SP- SM	Dark gray, poorly graded SAND with silt
											:		

^{1.} Soil classification and descriptions based on ASTM D 2487 or D 2488, as appropriate

Note:

This table summarizes information presented elsewhere in the report and should be used in conjunction with the report text, other graphs and tables, and the exploration logs.



SUMMARY OF MATERIAL PROPERTIES

SOUND TRANSIT EASTLINK, PHASE 3 KING COUNTY, WASHINGTON

BORING NAME B-B-ES-10

PROJECT NO. 2009-142

SOUND TRANSIT EASTLINK, PHASE 3
King County, Washington

PARTICLE-SIZE ANALYSIS OF SOILS METHOD ASTM D422

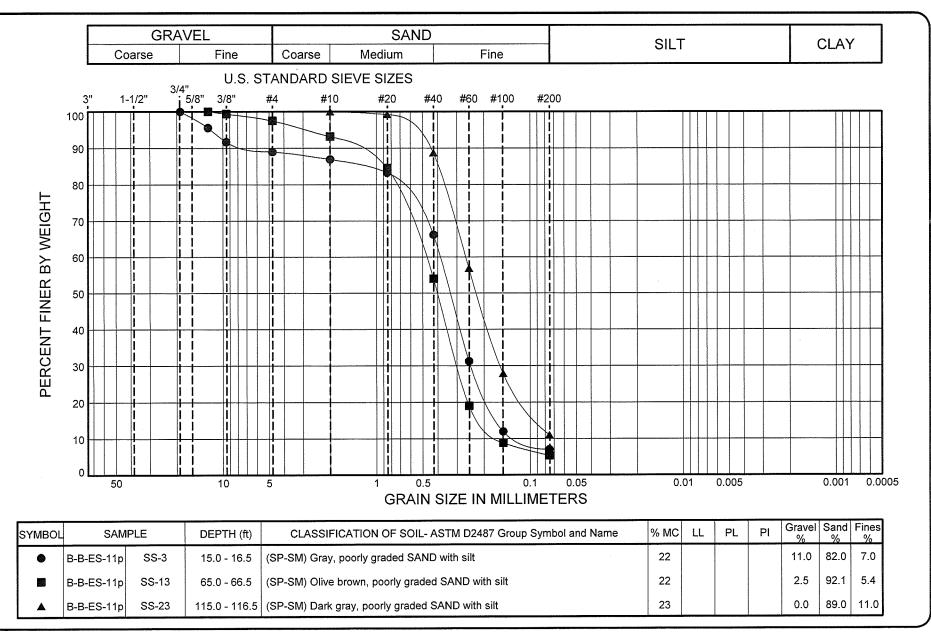
PROJECT NO.: 2009-142 BORING NAME: B-B-ES-10

		(%)	l	TERBE LIMITS		E	O S			TY ,	C (%)	TION1	
SAMPLE IDENTIFICATION	Depth (ft)	MOISTURE CONTENT (%)	LL	PL	PI	% GRAVEL	% SAND	% FINES	Hd	RESISTIVITY (\Omega - cm)	ORGANIC CONTENT (%)	ASTM CLASSIFICATION ¹	SAMPLE DESCRIPTION ¹
B-B-ES-11p, SS-3	15.0- 16.5	22				11.0	82.0	7.0				SP- SM	Gray, poorly graded SAND with silt
B-B-ES-11p, SS-6	30.0- 31.5	25						6.2				SP- SM	Dark yellowish brown, poorly graded SAND with silt
B-B-ES-11p, SS-8	40.0- 41.5	24						9.2	•			SP- SM	Dark yellowish brown, poorly graded SAND with silt
B-B-ES-11p, SS-13	65.0- 66.5	22				2.5	92.1	5.4				SP- SM	Olive brown, poorly graded SAND with silt
B-B-ES-11p, SS-14	70.0- 71.5	22						4.4				SP	Dark olive brown, poorly graded SAND
B-B-ES-11p, SS-18	90.0- 91.5	20						9.2				SP- SM	Dark gray, poorly graded SAND with silt
B-B-ES-11p, SS-23	115.0- 116.5	23				0.0	89.0	11.0	~100°			SP- SM	Dark gray, poorly graded SAND with silt

^{1.} Soil classification and descriptions based on ASTM D 2487 or D 2488, as appropriate

Note:

This table summarizes information presented elsewhere in the report and should be used in conjunction with the report text, other graphs and tables, and the exploration logs.

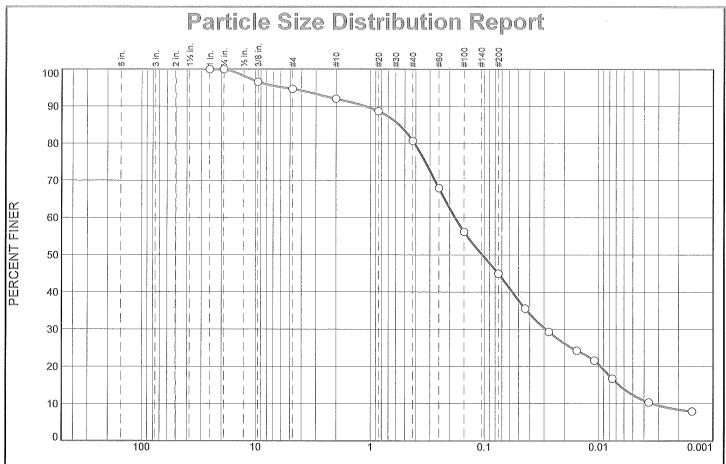

SUMMARY OF MATERIAL PROPERTIES

SOUND TRANSIT EASTLINK, PHASE 3 KING COUNTY, WASHINGTON

BORING NAME B-B-ES-11p

PROJECT NO.

2009-142



SOUND TRANSIT EASTLINK, PHASE 3 King County, Washington

PARTICLE-SIZE ANALYSIS OF SOILS METHOD ASTM D422

PROJECT NO.: 2009-142 BORING NAME: B-B-ES-11p

	GRAIN SIZE - mm.							
% +3 "	% Gı	ravel		% Sand		% Fines		
/6 T3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	0.0	5.3	2.7	11.3	35.8	32.6	12.3	

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1"	100.0		
3/4"	100.0		
3/8"	96.6		
#4	94.7		
#10	92.0		
#20	88.7		
#40	80.7		
#60	68.0		
#100	56.2		
#200	44.9		
	3/4" 3/8" #4 #10 #20 #40 #60 #100	SIZE FINER 1" 100.0 3/4" 100.0 3/8" 96.6 #4 94.7 #10 92.0 #20 88.7 #40 80.7 #60 68.0 #100 56.2	SIZE FINER PERCENT 1" 100.0 3/4" 100.0 3/8" 96.6 #4 94.7 #10 92.0 #20 88.7 #40 80.7 #60 68.0 #100 56.2

Silty Sand	Material Description	<u>on</u>
<i>5</i> , 5		
PL= NP	Atterberg Limits LL= NP	PI= NP
D ₉₀ = 1.1024 D ₅₀ = 0.1039 D ₁₀ = 0.0034	Coefficients D ₈₅ = 0.5603 D ₃₀ = 0.0291 C _U = 53.15	$D_{60}^{=} = 0.1802$ $D_{15}^{=} = 0.0066$ $C_{c}^{=} = 1.39$
USCS= SM	<u>Classification</u> AASHT	O= A-4(0)
	<u>Remarks</u>	

(no specification provided)

Source of Sample: Boring E330 - B-03 **Sample Number:** HMA7494h/Golder S10

Depth: 24.5'-25'

Date: 2/1/13

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

Figure

Tested By: Tara Pfaff Checked By: JAM

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330 - B-03

Depth: 24.5'-25'

Material Description: Silty Sand

Date: 2/1/13

LL: NP

PI: NP

USCS Classification: SM

Tested by: Tara Pfaff

AASHTO Classification: A-4(0)

Sample Number: HMA7494h/Golder S10

Checked by: JAM

-sigva fluar baja

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 366.60

PL: NP

Tare Wt. = 165.00

Minus #200 from wash = 44.0%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
524.90	165.00	1"	0.00	0.00	100.0
		3/4"	0.00	0.00	100.0
		3/8"	1496.20	1484.00	96.6
		#4	1364.50	1357.60	94.7
		#10	1183.40	1173.70	92.0
		#20	1080.30	1068.30	88.7
		#40	974.40	945.70	80.7
		#60	924.60	878.80	68.0
		#100	886.20	843.70	56.2
		#200	1060.90	1020.50	44.9

Englishmology Total Dear

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 92.0

Weight of hydrometer sample =67.3

Hygroscopic moisture correction:

Moist weight and tare = 26.50
Dry weight and tare = 26.10
Tare weight = 13.90

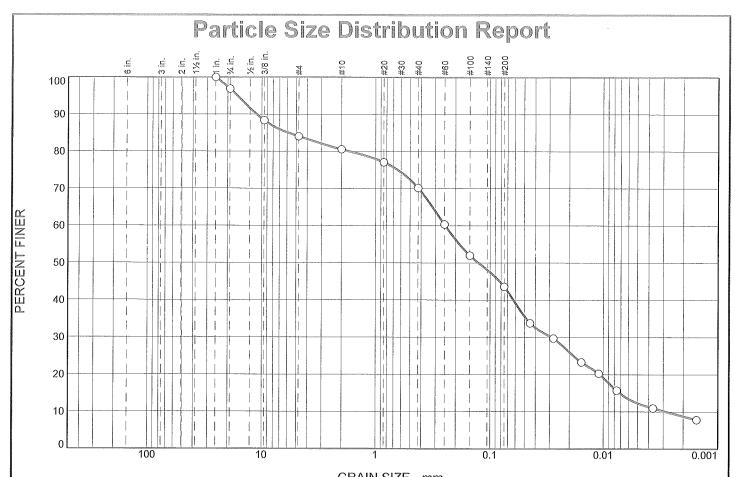
Tare weight = 13.90 Hygroscopic moisture = 3.3%

Table of composite correction values:

Temp., deg. C: 15.0 17.8 25.5 Comp. corr.: -5.8 -5.0 -2.9

Meniscus correction only = -1.0Specific gravity of solids = 2.7

Hydrometer type = 152H


Hydrometer effective depth equation: L = 16.298 - -0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	19.5	30.0	25.5	0.0135	29.0	21.1	0.0439	35.6
5.00	19.5	25.5	21.0	0.0135	24.5	20.3	0.0273	29.3
15.00	19.5	21.9	17.4	0.0135	20.9	19.7	0.0155	24.2
30.00	19.5	20.0	15.5	0.0135	19.0	19.4	0.0109	21.6
60.00	19.5	16.5	12.0	0.0135	15.5	18.8	0.0076	16.7
250.00	19.3	12.0	7.4	0.0136	11.0	18.1	0.0036	10.3
1440.00	18.5	10.5	5.7	0.0137	9.5	17.9	0.0015	7.9

Cobbles		Gravel		Sand			Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	5.3	5.3	2.7	11.3	35.8	49.8	32.6	12.3	44.9

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0034	0.0066	0.0096	0.0291	0.1039	0.1802	0.4104	0.5603	1.1024	5.4616

Fineness Modulus	c _u	c_c
1.11	53.15	1.39

			<u> </u>	SKAIN SIZE -	· mm.			
% ÷3"	% Gravel			% Sand		% Fines		
76 . 3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	3.1	12.9	3.5	10.4	26.5	31.3	12.3	

S	IEVE	PERCENT	SPEC.*	PASS?
	SIZE	FINER	PERCENT	(X=NO)
	1"	100.0		2
] 3	3/4"	96.9		
3	3/8"	88.4		
	#4	84.0		
;	#10	80.5		
;	#20	77.1		
] ;	#40	70.1		
,	#60	60.3		
#	100	52.0		
#	200	43.6		
	İ			

_	<u>Material Description</u> Silty Sand with Gravel									
PL= NP	Atterberg Limits	PI= NP								
D ₉₀ = 11.0786 D ₅₀ = 0.1264 D ₁₀ = 0.0028	Coefficients D ₈₅ = 5.8652 D ₃₀ = 0.0287 C _u = 87.00	D ₆₀ = 0.2458 D ₁₅ = 0.0072 C _c = 1.19								
USCS= SM	Classification AASHT	O= A-4(0)								
	<u>Remarks</u>									

* (no specification provided)

Source of Sample: Boring E330 - B-03 **Sample Number:** HMA 7494i/Golder S16

Depth: 39'-40'

Date: 2/1/13

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

Figure

Tested By: Tara Pfaff

Checked By: JAM

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330 - B-03

Depth: 39'-40'

Material Description: Silty Sand with Gravel

Date: 2/1/13

PL: NP

PI: NP

USCS Classification: SM

AASHTO Classification: A-4(0)

Sample Number: HMA 7494i/Golder S16

Tested by: Tara Pfaff Checked by: JAM

SlaverBasildae

LL: NP

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 551.30

Tare Wt. = 193.10

Minus #200 from wash = 42.9%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
819.90	193.10	1"	0.00	0.00	100.0
		3/4"	1524.60	1505.10	96.9
		3/8"	1537.50	1484.00	88.4
		#4	1384.60	1357.60	84.0
		#10	1195.60	1173.60	80.5
		#20	1090.00	1068.30	77.1
		#40	989.10	945.60	70.1
		#60	940.30	878.80	60.3
		#100	896.10	843.70	52.0
		#200	1073.00	1020.50	43.6

Slydkeinisker Test beig

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 80.5

Weight of hydrometer sample =68.7

Hygroscopic moisture correction:

Moist weight and tare = 26.30 Dry weight and tare = 26.20

Tare weight = 20.20

Hygroscopic moisture = 0.7%

Table of composite correction values:

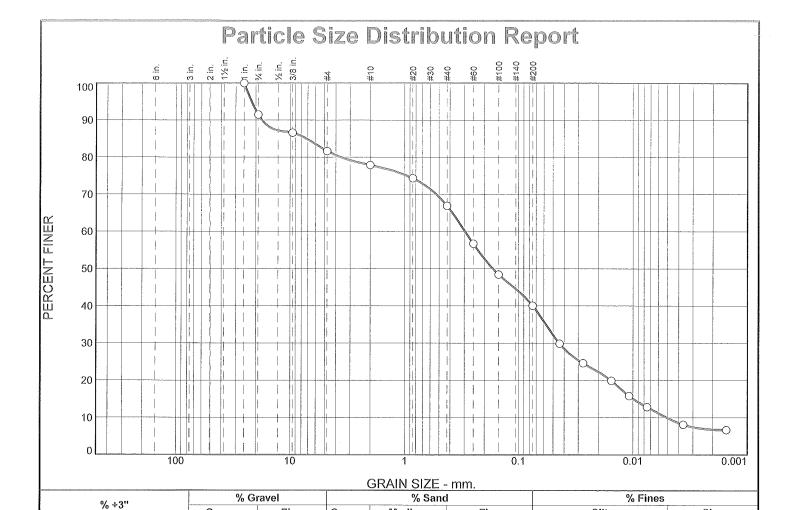
 Temp., deg. C:
 15.0
 17.8
 25.5

 Comp. corr.:
 -5.8
 -5.0
 -2.9

Meniscus correction only = -1.0Specific gravity of solids = 2.7

Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.298 - -0.164 x Rm


Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	К	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	19.5	33.5	29.0	0.0135	32.5	21.6	0.0445	33.8
5.00	19.5	30.0	25.5	0.0135	29.0	21.1	0.0278	29.7
15.00	19.5	24.5	20.0	0.0135	23.5	20.2	0.0157	23.3
30.00	19.5	21.9	17.4	0.0135	20.9	19.7	0.0110	20.3
60.00	19.5	18.0	13.5	0.0135	17.0	19.1	0.0076	15.7
250.00	19.3	14.0	9.4	0.0136	13.0	18.4	0.0037	11.0
1440.00	18.6	11.5	6.7	0.0137	10.5	18.0	0.0015	7.8

Fractional Components

Cobbles	Gravel			Sand				Fines		
CODDIES	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	3.1	12.9	16.0	3.5	10.4	26.5	40.4	31.3	12.3	43.6

D	10	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0	028	0.0072	0.0107	0.0287	0.1264	0.2458	1.7083	5.8652	11.0786	16.3613

Fineness Modulus	c _u	C _C
1.81	87.00	1.19

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X≍NO)
1"	100.0		
3/4"	91.5		
3/8"	86.6		
#4	81.7		
#10	77.9		
#20	74.3		
#40	66.9		
#60	56.7		
#100	48.4		
#200	40.1		

Coarse

8.5

Fine

9.8

Coarse

3.8

Medium

11.0

Fine

26.8

	Material Description Silty Sand with Gravel							
PL= NP	Atterberg Limits LL= NP	PI= NP						
D ₉₀ = 17.6381 D ₅₀ = 0.1683 D ₁₀ = 0.0051	Coefficients D ₈₅ = 7.1962 D ₃₀ = 0.0442 C _u = 58.10	$\begin{array}{c} D_{60} = 0.2948 \\ D_{15} = 0.0099 \\ C_{c} = 1.30 \end{array}$						
USCS= SM	Classification AASHT	O= A-4(0)						
	<u>Remarks</u>							

Silt

30.2

(no specification provided)

0.0

Source of Sample: Boring E330 - B-03 **Sample Number:** HMA 7494j/Golder S21

Depth: 52'-52.5'

Date: 2/1/13

Clay

9.9

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

Figure

Tested By: Tara Pfaff Checked By: JAM

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330 - B-03

Depth: 52'-52.5'

Material Description: Silty Sand with Gravel

Date: 2/1/13

PL: NP

LL: NP

PI: NP

USCS Classification: SM

AASHTO Classification: A-4(0)

Sample Number: HMA 7494j/Golder S21

Tested by: Tara Pfaff

Checked by: JAM

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 434.90

Tare Wt. = 162.20

Minus #200 from wash = 39.5%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
612.60	162.20	1"	0.00	0.00	100.0
		3/4"	1543.40	1505.10	91.5
		3/8"	1506.10	1484.00	86.6
		#4	1379.90	1357.70	81.7
		#10	1190.70	1173.60	77.9
		#20	1084.20	1068.30	74.3
		#40	979.00	945.60	66.9
		#60	924.80	878.90	56.7
		#100	881.00	843.70	48.4
		#200	1058.20	1020.40	40.1

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 77.9

Weight of hydrometer sample =66.5

Hygroscopic moisture correction:

Moist weight and tare = 35.60 Dry weight and tare = 35.30

Tare weight = 13.60 Hygroscopic moisture = 1.4%

Table of composite correction values:

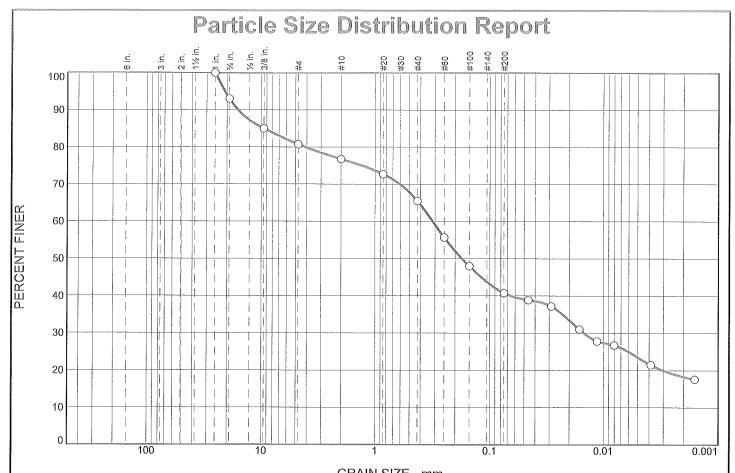
Temp., deg. C: 15.0 17.8 Comp. corr.: -5.8 -5.0

Meniscus correction only = -1.0Specific gravity of solids = 2.7

Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.298 - -0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	К	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	19.5	30.0	25.5	0.0135	29.0	21.1	0.0439	29.9
5.00	19.5	25.5	21.0	0.0135	24.5	20.3	0.0273	24.6
15.00	19.5	21.5	17.0	0.0135	20.5	19.7	0.0155	19.9
30.00	19.5	18.0	13.5	0.0135	17.0	19.1	0.0108	15.8
60.00	19.5	15.5	11.0	0.0135	14.5	18.7	0.0075	12.9
250.00	19.3	11.5	6.9	0.0136	10.5	18.0	0.0036	8.1
1440.00	18.6	10.5	5.7	0.0137	9.5	17.9	0.0015	6.7


25.5 -2.9

Breingaktangemek

Cobbles	POSSISSION PROPERTY OF THE PRO	Gravel Sand						Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	8.5	9.8	18.3	3.8	11.0	26.8	41.6	30.2	9.9	40.1

D ₁₀	P ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0051	0.0099	0.0156	0.0442	0.1683	0.2948	3.6077	7.1962	17.6381	21.7417

Finenes Modulu	" C	Сc	
2.06	58.10	1.30	

			C:	RAIN SIZE -	mm.		
% +3"	% Gr			% Sand		% Fines	
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	7.0	12.3	4.0	11.2	24.8	17.2	23.5

	SIEVE	PERCENT	SPEC.*	PASS?
	SIZE	FINER	PERCENT	(X≡NO)
	1"	100.0		
	3/4"	93.0		
	3/8"	85.0		
	#4	80.7		
	#10	76.7		
	#20	72.7		
l	#40	65.5		-
	#60	55.7		
	#100	48.0		
	#200	40.7		

N	//aterial Description	<u>on</u>
Silty Sand with G	ravel	
PL= NP	Atterberg Limits LL= NP	PI= NP
D ₉₀ = 16.0553 D ₅₀ = 0.1743 D ₁₀ =	Coefficients D ₈₅ = 9.5390 D ₃₀ = 0.0149 C _u =	D ₆₀ = 0.3141 D ₁₅ = C _c =
USCS= SM	<u>Classification</u> AASHT	O= A-4(0)
	<u>Remarks</u>	

(no specification provided)

Source of Sample: Boring E330 - B-03 **Sample Number:** HMA 7494k/Golder S25

Depth: 62'-62.5'

Date: 2/1/13

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

Figure

Tested By: Tara Pfaff

Checked By: JAM

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330 - B-03

Depth: 62'-62.5'

Sample Number: HMA 7494k/Golder S25

Material Description: Silty Sand with Gravel

Date: 2/1/13

PL: NP

LL: NP

PI: NP

USCS Classification: SM

AASHTO Classification: A-4(0)

Tested by: Tara Pfaff

Checked by: JAM

Stave Test Date

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 536.40

Tare Wt. = 234.80

Minus #200 from wash = 40.3%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
739.80	234.80	1"	0.00	0.00	100.0
		3/4"	1540.30	1505.00	93.0
		3/8"	1524.40	1483.90	85.0
		#4	1379.00	1357.50	80.7
		#10	1193.80	1173.60	76.7
		#20	1088.70	1068.30	72.7
		#40	981.80	945.50	65.5
		#60	928.50	878.90	55.7
		#100	882.80	843.80	48.0
		#200	1056.90	1020.40	40.7

Shvelrennaran kandbris

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 76.7

Weight of hydrometer sample =72.9

Hygroscopic moisture correction:

Moist weight and tare = 33.70 Dry weight and tare = 33.50 Tare weight = 13.70

Hygroscopic moisture = 1.0%

Table of composite correction values:

 Temp., deg. C:
 15.0
 17.8
 25.5

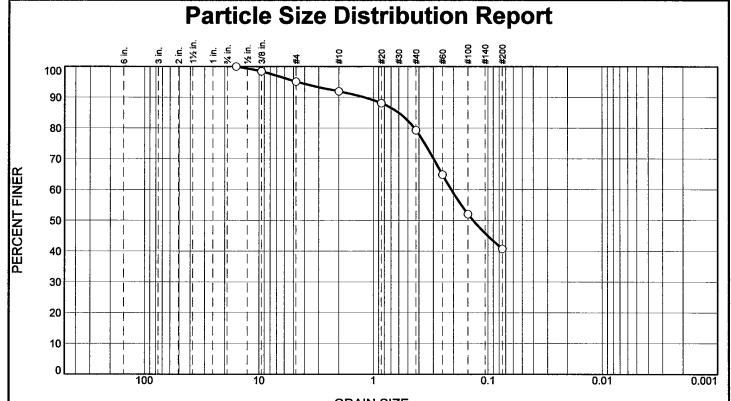
 Comp. corr.:
 -5.8
 -5.0
 -2.9

Meniscus correction only = -1.0Specific gravity of solids = 2.7

Hydrometer type = 152H

Hydrometer effective depth equation: $L = 16.298 - -0.164 \times Rm$

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	К	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	19.5	41.5	37.0	0.0135	40.5	22.9	0.0458	38.9
5.00	19.5	39.9	35.4	0.0135	38,9	22.7	0.0288	37.2
15.00	19.5	34.0	29.5	0.0135	33.0	21.7	0.0163	31.0
30.00	19.5	31.0	26.5	0.0135	30.0	21.2	0.0114	27.8
60.00	19.3	30.0	25.4	0.0136	29.0	21.1	0.0080	26.7
250.00	19.3	25.0	20.4	0.0136	24.0	20.2	0.0039	21.5
1440.00	18.6	21.5	16.7	0.0137	20.5	19.7	0.0016	17.6


Gestellieren I. Semmereraduakoa

ĺ	Cabbles	Gravel			Sand				Fines		
	Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
	0.0	7.0	12.3	19.3	4.0	11.2	24.8	40.0	17.2	23.5	40.7

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
		0.0030	0.0149	0.1743	0.3141	4.1313	9.5390	16.0553	20.8397

Fineness
Modulus
2.12

Hayre McElroy & Associates, LLC

				<u> KAIN SIZE :</u>	<u>- mm.</u>		
% +3"	% Gravel		% Sand			% Fines	
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	4.9	3.2	12.6	38.5	40.8	

Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
5/8"	100.0		
3/8"	98.4		
#4	95.1		
#10	91.9		
#20	88.1		
#40	79.3		
#60	64.9		
#100	52.1		
#200	40.8		
Ì			
İ			
1			
		1	
1			
		1	
i		1	

<u> Material Description</u>	Î
Olive Gray Silty Sand	İ
Atterberg Limits (ASTM D 4318) PL= LL= PI=	
PL= LL= PI=	
<u>Classification</u> USCS (D 2487)= SM	,
<u>Coefficients</u> D ₉₀ = 1.1972 D ₈₅ = 0.6015 D ₆₀ = 0.2095	
D ₉₀ = 1.1972 D ₈₅ = 0.6015 D ₆₀ = 0.2095 D ₁₅ =	1
$D_{10}^{\bullet} = C_{u}^{\bullet} = C_{c}^{\bullet}$	
Remarks	1
	1
Date Received: 05/03/13 Date Tested: 05/07/1	3
Tested By: JF	
Checked By: JAM	
Title:	

(no specification provided)

Source of Sample: Boring E330-B-003A **Sample Number:** HMA#7510-7/S-3

Depth: 7.5'-9.0'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

Sample Number: HMA#7510-7/S-3

5/15/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450

Location: Boring E330-B-003A

Depth: 7.5'-9.0'

Material Description: Olive Gray Silty Sand

Date Received: 05/03/13
USCS Classification: SM

USCS Classification: SM AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM C 136 #200 Wash Method: ASTM D 1140

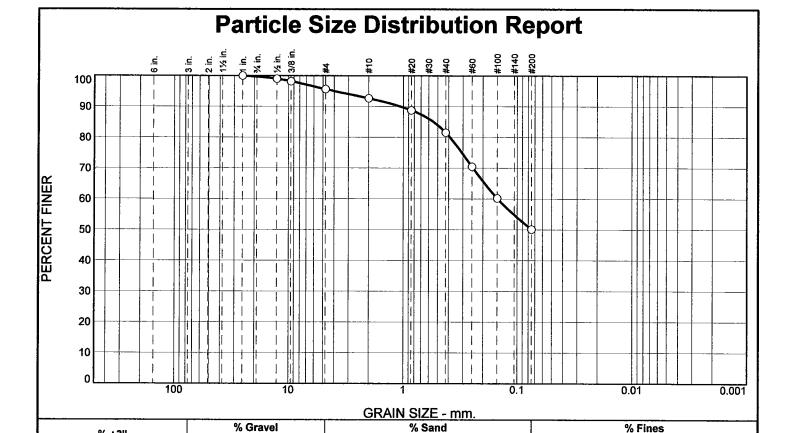
Tested By: JF Test Date: 05/07/13

Checked By: JAM

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 439.30

Tare Wt. = 114.20

Minus #200 from wash = 39.8%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
654.20	114.20	5/8"	0.00	0.00	100.0
		3/8"	1492.50	1484.10	98.4
		#4	1375.40	1357.40	95.1
		#10	1531.90	1514.80	91.9
		#20	1088.70	1067.80	88.1
		#40	992.50	945.10	79.3
		#60	956.60	878.60	64.9
		#100	912.50	843.50	52.1
		#200	1081.00	1019.90	40.8

Fractional Components and the second

Cobbles	Gravel				Sand				Fines		
Coppies	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total	
0.0	0.0	4.9	4.9	3.2	12.6	38.5	54.3			40.8	

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.1351	0.2095	0.4393	0.6015	1.1972	4.6356

Fineness Modulus 1.17

Medium

11.2

Fine

31.4

		136 & ASTM	,
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1"	100.0		
1/2"	99.0]
3/8"	98.2		
#4	95.6		ļ
#10	92.7		,
#20	88.8		
#40	81.5		
#60	70.5		
#100	60.2		
#200	50.1		
İ			

Coarse

0.3

Fine

4.1

Coarse

2.9

	Materia	l Descript	<u>ion</u>	l			
Olive Gray Sandy	/ Silt						
				- 1			
	rberg Lim	its (ASTN	<u>f D 4318)</u>				
PL=	LL=		PI=	i			
	Clas	sification					
USCS (D 2487)=	ML	AASHTO	(M 145)= A-4(0)				
	Coe	fficients					
D₉₀= 1.0536	$D_{85} = 0.$		D₆₀= 0.1479				
D ₅₀ =	$D_{30} =$		D ₁₅ =				
D ₁₀ =	Cu-		CC-	ł			
Remarks							
				}			
Date Received:	05/03/13	Date 7	Tested: 05/07/13				
Tested By:	JF						
Checked By:	JAM						
Title:							

Silt

50.1

Clay

(no specification provided)

% +3"

0.0

Source of Sample: Boring E330-B-003A **Sample Number:** HMA#7510-8/S-5

Depth: 12.5'-13.3'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

5/15/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450

Location: Boring E330-B-003A

Depth: 12.5'-13.3'

Sample Number: HMA#7510-8/S-5

Material Description: Olive Gray Sandy Silt

Date Received: 05/03/13
USCS Classification: ML

AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM C 136 **#200 Wash Method:** ASTM D 1140

Tested By: JF

Test Date: 05/07/13

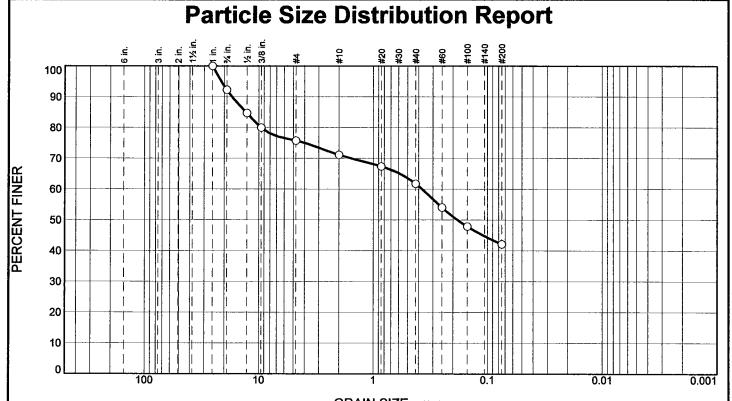
Checked By: JAM

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 358.30

Tare Wt. = 115.30

Minus #200 from wash = 49.4%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Welght (grams)	Percent Finer
595.50	115.30	1"	0.00	0.00	100.0
		1/2"	1424.40	1419.70	99.0
		3/8"	1487.50	1483.60	98.2
		#4	1369.70	1357.30	95.6
		#10	1528.90	1514.70	92.7
		#20	1086.50	1067.80	88.8
		#40	979.80	945.10	81.5
		#60	931.60	878.50	70.5
		#100	892.50	843.30	60.2
		#200	1068.40	1019.90	50.1


Fice(ional Components

Cobbles	Gravel				Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total	
0.0	0.3	4.1	4.4	2.9	11.2	31.4	45.5			50.1	

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
					0.1479	0.3898	0.5431	1.0536	3.9866

Fineness	
Modulus	
1.02	

Hayre McElroy & Associates, LLC __

			G	<u>RAIN SIZE -</u>	<u>. mm.</u>			
% +3"	% Gravel			% Sand		% Fines		
/6 +3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	7.7	16.5	4.7	9.3	19.7	42.1		

Test Re	sults (ASTM C	136 & ASTM [1140)		
Opening	Percent	Spec.*	Pass?		
Size	Finer	(Percent)	(X=Fail)		
1"	100.0				
3/4"	92.3	•			
1/2"	84.7				
3/8"	80.0				
#4	75.8	1			
#10	71.1				
#20	67.4	ļ			
#40	61.8				
#60	54.0				
#100	47.9				
#200	42.1				
1					
i					
1					
l					
*					

	Material	Descripti	<u>on</u>				
Gray Silty Sand W	/Gravel						
Attori	hara Limi	to (ACTE	D 4240				
PL=	LL=	ts (ASTM	PI=	1			
USCS (D 2487)=		ification AASHTO ((M 145)=	A-4(0)			
D ₉₀ = 17.1488 D ₅₀ = 0.1831 D ₁₀ =	Coef D ₈₅ = 12 D ₃₀ = C _u =	ficients .9206	D ₆₀ = (D ₁₅ = C _c =).3729			
Remarks							
Date Received: 0:		Date T	ested:	05/07/13			
Checked By: JA	AM			·			
Title:							

* (no specification provided)

Source of Sample: Boring E330-B-003A Sample Number: HMA#7510-9/S-10

Depth: 30'-30.4'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

5/15/2013

GRAIN SIZE DISTRIBUTION TEST DATA

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450

Location: Boring E330-B-003A

Depth: 30'-30.4'

Material Description: Gray Silty Sand W/Gravel

Date Received: 05/03/13
USCS Classification: SM

USCS Classification: SM AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D 1140

Tested By: JF Test Date: 05/07/13

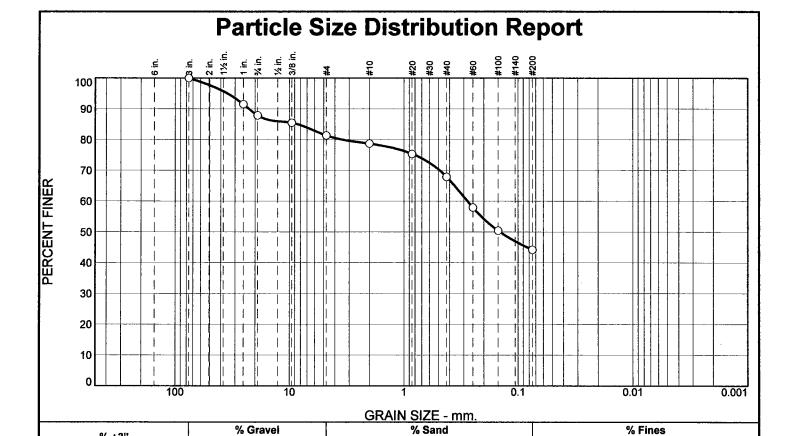
Checked By: JAM

Sample Number: HMA#7510-9/S-10

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 287.70

Tare Wt. = 114.70

Minus #200 from wash = 41.2%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
408.90	114.70	1"	0.00	0.00	100.0
		3/4"	1527.70	1504.90	92.3
		1/2"	1441.90	1419.70	84.7
		3/8"	1497.60	1483.70	80.0
		#4	1369.70	1357.30	75.8
		#10	1528.50	1514.80	71.1
		#20	1078.70	1067.70	67.4
		#40	961.70	945.20	61.8
		#60	901.30	878.50	54.0
		#100	861.60	843.50	47.9
		#200	1037.00	1020.00	42.1

Fractional Components

Cobbles	Gravel				Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total	
0.0	7.7	16.5	24.2	4.7	9.3	19.7	33.7			42.1	

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.1831	0.3729	9.5394	12.9206	17.1488	21.2578

Fineness
Modulus
2.41

Medium

10.8

Fine

23.7

Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3"	100.0		
1"	91.5		
3/4"	87.9		
3/8"	85.5		
#4	81.4		
#10	78.7		
#20	75.4		
#40	67.9		
#60	57.9		
#100	50.4		
#200	44.2		
- 1			
l			
İ			
1			

Coarse

12.1

Fine

6.5

Coarse

2.7

Material Description Gray Silty Sand W/Gravel Atterberg Limits (ASTM D 4318) PL= LL= Pl= Classification USCS (D 2487)= SM AASHTO (M 145)= A-4(0) Coefficients D90= 22.7104 D85= 8.4626 D60= 0.2792
PL= LL= PI= Classification USCS (D 2487)= SM AASHTO (M 145)= A-4(0) Coefficients
USCS (D 2487)= SM
D ₉₀ = 22.7104 D ₈₅ = 8.4626 D ₆₀ = 0.2792 D ₅₀ = 0.1445 D ₃₀ = D ₁₅ = C _c =
Remarks
Date Received: 05/03/13 Date Tested: 05/07/13 Tested By: JF Checked By: JAM Title:

Silt

44.2

(no specification provided)

% +3"

0.0

Source of Sample: Boring E330-B-003A Sample Number: HMA#7510-10/S-16

Depth: 60'-60.5'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

Figure

Clay

5/15/2013

GRAIN SIZE DISTRIBUTION TEST DATA

Sample Number: HMA#7510-10/S-16

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450

Location: Boring E330-B-003A

Depth: 60'-60.5'

Material Description: Gray Silty Sand W/Gravel

Date Received: 05/03/13 USCS Classification: SM

USCS Classification: SM AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM C136 **#200 Wash Method:** ASTM D 1140

Tested By: JF

ested By: JF Test Date: 05/07/13

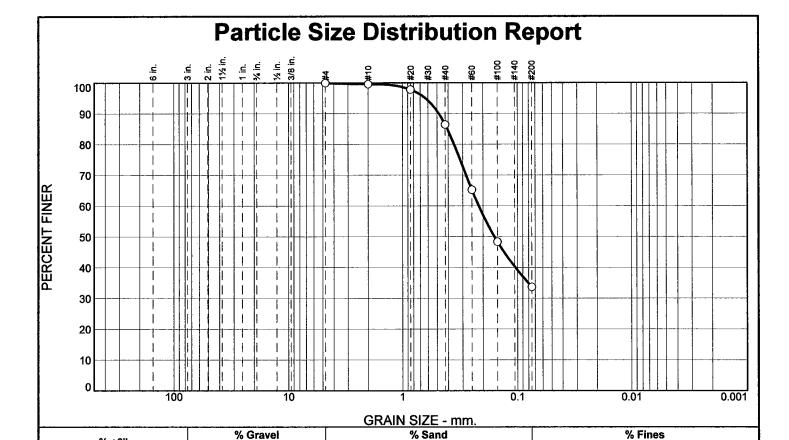
Checked By: JAM

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 332.70

Tare Wt. = 114.00

Minus #200 from wash = 43.4%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
500.30	114.00	3"	0.00	0.00	100.0
		1"	1502.30	1469.50	91.5
		3/4"	1519.10	1505.00	87.9
		3/8"	1493.00	1483.80	85.5
		#4	1373.20	1357.30	81.4
		#10	1525.20	1514.90	78.7
		#20	1080.80	1067.90	75.4
		#40	974.00	945.20	67.9
		#60	917.00	878.50	57.9
		#100	872.40	843.40	50.4
		#200	1044.10	1020.00	44.2


Fractional Components

Cobbles	Gravel				Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total	
0.0	12.1	6.5	18.6	2.7	10.8	23.7	37.2			44.2	

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.1445	0.2792	3.4621	8.4626	22.7104	34.9339

Fineness	-
Modulus	
2.09	

Hayre McElroy & Associates, LLC _____

Medium

13.2

Fine

52.8

Coarse

0.4

		136 & ASTM E	
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
#4	100.0		
#10	99.6		
#20	97.8		
#40	86.4		
#60	65.2		
#100	48.3		
#200	33.6		
ì			
i			
ĺ			
		1	
į			
			l

Coarse

Material Description Olive Gray Silty Sand **Atterberg Limits (ASTM D 4318)** PL= Classification USCS (D 2487)= SM **AASHTO (M 145)=** A-2-4(0) Coefficients D₉₀= 0.4823 D₅₀= 0.1594 D₁₀= D₆₀= 0.2178 D₁₅= C_c= **D₈₅=** 0.4072 C_u= Remarks Date Received: 05/03/13 **Date Tested:** 05/08/13 Tested By: JF Checked By: JAM Title:

Silt

33.6

% +3"

Source of Sample: Boring E330-B-003A Sample Number: HMA#7510-11/S-20

Depth: 80'-81.5'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

Figure

Clay

5/15/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450

Location: Boring E330-B-003A

Depth: 80'-81.5' **Material Description:** Olive Gray Silty Sand

Date Received: 05/03/13

USCS Classification: SM

Grain Size Test Method: ASTM C136 **#200 Wash Method:** ASTM D 1140

Tested By: JF

Checked By: JAM

Sample Number: HMA#7510-11/S-20

AASHTO Classification: A-2-4(0)

Test Date: 05/08/13

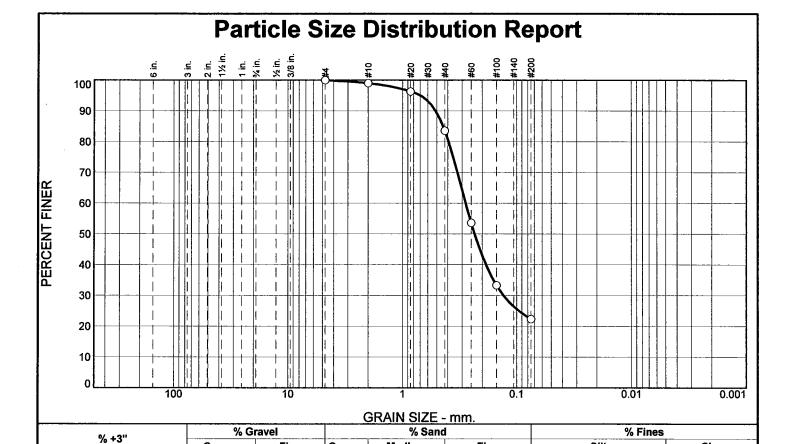
GRAIN SIZE DISTRIBUTION TEST DATA

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 412.10

Tare Wt. = 118.40

Minus #200 from wash = 32.4%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
552.90	118.40	#4	1357.50	1357.30	100.0
		#10	1516.40	1514.80	99.6
		#20	1075.60	1067.90	97.8
		#40	994.60	945.10	86.4
		#60	970.50	878.50	65.2
		#100	917.00	843.50	48.3
		#200	1083.80	1020.00	33.6



Cobbles	Gravel				Sand				Fines		
	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total	
				0.4	13.2	52.8	66.4			33.6	

	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
l					0.1594	0.2178	0.3561	0.4072	0.4823	0.6290

Fineness
Modulus
0.86

Hayre McElroy & Associates, LLC

Medium

15.5

Fine

61.2

Test Results (ASTM C136 & ASTM D 1140) Opening Percent Spec * Pass 2										
Opening	Percent	Spec.*	Pass?							
Size	Finer	(Percent)	(X=Fail)							
#4	100.0									
#10	99.0									
#20	96.3									
#40	83.5	1								
#60	53.6									
#100	33.3									
#200	22.3									
			·							
Į.										

Coarse

0.0

0.0

Fine

0.0

Coarse

1.0

	Material [Descriptio	<u>on</u>	
Olive Gray Silty Sa	nd			
<u>Attert</u>	erg Limit	s (ASTM		<u>l</u>
PL=	LL=		Pl=	
USCS (D 2487)=		fication AASHTO (I	M 145)=	A-2-4(0)
D = 0.5120	Coeff	icients	D - 0	0704
D ₉₀ = 0.5129 D ₅₀ = 0.2333	D ₈₅ = 0.44 D ₃₀ = 0.13	101 304	D ₆₀ = 0	.2794
D ₁₀ =	Cu≝		cc≡	
	Ren	narks		
Date Received: 05	5/03/13	Date To	ested:	05/08/13
Tested By: JF				
Checked By: JA	M			
Title:				

Silt

22.3

Clay

(no specification provided)

Source of Sample: Boring E330-B-003A Sample Number: HMA#7510-12/S-23

Depth: 90.5'-91.5'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

Sample Number: HMA#7510-12/S-23

AASHTO Classification: A-2-4(0)

5/15/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450

Location: Boring E330-B-003A

Depth: 90.5'-91.5' **Material Description:** Olive Gray Silty Sand

Date Received: 05/03/13

USCS Classification: SM

Grain Size Test Method: ASTM C136

#200 Wash Method: ASTM D 1140

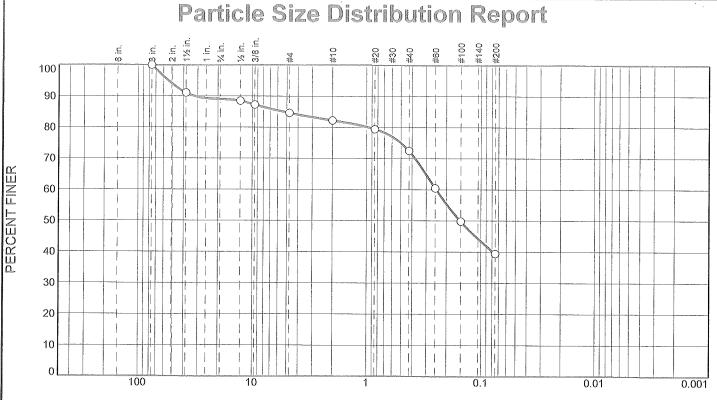
Tested By: JF Test Date: 05/08/13

Checked By: JAM

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 359.30

Tare Wt. = 117.00

Minus #200 from wash = 21.4%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
425.10	117.00	#4	0.00	0.00	100.0
		,#10	1517.70	1514.70	99.0
		#20	1076.10	1067.80	96.3
		#40	984.50	945.10	83.5
		#60	970.60	878.40	53.6
		#100	905.90	843.30	33.3
		#200	1053.80	1019.90	22.3

Gravel Sand Fines Cobbles Coarse Silt Fine Total Coarse Medium Fine Total Clay Total 0.0 0.0 0.0 0.0 1.0 15.5 61.2 77.7 22.3

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.1304	0.2333	0.2794	0.3942	0.4401	0.5129	0.6940

Fineness Modulus
1.12

Hayre McElroy & Associates, LLC _

GRAIN SIZE - mm.

% ÷3"	% Gravel		% Sand			% Fines		
70 13	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	11.0	4.4	2.4	9.7	33.1	39.4		

Test R	Test Results (ASTM C136 & ASTM D1140)										
Opening	Percent	Spec.*	Pass?								
Size	Finer	(Percent)	(X≡Fail)								
3"	100.0										
1 1/2"	91.1										
1/2"	88.5										
3/8"	87.3										
#4	84.6										
#10	82.2										
#20	79.4										
#40	72.5										
#60	60.4										
#100	49.8										
#200	39.4										

<u>M</u> ate	rial Description								
Brown Silty Sand W/Gra	vel								
Atterbera I	_imits (ASTM D 4318)								
PL= LL:									
	<u>lassification</u>								
USCS (D 2487)= SM	AASHTO (M 145)= A-4(0)								
$D_{90} = 32.1081$ $D_{85} =$	Coefficients = 5.3590 D ₆₀ = 0.2453								
D ₅₀ = 0.1516 D ₃₀ = D ₁₀ = C _u =									
510 Su-									
Remarks									
Date Received: 5/24/20	13 Date Tested: 6/3/2013								
Tested By: JF/TP									
Checked By: JAM									
Title:									

(no specification provided)

Source of Sample: Boring E330-B-004 Sample Number: HMA#7513-30/S-2

Depth: 4'-5'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

6/4/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-004

Depth: 4'-5'

Sample Number: HMA#7513-30/S-2

Material Description: Brown Silty Sand W/Gravel

Date Received: 5/24/2013 USCS Classification: SM

AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/3/2013

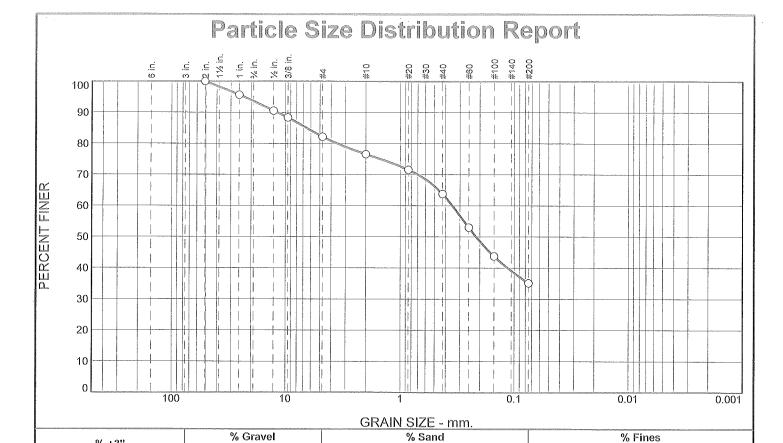
Checked By: JAM

Stavenioshber

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 1000.20

Tare Wt. = 196.10

Minus #200 from wash = 38.8%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
1510.40	196.10	3"	0.00	0.00	100.0
		1 1/2"	1568.20	1450.70	91.1
		1/2"	1453.20	1419.50	88.5
		3/8"	1499.60	1483.60	87.3
		#4	1392.30	1357.10	84.6
		#10	1545.80	1514.40	82.2
		#20	1103.70	1067.30	79.4
		#40	1036.50	944.70	72.5
		#60	1036.20	878.30	60.4
		#100	982.90	843.20	49.8
		#200	1156.20	1019.70	39.4

Ficiellens I Component

Cobbles		Gravel			Sa				Fines	
1	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	11.0	4.4	15.4	2.4	9.7	33.1	45.2			39.4

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.1516	0.2453	0.9589	5.3590	32.1081	54.3619

Fineness Modulus
1.93

 ,,,		Coarse	Fine	Coarse	Medium	Fine	Silt		Cla
 0.0		6.4	11.4	5.7	12.7	28.7		35.1	
Test R	esults (ASTM	C136 & ASTM	D1140)			Ma	terial Descriptio	<u>on</u>	
Opening	Percent	Spec.*	Pass	;?	Gray Brov	vn Silty Sand	d W/Gravel		
Size	Finer	(Percent)	(X=Fa	ail)	·	•			
2"	100.0								
1"	95.7	-				Atterber	g Limits (ASTM I	D 4318)	
1/2"	90.6				PLE			Pla	
3/8"	88.3								
#4	82.2						<u>Classification</u>		
#10	76.5				USCS (D 2	2487)= SM	AASHTO (N	// 145)=	A-2-4(0)
#20	71.5						Coefficients		
#40	63.8				Doo= 11.7	7749 De		$D_{60} = 0.3$	3480
#60	53.0				$D_{90} = 11.7$ $D_{50} = 0.21$	53 D	35 0.2220 20≅	D4 E=	. 100

 $D_{50} = 0.2153$ D₁₀= Remarks

Date Received: 5/24/2013 **Date Tested:** 6/3/2013 Tested By: JF/TP

Checked By: JAM

Title:

(no specification provided)

% +3"

#100

#200

Source of Sample: Boring E330-B-004 Sample Number: HMA#7513-31/S-7

43.8

35.1

Depth: 17.5'-18.5'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

Figure

Clay

6/4/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-004

Depth: 17.5'-18.5'

Sample Number: HMA#7513-31/S-7

Material Description: Gray Brown Silty Sand W/Gravel

Date Received: 5/24/2013 USCS Classification: SM

AASHTO Classification: A-2-4(0)

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/3/2013

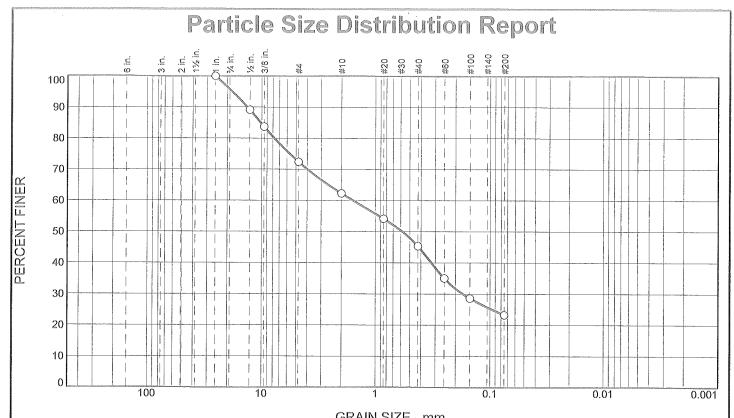
Checked By: JAM

Shows Kanaban.

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 868.50

Tare Wt. = 113.40

Minus #200 from wash = 34.6%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
1267.30	113.40	2"	0.00	0.00	100.0
		1"	1519.80	1469.70	95.7
		1/2"	1478.10	1419.40	90.6
		3/8"	1509.50	1483.70	88.3
		#4	1428.40	1357.10	82.2
		#10	1579.10	1514.40	76.5
		#20	1125.00	1067.20	71.5
		#40	1034.10	944.90	63.8
		#60	1003.10	878.20	53.0
		#100	949.60	843.30	43.8
		#200	1119.30	1019.70	35.1

Eschericus II (Constitutore et al. 1

Cobbles	Gravel			Sand				Fines		
	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	6.4	11.4	17.8	5.7	12.7	28.7	47.1			35.1

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.2153	0.3480	3.5634	6.5520	11.7749	23.0980

Fineness
Modulus
2.17

	GRAIN SIZE - IIIII.										
% ÷3"	% Gravel		% Sand			% Fines					
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay				
0.0	4.2	23.4	10.1	17.0	22.0	23.3					

ı	Test R	tesults (ASTM C	136 & ASTM	D1140)
	Opening	Percent	Spec.*	Pass?
	Size	Finer	(Percent)	(X=Fail)
	1"	100.0		
	1/2"	89.1		
	3/8"	83.7		
	#4	72.4		
	#10	62.3		
	#20	54.1		
	#40	45.3		
	#60	35.0		
- 1	#100	28.6		
	#200	23.3		
ı				
L	*			

Material Description Gray Brown Silty Sand W/Gravel							
Atterberg Limits (ASTM D 4318) PL= LL= PI=							
USCS (D 2487)= SM AASHTO (M 145)= A-1-b							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
Remarks							
Date Received: 5/24/2013 Date Tested: 6/3/2013							
Tested By: JF/TP							
Checked By: JAM							
Title:							

* (no specification provided)

Source of Sample: Boring E330-B-004 Sample Number: HMA#7513-32/S-9

Depth: 26'-27'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

6/4/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-004

Depth: 26'-27'

Sample Number: HMA#7513-32/S-9

Material Description: Gray Brown Silty Sand W/Gravel

Date Received: 5/24/2013 **USCS Classification: SM**

AASHTO Classification: A-1-b

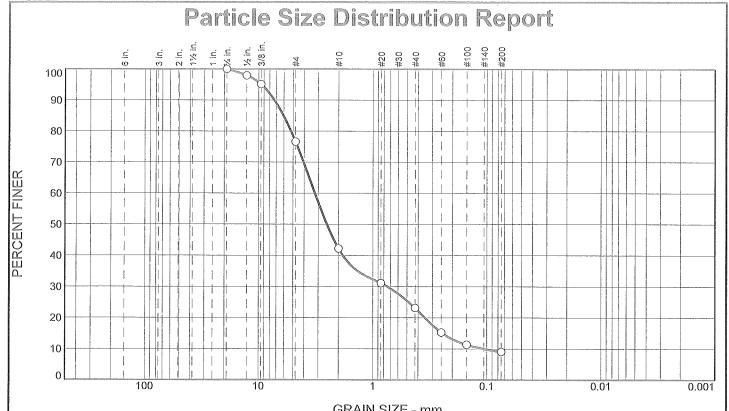
Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/3/2013

Checked By: JAM

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 818.60


Tare Wt. = 193.10 Minus #200 from wash = 22.8%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
1002.90	193.10	1"	0.00	0.00	100.0
		1/2"	1507.60	1419.50	89.1
		3/8"	1527.80	1483.70	83.7
		#4	1448.40	1357.00	72.4
		#10	1596.40	1514.40	62.3
		#20	1133.00	1067.30	54.1
		#40	1016.10	944.70	45.3
		#60	962.00	878.40	35.0
		#100	895.00	843.20	28.6
		#200	1063.00	1019.60	23.3

Cobbles	Gravel					nd	Fines			
Connies	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	4.2	23.4	27.6	10.1	17.0	22.0	49.1			23.3

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.1725	0.5800	1.5836	7.7614	10.2154	13.3365	18.0880

Fineness Modulus
3.09

GRAIN SIZE - IIIII.											
% ÷3"	% Gravel		% Sand			% Fines					
/8 +3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay				
0.0	0.0	23.4	34.4	19.1	14.1	9.0					

Test R	esults (ASTM C	136 & ASTM I	D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3/4"	100.0		
1/2"	98.0		
3/8"	95.2		
#4	76.6		
#10	42.2		
#20	31.1		
#40	23.1		
#60	15.3		
#100	11.4		
#200	9.0		
*			20 mm/c/m mmm mmm mmm mmm mmm mmm mmm mmm

	Na -4i-1	D!4!		
Gray Brown Wel	<u>Material</u> Loraded San	-		
Gray Brown Wer	i-graucu San	u w/Siit &	Coravei	
	<u>rberg Limi</u>	ts (ASTM)
PLS			PI=	
11000 /5 0405		ification	DB 4 4 893	
USCS (D 2487)=	SW-SM	AASHIO (W 145)=	A-1-a
B = 7.2717		<u>ficients</u>	5	2 2 1 2 0
$D_{90} = 7.2716$ $D_{50} = 2.5235$	$D_{85} = 6.0$ $D_{30} = 0.7$	552 468	D ₆₀ = D ₁₅ = C _c = 1	3.2120 0.2438
D ₅₀ = 2.5235 D ₁₀ = 0.1059	$D_{30}^{00} = 0.7$ $C_{u}^{00} = 30.3$	34	$C_{c}^{13} = 1$.64
	Rei	marks		
Date Received:	5/24/2012	Doto T	'aaéadı	6/3/2013
		Date 1	estea:	0/3/2013
Tested By:		-7-		
Checked By:	JAM			
Title:				

* (no specification provided)

Source of Sample: Boring E330-B-004 Sample Number: HMA#7513-33/S-12

Depth: 33'-34'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

6/5/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-004

Depth: 33'-34'

Sample Number: HMA#7513-33/S-12

Material Description: Gray Brown Well-graded Sand W/Silt & Gravel

Date Received: 5/24/2013 USCS Classification: SW-SM

AASHTO Classification: A-1-a

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/3/2013

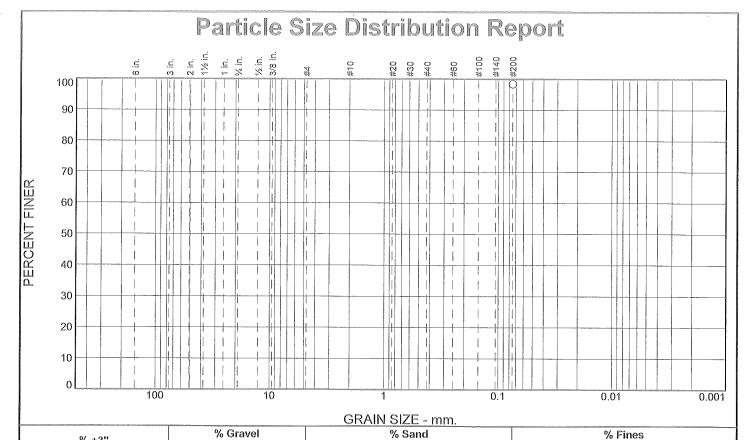
Checked By: JAM

Sieve Leek Bhi

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 1062.30

Tare Wt. = 198.10

Minus #200 from wash = 9.0%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
1147.70	198.10	3/4"	0.00	0.00	100.0
		1/2"	1439.00	1419.70	98.0
		3/8"	1510.60	1483.90	95.2
		#4	1533.50	1357.20	76.6
		#10	1841.30	1514.60	42.2
		#20	1172.80	1067.60	31.1
		#40	1020.80	945.10	23.1
		#60	953.10	878.60	15.3
		#100	880.90	843.50	11.4
		#200	1041.80	1019.90	9.0

Established Commonweal

Cobbles		Gravel			Sa	nd	Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	23.4	23.4	34.4	19.1	14.1	67.6			9.0

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.1059	0.2438	0.3474	0.7468	2.5235	3.2120	5.2063	6.0552	7.2716	9.4214

Fineness Modulus	c _u	c _c		
3.90	30.34	1.64		

% ÷3"		70 @76474	· ·		70 00116	*	/0 1 H ICO	
70 T S	Coarse		Fine	Coarse	Medium	Fine	Silt	Clay
					- A-0040000		98.4	
	TEST	RESULTS			- <u>- </u>	Material	Description	
Opening	Percent	Spec.*	Pass	?	Gray Clay			
Size	Finer	(Percent)	(X=Fa	ıil)				
#200	98.4							
					PL= 23	Atterberg Lim	its (ASTM D 4318) 4 PI= 11	
					USCS (D 2		sification AASHTO (M 145)=	
						Coe	fficients	

Date Received: 5/24/2013 Date Tested: 5/31/2013
Tested By: JF/TP
Checked By: JAM
Title:

(no specification provided)

Source of Sample: Boring E330-B-004 Sample Number: HMA#7513-34/S-16

Depth: 42'-43'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

6/5/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-004

Depth: 42'-43'

Material Description: Gray Clay

Date Received: 5/24/2013

USCS Classification: CL or OL #200 Wash Method: ASTM D1140

Tested By: JF/TP

Checked By: JAM

Sample Number: HMA#7513-34/S-16

LL: 34

PI: 11

Test Date: 5/31/2013

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 206.50

PL: 23

Tare Wt. = 194.10

Minus #200 from wash = 98.4%

Dry

Sample and Tare (grams)

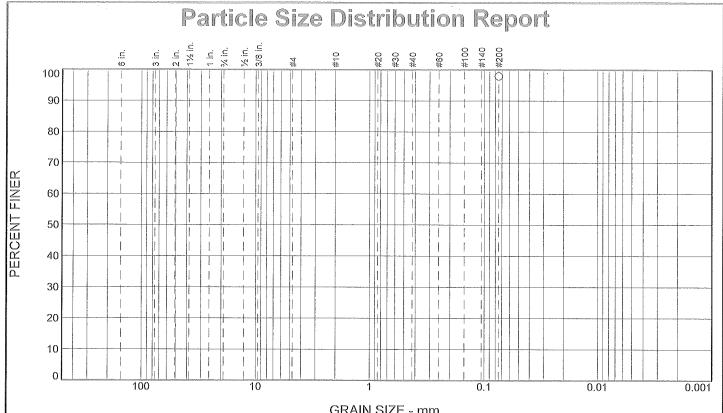
990.90

Tare (grams)

194.10

Sieve Opening

#200


Weight Retained Size (grams)

Sieve Weight (grams)

Percent Finer 98.4

Cobbles	Gravel				Sai		Fines			
	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
										98.4

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

				IVALLA DIZE .	<u>' 111111.</u>		
% ÷3"	% Gravel		% Sand			% Fines	
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
						98.0	

	TEST RE	SULTS		
Opening	Percent	Spec.*	Pass?	
Size	Finer	(Percent)	(X=Fail)	
#200	98.0			
		·		
·				

	<u>Material E</u>	Descriptic	<u>on</u>	
Gray Clay				
Λ++	erberg Limit	e /ASTAA	D 1219	
PL= 22	LL= 36	a (MO LIAI	PI=	
USCS (D 2487)≡		fication \ASHTO (N	/l 145)=	
	Coeff	icients	·	
D ₉₀ =	D ₈₅ =	10101110	D ₆₀ =	
D ₅₀ = D ₁₀ =	D ₃₀ = C _u =		D ₁₅ ≡ C _c ≡	
10		narks	C	
	T CII	iarna		
Date Received:	5/24/2013	Date Te	ested:	5/31/2013
Tested By:	JF/TP			
Checked By:	JAM			
Title:				

(no specification provided)

Source of Sample: Boring E330-B-004 Sample Number: HMA#7513-35/S-21

Depth: 68'-69'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

Figure

6/5/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-004

Depth: 68'-69'

Sample Number: HMA#7513-35/S-21

Material Description: Gray Clay

Date Received: 5/24/2013

PL: 22

LL: 36

PI: 14

USCS Classification: CL or OL #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 5/31/2013

Checked By: JAM

Sitayourasistaa

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 255.20

Tare Wt. = 231.00

Minus #200 from wash = 98.0%

Dry

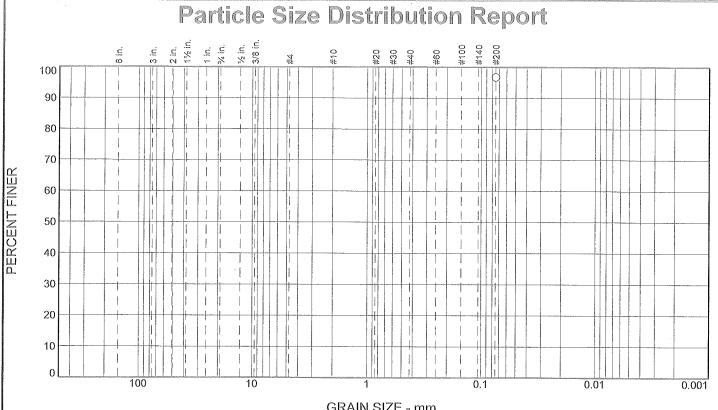
Sample and Tare (grams)

Tare (grams) Sieve Opening Size Weight Retained (grams)

Sieve Weight (grams)

Percent Finer 98.0

1428.90 23


231.00

#200

Figurations Inflormation is all

	Gravel			Sand				Fines		
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
										98.0

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

	·		(_)	WIN OILE -	111111.			
% ÷3"	% Gravel			% Sand		% Fines		
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
						96.8		

	TEST RE	SULTS		
Opening	Percent	Spec.*	Pass?	
Size	Finer	(Percent)	(X=Fail)	
#200	96.8			
	i			
*	ification masside			

	<u>Material</u> D	escription	
Gray Silt			
Atte	arhara l'imite	· /ASTM D 4349	,
PL= 25	LL= 34	(ASTM D 4318 PI=	9
USCS (D 2487)=	Classif ML or OL A	ication ASHTO (M 145)=	
	Coeffi	cients	
D ₉₀ =	D ₈₅ =	D ₆₀ =	
D ₅₀ = D ₁₀ =	c _u =	D ₁₅ = C _c =	
	Rem	arks	
Date Received:	5/24/2013	Date Tested:	6/3/2013
Tested By:	JF/TP		
Checked By:	JAM		
Title:		- Annales A	

(no specification provided)

Source of Sample: Boring E330-B-004 Sample Number: HMA#7513-36/S-24

Depth: 81'-83'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

<u>Figure</u>

6/5/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-004

Depth: 81'-83'

Material Description: Gray Silt

Date Received: 5/24/2013

PL: 25

LL: 34

PI: 9

USCS Classification: ML or OL #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/3/2013

Sample Number: HMA#7513-36/S-24

Checked By: JAM

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 265.10

Tare Wt. = 234.90

Minus #200 from wash = 96.8%

Dry

Sample and Tare (grams)

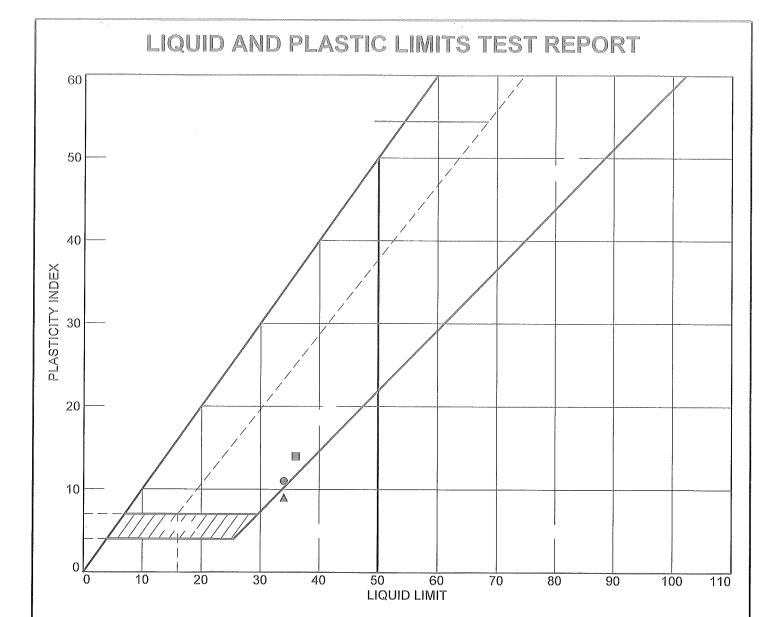
Tare (grams)

Sieve Opening Size

Weight Retained (grams)

Sieve Weight (grams)

Percent Finer


234.90 1175.70

#200

96.8

Cobbles	Gravel			Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
										96.8

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

	SOIL DATA											
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs				
©	Boring E330-	HMA#7513-	42'-43'	27.2	23	34	11	CL or OL				
	B-004	34/S-16										
	Boring E330-	HMA#7513-	68'-69'	24.9	22	36	14	CL or OL				
	B-004	35/S-21			:							
۵	Boring E330-	HMA#7513-	81'-83'	21.8	25	34	9	ML or OL				

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No.: 12-450

Figure

Tested By: JF/TP

LIQUID AND PLASTIC LIMIT TEST DATA

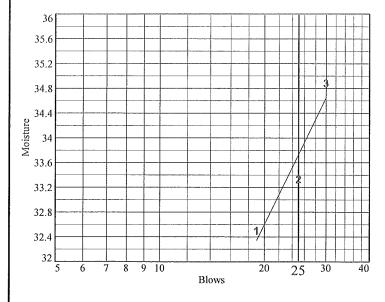
6/5/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-004

Depth: 42'-43'


Sample Number: HMA#7513-34/S-16

Material Description: Gray Clay

USCS: CL or OL Tested by: JF/TP

Checked by: JAM

	Uquid Limit Data											
Run No.	1	2	3	4	5	6						
Wet+Tare	29.4	30.8	25.3									
Dry+Tare	25.5	26.5	22.3									
Tare	13.5	13.6	13.7			Who could be a second by the s						
# Blows	19	25	30									
Moisture	32.5	33.3	34.9									

Plastic Limit= 34
Plastic Limit= 23
Plasticity Index= 11
Natural Moisture= 27.2
Liquidity Index= 0.4

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2572		Plastie:Limit⊧0)	ale:	
Run No.	1	2	3	4	
Wet+Tare	25.9	31.6	23.6		
Dry+Tare	23.5	28.3	21.7		
Tare	13.6	13.5	13.6		
Moisture	24.2	22.3	23.5		

Natural Melature Date

Wet+Tare	Dry+Tare	Tare	Moisture
1208	990.9	194.1	27.2

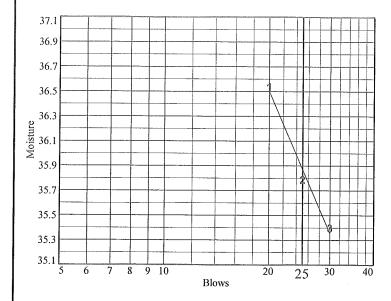
LIQUID AND PLASTIC LIMIT TEST DATA

6/5/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 **Location:** Boring E330-B-004


Depth: 68'-69'

Material Description: Gray Clay

USCS: CL or OL Tested by: JF/TP Sample Number: HMA#7513-35/S-21

Checked by: JAM

Run No.	4	2	3	4	5	6
Vet+Tare	27.9	26.5	28.9			
Ory+Tare	24.1	23.1	24.9			
Tare	13.7	13.6	13.6			
# Blows	20	25	30			
Moisture	36.5	35.8	35.4			

Liquid Limit= 36
Plastic Limit= 22
Plasticity Index= 14
Natural Moisture= 24.9
Liquidity Index= 0.2

			- Plastic Limit D		
Run No.	1	2	3	4	
Wet+Tare	23.5	24.3	24.8	1,210	
Dry+Tare	21.7	22.3	22.8		
Tare	13.6	13.6	13.6	, to	
Moisture	22.2	23.0	21.7		

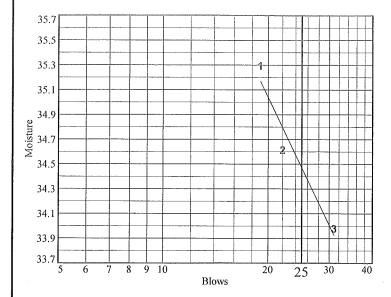
Natural Moleture Data

Wet+Tare	Dry+Tare	Tare	Moisture
1726.6	1428.9	231	24.9

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-004

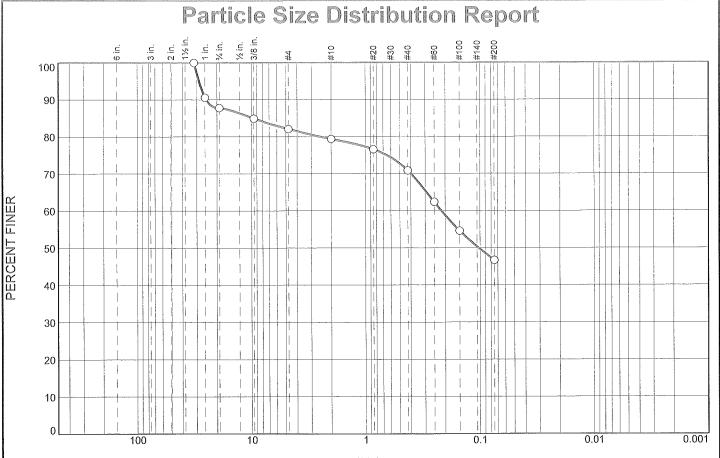

Depth: 81'-83'

Material Description: Gray Silt

USCS: ML or OL Tested by: JF/TP Sample Number: HMA#7513-36/S-24

Checked by: JAM

			(Eligipija) Eligipida)	in.		
Run No.	1	2	3	4	5	6
Wet+Tare	29.8	27.6	27.5			
Dry+Tare	25.6	24	24	, , , , , , , , , , , , , , , , , , , ,		
Tare	13.7	13.6	13.7			
# Blows	19	22	31			
Moisture	35.3	34.6	34.0			



Liquid Limit= .	34
Plastic Limit=	25
Plasticity Index=	9
Natural Moisture≡	21.8
Liquidity Index=	-0.4

			Pastis Linit.0	al (a)	
Run No.	1	2	3	4	
Wet+Tare	24.8	30.4	29.6		
Dry+Tare	22.5	27	26.4		
Tare	13.6	13.5	13.6		
Moisture	25.8	25.2	25.0		

Wet+Tare	Dry+Tare	Tare	Moisture
1380.4	1175.7	234.9	21.8

Hayre McElroy & Associates, LLC

			G	RAIN SIZE -	mm.		
0/ . 01		Gravel % Sand		% Fines			
% ÷3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	12.3	5.6	2.8	8.5	24.1	46.7	

	SIEVE	PERCENT	SPEC.*	PASS?
	SIZE	FINER	PERCENT	(X=NO)
	1 1/4"	100.0		
	1"	90.6		
	3/4"	87.7		
	3/8"	84.9		
	#4	82.1		
	#10	79.3		
	#20	76.5		
	#40	70.8		
1	#60	62.4		
	#100	54.6		
	#200	46.7		

Silty Sand with G	Material Description	<u>on</u>
PL= NP	Atterberg Limits	PI=
D ₉₀ = 24.8619 D ₅₀ = 0.1026 D ₁₀ =	Coefficients D ₈₅ = 9.7166 D ₃₀ = C _u =	D ₆₀ = 0.2164 D ₁₅ = C _c =
USCS= SM	Classification AASH	TO= A-4(0)
	Remarks	
100 CONT CONT CONT CONT CONT CONT CONT CONT		Springer and a second a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second

(no specification provided)

Source of Sample: Boring E-330-B-05 **Sample Number:** 1/HMA #7499-32

Depth: 6.5

Date: 3/29/13

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

Figure

Tested By: Tara Pfaff

4/1/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E-330-B-05

Depth: 6.5

Material Description: Silty Sand with Gravel

Date: 3/29/13

Tested by: Tara Pfaff

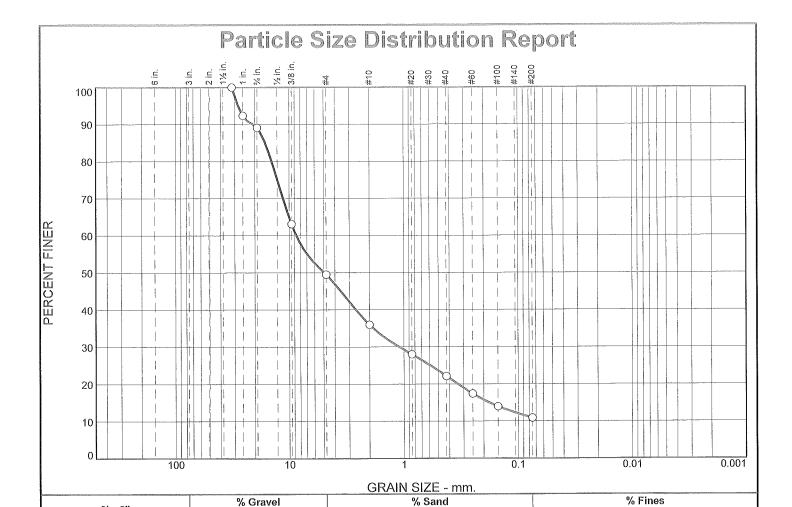
Sample Number: 1/HMA #7499-32

Checked by: JAM

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 839.80

Tare Wt. = 313.20

Minus #200 from wash = 46.1%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
1290.20	313.20	1 1/4"	0.00	0.00	100.0
		1"	1562.00	1469.70	90.6
		3/4"	1532.40	1505.00	87.7
		3/8"	1511.70	1483.90	84.9
		#4	1385.20	1357.50	82.1
		#10	1541.60	1515.00	79.3
		#20	1095.80	1068.40	76.5
		#40	1228.90	1173.10	70.8
		#60	961.50	878.80	62.4
		#100	920.00	844.00	54.6
		#200	1097.80	1020.40	46.7

da ellerik tempercen:

Cabbles	Gravel				Sand				Fines		
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total	
0.0	12.3	5.6	17.9	2.8	8.5	24.1	35.4			46.7	

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.1026	0.2164	2.5169	9.7166	24.8619	28.6095

Fineness Modulus
1.93

Medium

13.8

Fine

11.3

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1 1/4"	100.0		
1"	92.3		
3/4"	89.1		
3/8"	63.1		
#4	49.5		
#10	36.0		
#20	28.0		
#40	22.2		
#60	17.4		
#100	14.0		
#200	10.9		

Coarse

10.9

Fine

39.6

Coarse

13.5

	Material Description Poorly graded gravel with silt and sand						
PL= NP	Atterberg Limits LL= NP	PI=					
D ₉₀ = 20.6193 D ₅₀ = 4.9440 D ₁₀ =	Coefficients D ₈₅ = 16.1938 D ₃₀ = 1.0986 C _u =	$\begin{array}{c} D_{60} = 8.6510 \\ D_{15} = 0.1785 \\ C_{c} = \end{array}$					
USCS= GP-GM	Classification AASHT	O= A-1-a					
	<u>Remarks</u>						

Silt

10.9

* (no specification provided)

Source of Sample: Boring E-330-B-05 **Sample Number:** 12/HMA #7499-33

Depth: 34.0-35.0

Date: 4/1/2013

Clay

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

Figure

Tested By: Tara Pfaff

% +3"

0.0

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 **Location:** Boring E-330-B-05

Depth: 34.0-35.0

Sample Number: 12/HMA #7499-33

Material Description: Poorly graded gravel with silt and sand

Date: 4/1/2013

Tested by: Tara Pfaff

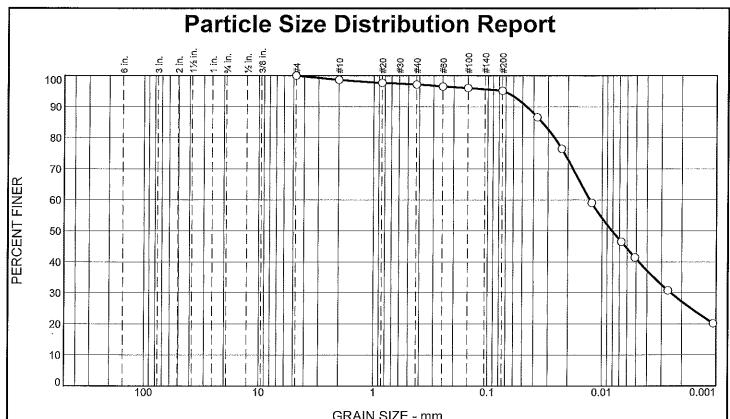
Checked by: JAM

STEWE TESTEDING

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 1057.60

Tare Wt. = 363.80

Minus #200 from wash = 10.4%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
1138.50	363.80	1 1/4"	0.00	0.00	100.0
		1"	1528.90	1469.60	92.3
		3/4"	1530.30	1505.00	89.1
		3/8"	1685.30	1483.90	63.1
		#4	1463.10	1357.50	49.5
		#10	1619.30	1515.00	36.0
		#20	1130.20	1068.40	28.0
		#40	1218.40	1173.00	22.2
		#60	915.50	878.80	17.4
		#100	870.30	843.70	14.0
		#200	1044.30	1020.40	10.9

Figurational Compositions

Calablas	Gravel				Sand				Fines		
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total	
0.0	10.9	39.6	50.5	13.5	13.8	11.3	38.6			10.9	

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.1785	0.3364	1.0986	4.9440	8.6510	14.1885	16.1938	20.6193	27.8863

Fineness Modulus 4.71

GIVAIN SIZE - IIIII.							
0/ 120		% Gravel % Sand		% Fines			
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.0	1.3	1.5	2.0	54.2	41.0

	TEST RE	SULTS	
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
#4	100.0		
#10	98.7		
#20	97.7		
#40	97.2		
#60	96.5		
#100	96.0		
#200	95.2		
0.0372 mm.	86.6		
0.0227 mm.	76.4		
0.0123 mm.	59.0		
0.0068 mm.	46.5		
0.0051 mm.	41.4		
0.0026 mm.	30.8		
0.0011 mm.	20.2		
	i		

	2.0		34.2	71.0
	Mator	ial Descr	intion	
Lean Clay		iai Desci	<u>iption</u>	
Zun Chay				
	Atterberg L	<u>imits (AS</u>	TM D 4318)	
PL= 24	LL≒	: 35	PI= 11	
	CI	assificati	on	
USCS (D :	2487)= CL	AASH	ΓΟ (M 145)= A	-6(11)
	C	oefficient	ts.	
$D_{90} = 0.04$	161 D ₈₅ =	0.0339	D ₆₀ = 0.01	28
D ₉₀ = 0.04 D ₅₀ = 0.00)82 D ₃₀ =	0.0339 0.0025	D ₁₅ = C _c =	
D ₁₀ =	Cu≟		cc=	
		Remarks		i
Date Rece	ived:	Dat	e Tested:	
Teste	d By: Tara Pfa	ff		
	d By: JAM			
,	Title:			

(no specification provided)

Source of Sample: Boring E-330-B-005 Sample Number: 19/HMA #7499-34

Depth: 48.0-49.0

Date Sampled: 4/1/2013

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

Figure

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450

Location: Boring E-330-B-005

Depth: 48.0-49.0

Material Description: Lean Clay

Sample Date: 4/1/2013

PL: 24

LL: 35

Pl: 11

USCS Classification: CL

Tested By: Tara Pfaff

AASHTO Classification: A-6(11)

Sample Number: 19/HMA #7499-34

Checked By: JAM

Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 197.50

Tare Wt. = 196.00

Minus #200 from wash = 97.5%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
60.10	0.00	#4	0.00	0.00	100.0
		#10	1515.90	1515.10	98.7
		#20	1173.50	1172.90	97.7
		#40	1068.30	1068.00	97.2
		#60	879.20	878.80	96.5
		#100	844.10	843.80	96.0
		#200	1020.90	1020.40	95.2

Hydrometer Test Data

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 98.7

Weight of hydrometer sample =60.1

Hygroscopic moisture correction:

Moist weight and tare = 33.30

Dry weight and tare =

Tare weight = 11.10 Hygroscopic moisture = 2.8%

Table of composite correction values:

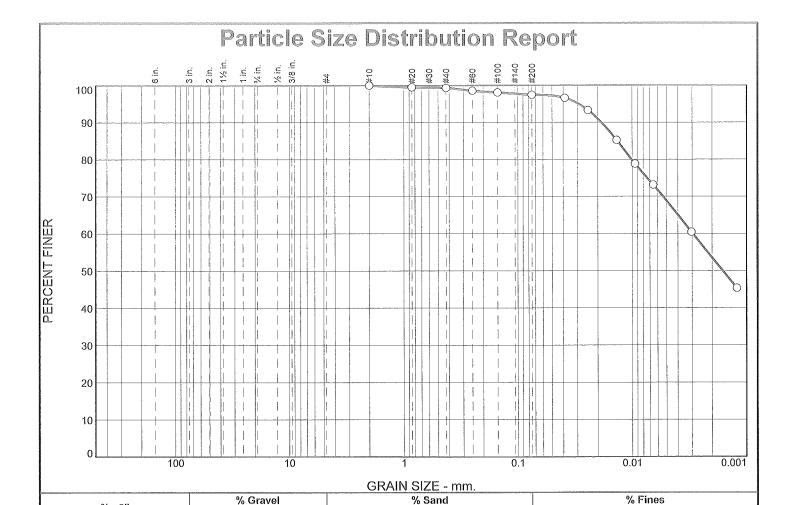
Temp., deg. C: 15.0 -3.6 -5.4 Comp. corr.: -5.9

Meniscus correction only = -1.0Specific gravity of solids = 2.7

Hydrometer type = 152H

Hydrometer effective depth equation: L = 5.795 - -0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	К	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	19.1	57.0	51.9	0.0136	56.0	15.0	0.0372	86.6
5.00	19.1	50.9	45.8	0.0136	49.9	14.0	0.0227	76.4
15.00	18.9	40.5	35.4	0.0136	39.5	12.3	0.0123	59.0
45.00	18.9	33.0	27.9	0.0136	32.0	11.0	0.0068	46.5
75.00	18.7	30.0	24.8	0.0137	29.0	10.6	0.0051	41.4
250.00	19.3	23.5	18.5	0.0136	22.5	9.5	0.0026	30.8
1440.00	17.7	17.5	12.1	0.0138	16.5	8.5	0.0011	20.2


Fractional Components

Cobbles	Gravel				Sa	nd	Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	1.3	1.5	2.0	4.8	54.2	41.0	95.2

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.0025	0.0082	0.0128	0.0264	0.0339	0.0461	0.0729

Fineness Modulus 0.13

Hayre McElroy & Associates, LLC _____

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X≒NO)
#10	100.0		
#20	99.5		
#40	99.4		
#60	98.6		
#100	98.1		
#200	97.5		

Coarse

0.0

Fine

0.0

Coarse

0.0

Medium

0.6

Fat Clay	Material Descripti	<u>on</u>
PL= 28	Atterberg Limits	<u>§</u> P = 30
D ₉₀ = 0.0186 D ₅₀ = 0.0016 D ₁₀ =	Coefficients D ₈₅ = 0.0135 D ₃₀ = C _u =	D ₆₀ = 0.0030 D ₁₅ = C _c =
USCS= CH	Classification AASH ⁻ Remarks	TO= A-7-6(35)
	Remarks	

Silt

28.7

Fine

1.9

% +3"

0.0

Source of Sample: Boring E-330-B-05 **Sample Number:** 23/HMA #7499-35

Depth: 61.0-62.0

Date: 4/1/2013

Clay

68.8

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

Figure

Tested By: Tara Pfaff

⁽no specification provided)

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E-330-B-05

Depth: 61.0-62.0

Material Description: Fat Clay

Date: 4/1/2013

PL: 28

LL: 58

PI: 30

USCS Classification: CH

AASHTO Classification: A-7-6(35)

Sample Number: 23/HMA #7499-35

Tested by: Tara Pfaff

Checked by: JAM

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 198.90

Tare Wt. = 198.10

Minus #200 from wash = 98.7%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
63.30	0.00	#10	0.00	0.00	100.0
		#20	1173.10	1172.80	99.5
		#40	1068.30	1068.20	99.4
		#60	879.20	878.70	98.6
		#100	844.10	843.80	98.1
		#200	1020.80	1020.40	97.5

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100.0

Weight of hydrometer sample =63.3

Hygroscopic moisture correction:

Moist weight and tare = 27.50 Dry weight and tare = 27.00

Dry weight and tare =

Tare weight = 11.20

Hygroscopic moisture = 3.2%

Table of composite correction values:

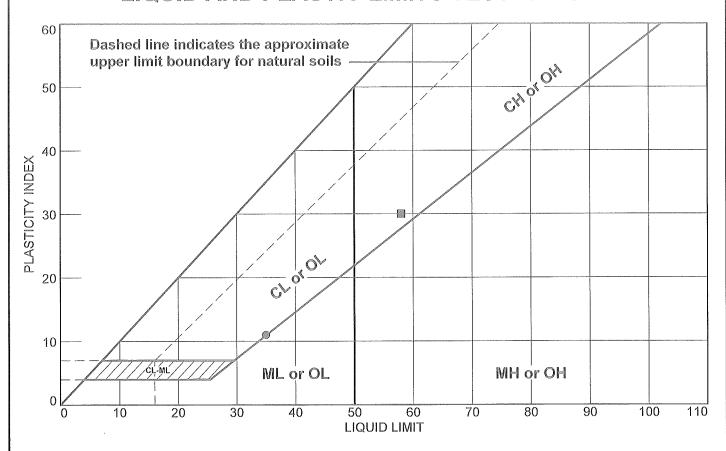
25.5 17.8 Temp., deg. C: 15.0 -3.6 -5.4 Comp. corr.:

Meniscus correction only = -1.0Specific gravity of solids = 2.7

Hydrometer type = 152H

Hydrometer effective depth equation: L = 5.795 - -0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	К	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	19.3	65.0	60.0	0.0136	64.0	16.3	0.0387	96.6
5.00	19.1	63.0	57.9	0.0136	62.0	16.0	0.0243	93.3
15.00	19.0	58.0	52.9	0.0136	57.0	15.1	0.0137	85.2
30.00	19.1	54.0	48.9	0.0136	53.0	14.5	0.0094	78.8
60.00	19.0	50.5	45.4	0.0136	49.5	13.9	0.0066	73.1
250.00	19.5	42.5	37.5	0.0135	41.5	12.6	0.0030	60.4
1440.00	17.9	33.5	28.1	0.0138	32.5	11.1	0.0012	45.3


Contestable supplied and the con-

		Gravel		Sand				Fines		
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	0.6	1.9	2.5	28.7	68.8	97.5

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.0016	0.0030	0.0101	0.0135	0.0186	0.0292

Fineness Modulus 0.04

LIQUID AND PLASTIC LIMITS TEST REPORT

(10000000000000000000000000000000000000				SOIL DA	ATA			
	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs
0	Boring E-330-B-05	19/HMA	48.0-49.0	20.7	24	35	11	CL
		#7499-34						
	Boring E-330-B-05	23/HMA	61.0-62.0	28.9	28	58	30	СН
		#7499-35						

Hayre McElroy & Associates, LLC	Client: Golder Associates	
	Project: Sound Transit East Link	
Redmond, WA	Project No.: 12-450	Figure

Tested By: Tara Pfaff Checked By: JAM

LIQUID AND PLASTIC LIMIT TEST DATA

Client: Golder Associates

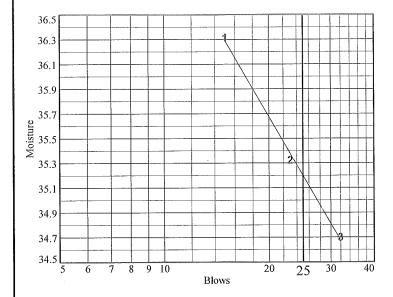
Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E-330-B-05

Depth: 48.0-49.0

Material Description: Lean Clay

USCS: CL


Tested by: Tara Pfaff

Sample Number: 19/HMA #7499-34

AASHTO: A-6(11)

Checked by: JAM

		A CONTRACTOR OF THE CONTRACTOR	Highigh Highland	alfa		
Run No.	1	2	3	4	5	6
Wet+Tare	39.6	38.5	43.2			
Dry+Tare	32.7	32.0	35.6			
Tare	13.7	13.6	13.7			
# Blows	15	23	32			
Moisture	36.3	35.3	34.7			

Liquid Limit=	35
Plastic Limit=	24
Plasticity Index=	11
Natural Moisture=	20.7
Liquidity Index=	-0.3
LIGHTON HUENE.	010

100 100 100 100 100 100 100 100 100 100	Tall to the		Plestic Limit b	ata	
Run No.	1	2	3	4	
Wet+Tare	22.0	23.2	24.0		
Dry+Tare	20.3	21.4	21.9		
Tare	13.6	13.6	13.5		
Moisture	25.4	23.1	25.0		

Wet+Tare Dry+Tare Tare Moisture 109.4 97.0 37.2 20.7

LIQUID AND PLASTIC LIMIT TEST DATA

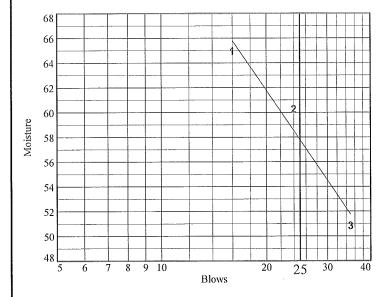
Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 **Location:** Boring E-330-B-05

Depth: 61.0-62.0

Material Description: Fat Clay

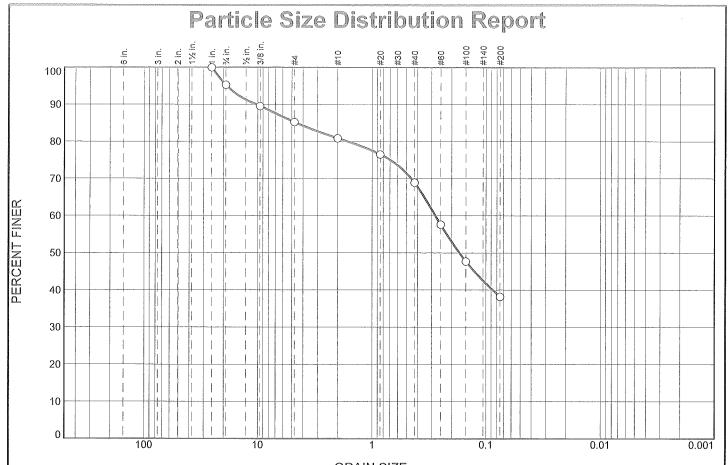

USCS: CH
Tested by: Tara Pfaff

Sample Number: 23/HMA #7499-35

AASHTO: A-7-6(35)

Checked by: JAM

Run No.	1	2	3	4	5	6
Wet+Tare	33.9	37.0	37.8			
Dry+Tare	25.0	28.2	28.8			
Tare	11.3	13.6	11.1			
# Blows	16	24	35			
Moisture	65.0	60.3	50.8			



Liquid Limit=	58
Plastic Limit=	28
Plasticity Index=	30
Natural Moisture=	28.9
Liquidity Index=	0.0

	20 20 20 20 20 20 20 20 20 20 20 20 20 2	100 100 100 100 100 100 100 100 100 100	Plashithia		
Run No.	1	2	3	4	
Wet+Tare	20.3	22.5	26.3		
Dry+Tare	18.8	20.6	23.6		
Tare	13.6	13.6	13.6		
Moisture	28.8	27.1	27.0		

Wet+Tare Dry+Tare Tare Moisture 87.1 75.7 36.3 28.9

Hayre McElroy & Associates, LLC ____

GRAIN SIZE - mm.											
% ÷3"	% Gravel		% Sand			% Fines					
76 + 3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay				
0.0	4.7	10.1	4.3	12.0	30.7	38.2					

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1"	100.0		
3/4"	95.3		
3/8"	89.5		
#4	85.2		
#10	80.9		
#20	76.5		
#40	68.9		
#60	57.6		
	47.7	:	
#200	38.2		
	3/4" 3/8" #4 #10 #20 #40	SIZE FINER 1" 100.0 3/4" 95.3 3/8" 89.5 #4 85.2 #10 80.9 #20 76.5 #40 68.9 #60 57.6 #100 47.7	SIZE FINER PERCENT 1" 100.0 3/4" 95.3 3/8" 89.5 #4 85.2 #10 80.9 #20 76.5 #40 68.9 #60 57.6 #100 47.7

Silty Sand	Material Descripti	on
PL= NP	Atterberg Limits	<u> </u>
D ₉₀ = 10.3076 D ₅₀ = 0.1715 D ₁₀ =	Coefficients D ₈₅ = 4.5695 D ₃₀ = C _U =	D ₆₀ = 0.2784 D ₁₅ = C _c =
USCS= SM	Classification AASH	ΓO= A-4(0)
	<u>Remarks</u>	

(no specification provided)

Source of Sample: Boring E-330-B-06 **Sample Number:** Run 2/HMA #7499-7

Depth: 15.5-16.0

Date: 3/28/13

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

Figure

Tested By: Tara Pfaff

3/29/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 **Location:** Boring E-330-B-06

Depth: 15.5-16.0

Material Description: Silty Sand

Date: 3/28/13

Tested by: Tara Pfaff

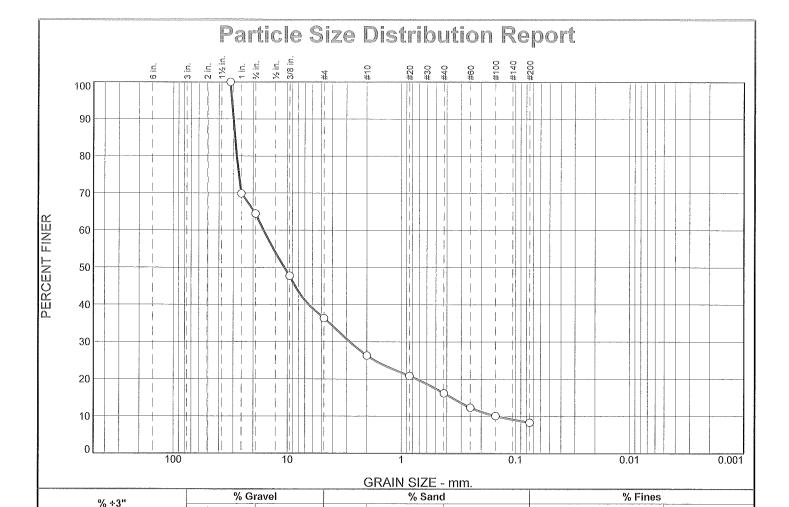
Sample Number: Run 2/HMA #7499-7

Checked by: JAM

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 1952.90

Tare Wt. = 775.50

Minus #200 from wash = 37.2%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
2649.20	775.50	1"	0.00	0.00	100.0
		3/4"	1593.50	1505.00	95.3
		3/8"	1591.70	1484.20	89.5
		#4	1438.20	1357.40	85.2
		#10	1596.90	1515.00	80.9
		#20	1149.50	1068.30	76.5
		#40	1316.10	1173.00	68.9
		#60	1090.90	879.50	57.6
		#100	1030.00	844.00	47.7
		#200	1198.40	1020.50	38.2

Signational Commonwald

Cobbles	Gravel			Sand				Fines		
	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	4.7	10.1	14.8	4.3	12.0	30.7	47.0			38.2

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.1715	0.2784	1.6468	4.5695	10.3076	18.6687

Fineness Modulus 1.87

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1 1/4"	100.0		
1"	69.9		
3/4"	64.5		
3/8"	47.7		
#4	36.4		
#10	26.3		
#20	20.8		
#40	16.2		
#60	12.4		
#100	10.1		
#200	8.3		

Coarse

35.5

Fine

28.1

Coarse

10.1

Medium

10.1

Fine

7.9

M	Material Description							
Poorly Graded Gra	Poorly Graded Gravel with Silt and Sand							
PL= NP	Atterberg Limits LL= NP	PI= NP						
D ₉₀ = 29.8217 D ₅₀ = 10.6113 D ₁₀ = 0.1459	Coefficients D85= 28.8531 D30= 2.8163 Cu= 110.69	D ₆₀ = 16.1462 D ₁₅ = 0.3635 C _c = 3.37						
USCS= GP-GM	Classification AASHT0	D= A-1-a						
	<u>Remarks</u>							

Silt

8.3

* (no specification provided)

Source of Sample: Boring E-330-B-06 **Sample Number:** Run 7/HMA #7499-8

Depth: 52.0-52.5

Date: 3/29/13

Clay

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

Figure

Tested By: Tara Pfaff

0.0

3/29/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E-330-B-06

Depth: 52.0-52.5

Material Description: Poorly Graded Gravel with Silt and Sand

Date: 3/29/13

Tested by: Tara Pfaff Checked by: JAM

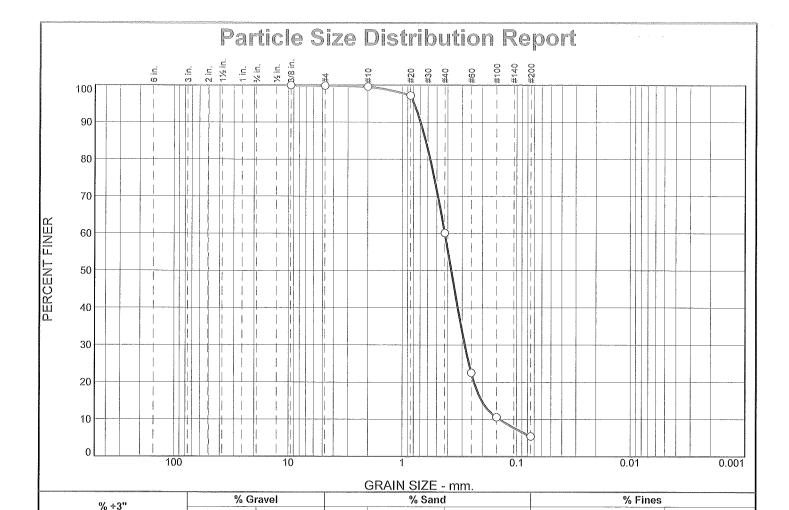
Savalianiena

Sample Number: Run 7/HMA #7499-8

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 2370.20

Tare Wt. = 595.90

Minus #200 from wash = 8.1%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
2526.50	595.90	1 1/4"	0.00	0.00	100.0
		1"	2050.90	1469.80	69.9
		3/4"	1609.60	1505.00	64.5
		3/8"	1807.10	1484.00	47.7
		#4	1577.30	1357.60	36.4
		#10	1709.00	1515.10	26.3
		#20	1174.20	1068.50	20.8
		#40	1263.00	1173.20	16.2
		#60	953.50	879.30	12.4
		#100	887.70	844.00	10.1
		#200	1055.40	1020.60	8.3

Trender the figure of the second

Cobbles		Gravel			Sa	nd		Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	35.5	28.1	63.6	10.1	10.1	7.9	28.1			8.3

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.1459	0.3635	0.7368	2.8163	10.6113	16.1462	27.8461	28.8531	29.8217	30.7803

Fineness Modulus	c _u	Cc
5.58	110.69	3.37

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/8"	100.0		
#4	99.9		
#10	99.6		
#20	97.2		
#40	60.1		
#60	22.5		
#100	10.6		
#200	5.4		
	No. of the Control of		

Coarse

0.0

Fine

0.1

Coarse

0.3

Medium

39.5

Fine

54.7

M Poorly Graded San	laterial Description Id with Silt	on
PL= NP	Atterberg Limits LL= NP	PI= NP
D ₉₀ = 0.6934 D ₅₀ = 0.3729 D ₁₀ = 0.1410	$\begin{array}{c} \underline{\text{Coefficients}} \\ \text{D}_{85} = 0.6249 \\ \text{D}_{30} = 0.2847 \\ \text{C}_{\text{U}} = 3.01 \end{array}$	D ₆₀ = 0.4243 D ₁₅ = 0.2026 C _c = 1.35
USCS= SP-SM	<u>Classification</u> AASHT	O= A-3
	<u>Remarks</u>	

Silt

5.4

(no specification provided)

0.0

Source of Sample: Boring E-330-B-06 **Sample Number:** Run 10/HMA #7499-9

Depth: 72.0-72.5

Date: 3/29/13

Clay

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

Figure

Tested By: Tara Pfaff

3/29/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E-330-B-06

Depth: 72.0-72.5

Sample Number: Run 10/HMA #7499-9

Material Description: Poorly Graded Sand with Silt

Date: 3/29/13

Tested by: Tara Pfaff

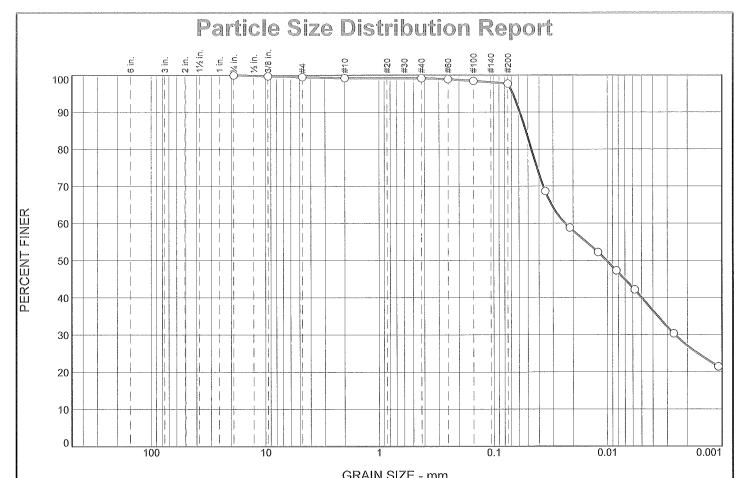
Checked by: JAM

Same Park Francis

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 516.00

Tare Wt. = 114.30

Minus #200 from wash = 4.8%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
536.40	114.30	3/8"	0.00	0.00	100.0
		#4	1357.90	1357.50	99.9
		#10	1516.10	1515.00	99.6
		#20	1078.60	1068.40	97.2
		#40	1329.70	1173.10	60.1
		#60	1038.10	879.30	22.5
		#100	894.30	843.90	10.6
		#200	1042.20	1020.40	5.4

Perentalistic Constitution

	Gravel Sand					Fines				
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.1	0.1	0.3	39.5	54.7	94.5			5.4

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.1410	0.2026	0.2365	0.2847	0.3729	0.4243	0.5709	0.6249	0.6934	0.7889

Fineness Modulus	c _u	c _c
1.75	3.01	1.35

	% Gravel		% Sand			% Fines		
% ÷3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	0.0	0.5	0.3	0.0	1.5	57.7	40.0	

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X≃NO)
3/4"	100.0		
3/8"	99.8		
#4	99.5		
#10	99.2		
#40	99.2		
#60	98.9		
#100	98.5		
#200	97.7		
	3/4" 3/8" #4 #10 #40 #60 #100	SIZE FINER 3/4" 100.0 3/8" 99.8 #4 99.5 #10 99.2 #40 99.2 #60 98.9 #100 98.5	SIZE FINER PERCENT 3/4" 100.0 3/8" 99.8 #4 99.5 #10 99.2 #40 99.2 #60 98.9 #100 98.5

Lean Clay	Material Description	<u>on</u>
PL= 20	Atterberg Limits	PI= 13
D ₉₀ = 0.0588 D ₅₀ = 0.0102 D ₁₀ =	<u>Coefficients</u> D ₈₅ = 0.0522 D ₃₀ = 0.0026 C _u =	D ₆₀ = 0.0234 D ₁₅ = C _c =
USCS= CL	Classification AASH1	TO= A-6(13)
	<u>Remarks</u>	
	ENIA ARDAMAGO ANAMADO CONTRA	

(no specification provided)

Source of Sample: Boring E-330-B-06 **Sample Number:** Run 11/HMA #7499-10

Depth: 76.7-77.0

Date: 3/29/13

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

Figure

Tested By: Tara Pfaff Checked By: JAM

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E-330-B-06

Depth: 76.7-77.0

Sample Number: Run 11/HMA #7499-10

Material Description: Lean Clay

Date: 3/29/13

LL: 33

PI: 13

USCS Classification: CL

AASHTO Classification: A-6(13)

Tested by: Tara Pfaff Checked by: JAM

PL: 20

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
797.00	0.00	3/4"	0.00	0.00	100.0
		3/8"	1485.60	1483.80	99.8
		#4	1359.50	1357.50	99.5
		#10	1517.30	1515.10	99.2
		#40	1068.70	1068.40	99.2
		#60	881.10	878.80	98.9
		#100	847.80	844.10	98.5
		#200	1026.40	1020.50	97.7

Hillianing Car Basic Ditter

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 99.2

Weight of hydrometer sample =61.6

Hygroscopic moisture correction:

Moist weight and tare = 42.00 Dry weight and tare = 41.20

Tare weight = 13.70

Hygroscopic moisture = 2.9%

Table of composite correction values:

 Temp., deg. C:
 15.0
 25.5
 17.8

 Comp. corr.:
 -5.9
 -3.6
 -5.4

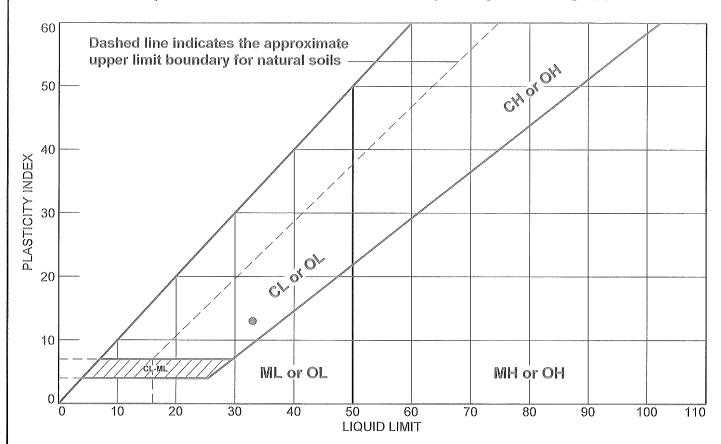
Meniscus correction only = -1.0Specific gravity of solids = 2.7

Hydrometer type = 152H

Hydrometer effective depth equation: L = 5.795 - -0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	К	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	19.0	47.0	41.9	0.0136	46.0	13.3	0.0352	68.7
5.00	19.0	41.0	35.9	0.0136	40.0	12.4	0.0214	58.8
15.00	18.9	37.0	31.9	0.0136	36.0	11.7	0.0120	52.2
30.00	18.8	34.0	28.8	0.0136	33.0	11.2	0.0083	47.3
60.00	18.7	30.9	25.7	0.0137	29.9	10.7	0.0058	42.2
250.00	19.5	23.5	18.5	0.0135	22.5	9.5	0.0026	30.3
1440.00	17.7	18.5	13.1	0.0138	17.5	8.7	0.0011	21.4

Semethorish Semplements


Colablas	Gravel			3.3.73.					Fines	
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.5	0.5	0.3	0.0	1.5	1.8	57.7	40.0	97.7

D ₁₀	P ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.0026	0.0102	0.0234	0.0466	0.0522	0.0588	0.0677

Fineness
Modulus
0.05

Hayre McElroy & Associates, LLC

	SOIL DATA								
	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs	
0	Boring E-330-B-06	Run 11/HMA	76.7-77.0	14.1	20	33	13	CL	
		#7499-10							
	The state of the s								

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No.: 12-450

Figure

Tested By: Tara Pfaff

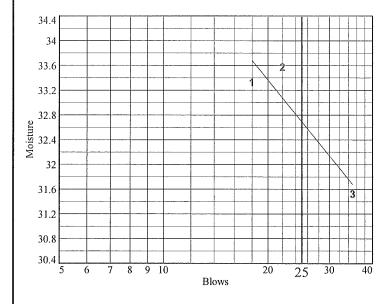
LIQUID AND PLASTIC LIMIT TEST DATA

4/3/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E-330-B-06

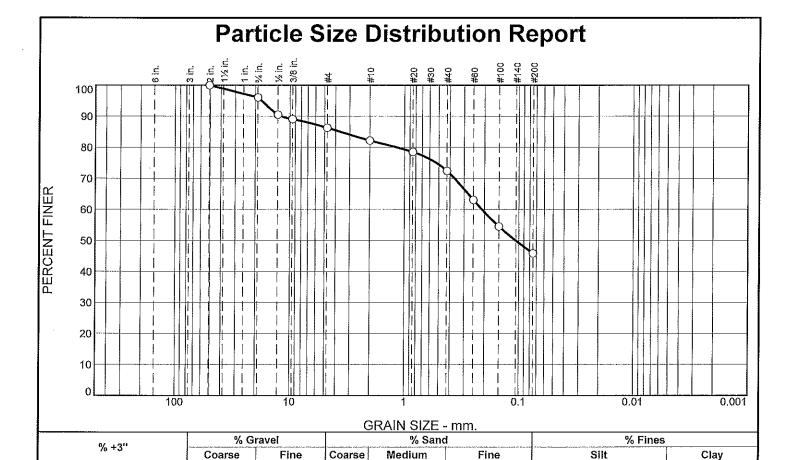

Depth: 76.7-77.0

Material Description: Lean Clay

USCS: CL Tested by: Tara Pfaff Sample Number: Run 11/HMA #7499-10

AASHTO: A-6(13) Checked by: JAM

			agesteletenkimien)	ilia		
Run No.	1	2	3	4	5	6
Wet+Tare	41.7	32.0	40.2			
Dry+Tare	34.7	27.4	33.8			
Tare	13.7	13.7	13.5			
# Blows	18	22	35			
Moisture	33.3	33.6	31.5			



Liquid Limit= .	33
Plastic Limit= .	20
Plasticity Index=	13
	14.1
Liquidity Index=	-0.5

1,575			PlasifeLiniti	Dates.	
Run No.	1	2	3	4	
Wet+Tare	20.9	24.0	23.7		
Dry+Tare	19.3	21.9	22.0		
Tare	11.2	11.2	13.7		
Moisture	19.8	19.6	20.5		

Tare	11.2	11.2	13.7		
Moisture	19.8	19.6	20.5		
			Newson and Marketing	. IbY. Control	

Wet+Tare	Dry+Tare	Tare	Moisture
84.5	77.9	31.0	14.1

Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
2"	100.0		
3/4"	96.1		
1/2"	90.5		
3/8"	89.1		
#4	86.3		
#10	82.2		
#20	78.5		
#40	72.4		
#60	63.0		
#100	54.5		
#200	45.8		
[
Ì			
1			

3.9

9.8

4.1

9.8	26.6	45,8
Olive Gray	Materi y Silty Sand	al Description
PL≔	Atterberg Li LL=	mits (ASTM D 4318) PI=
USCS (D 2		ASHTO (M 145)= A-4(0)
D ₉₀ = 11.9 D ₅₀ = 0.10 D ₁₀ =		Defficients 3.6446 Deficients De
		Remarks
·		
	ived: 5/3/13 d By: JF	Date Tested: 5/8/13
Checke	d By: JAM	
	Title:	

* (no specification provided)

0.0

Source of Sample: Boring E330-B-006A Sample Number: HMA#7510-13/S-2

Depth: 10'-10.9'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

Figure

2/13/2014

GRAIN SIZE DISTRIBUTION TEST DATA

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450

Location: Boring E330-B-006A

Depth: 10!-10.9'

Material Description: Olive Gray Silty Sand

Date Received: 5/3/13 USCS Classification: SM

AASHTO Classification: A-4(0)

Sample Number: HMA#7510-13/S-2

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: JF

Test Date: 5/8/13

Checked By: JAM

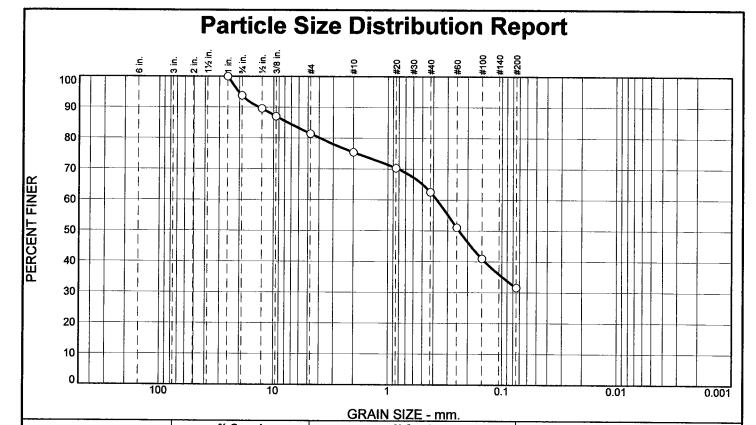
Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 321.90

Tare Wt. = 120.20

Minus #200 from wash = 45.4%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
489.50	120.20	2"	0.00	0.00	100.0
		3/4"	1519.30	1504.80	96.1
		1/2"	1440.30	1419.70	90.5
		3/8"	1489.10	1483.80	89.1
		#4	1367.70	1357.40	86.3
		#10	1529.80	1514.70	82.2
		#20	1081.40	1067.70	78.5
		#40	967.60	945.00	72.4
		#60	912.70	878.30	63.0
		#100	874.90	843,30	54.5
		#200	1052.00	1019.90	45.8


Fractional Components

Calablas	Gravel			Sand			Fines			
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	3,9	9.8	13.7	4.1	9.8	26.6	40.5			45.8

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.1073	0.2111	1.1740	3.6446	11.9347	17.6469

Fineness
Modulus
1.70

Hayre McElroy & Associates, LLC _____

% +3"		% Gravel		% Sand			% Fines	
76 . 3		Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0		6.2	12.4	6.0	12.8	31.0	31.6	
Test Re	esults (ASTM	C136 & ASTM	D 1140)			Material	Description	
Opening Size	Percent Finer	Spec.* (Percent)	Pass1		Olive Gray	Silty Sand W/Gra		
1"	100.0							

Opening	Percent	Spec.*	Pass?	
Size Finer		(Percent)	(X=Fail)	
1"	100.0			
3/4"	93.8			
1/2"	89.6			
3/8"	87.1		}	
#4	81.4			
#10	75.4			
#20	70.3			
#40	62.6			
#60	51.1	i		
#100	41.0			
#200	31.6			
ŀ				
		1		

Olive Gray Silt	y Sand W/Gravel	<u>5011911511</u>
At PL=	terberg Limits	(ASTM D 4318) PI=
USCS (D 2487)	Classific SM AA	<u>cation</u> SHTO (M 145)= A-2-4(0)
D ₉₀ = 13.3908 D ₅₀ = 0.2383 D ₁₀ =	<u>Coeffici</u> D ₈₅ = 7.4933 D ₃₀ = C _u =	
	Rema	rks
Date Received	: 05/03/13	Date Tested: 05/08/13
Tested By		
Checked By Title		

(no specification provided)

Source of Sample: Boring E330-B-006A **Sample Number:** 7510-15/S-4

Depth: 20'-20.8'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

Figure

5/15/2013

GRAIN SIZE DISTRIBUTION TEST DATA

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450

Location: Boring E330-B-006A

Depth: 20'-20.8'

Material Description: Olive Gray Silty Sand W/Gravel

Date Received: 05/03/13
USCS Classification: SM

USCS Classification: SM

AASHTO Classification: A-2-4(0)

Grain Size Test Method: ASTM C136

Grain Size Test Method: ASTM C136 **#200 Wash Method:** ASTM D 1140

Tested By: JF

Test Date: 05/08/13

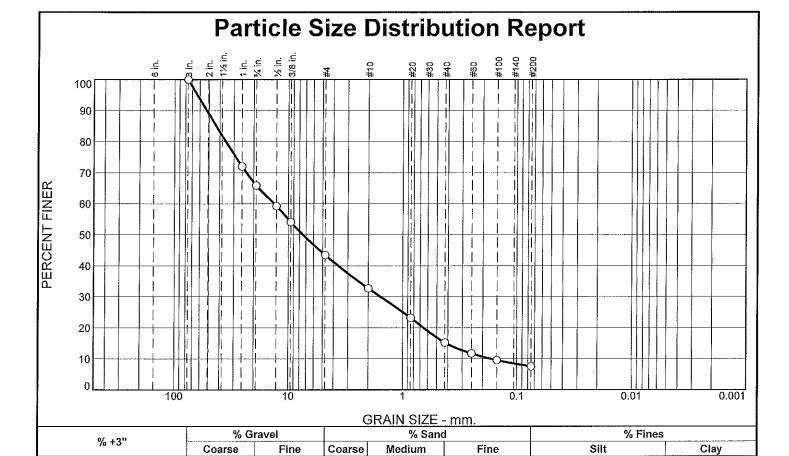
Sample Number: 7510-15/S-4

Checked By: JAM

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 427.30

Tare Wt. = 118.00

Minus #200 from wash = 27.1%


Dry Sample and Tare Tare (grams) (grams)		Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer	
542.00	118.00	1"	0.00	0.00	100.0	
		3/4"	1531.20	1505.00	93,8	
		1/2"	1437.60	1419.60	89.6	
		3/8"	1494.70	1484.00	87. 1	
		#4	1381.40	1357.50	81.4	
		#10	1540.40	1515.00	75.4	
		#20	1089.70	1068.10	70.3	
		#40	978.30	945.40	62.6	
		#60	927.30	878.50	51.1	
		#100	886.30	843.60	41.0	
		#200	1060.00	1020.10	31.6	

Fractional Components

Cobbles	Gravel			Sand			Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	6.2	12.4	18.6	6.0	12.8	31.0	49.8			31.6

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.2383	0.3722	3.9305	7.4933	13.3908	20.3261

Fineness Modulus
2.25

17.5

Opening	Percent	136 & ASTM E Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3"	100.0		
1"	72.0		
3/4"	65.9	-	
1/2"	59.2		
3/8"	54.0		
#4	43.4		
#10	32.7		
#20	23.2		
#40	15.2		
#60	11.7		
#100	9.5		
#200	7.5		
İ			

34.1

22.5

10.7

Olive Gray Silty G	Material Descrip	tion
Onve Gray Siny G	Tavel W/Salid	
Atter	berg Limits (AST	M D 4318)
PL=	LL=	PI=
	Classification	<u>1</u>
USCS (D 2487)=	GW-GM AASHTO) (M 145)= A-1-a
	<u>Coefficients</u>	
$D_{90} = 52.2107$	D ₈₅ = 43,0605	D ₆₀ = 13.3127 D ₁₅ = 0.4142 C _c = 1.09
D ₅₀ = 7.4771 D ₁₀ = 0.1702	$D_{30}^{30} = 1.5691$ $C_{u} = 78.23$	$C_c = 1.09$
	Remarks	
Date Received: 05	5/03/13 Date	Tested: 05/08/13
Tested By: JI	7	
Checked By: JA	4M	
Title:		

7.7

(no specification provided)

Source of Sample: Boring E330-B-006A Sample Number: 7510-14/S-6

0.0

Depth: 30'-30.3'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

Figure

7.5

2/13/2014

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450

Location: Boring E330-B-006A

Depth: 30'-30.3'

Sample Number: 7510-14/S-6

Material Description: Olive Gray Silty Gravel W/Sand

Date Received: 05/03/13

USCS Classification: GW-GM

AASHTO Classification: A-1-a

Grain Size Test Method: ASTMC136 #200 Wash Method: ASTM D 1140

Tested By: JF

Test Date: 05/08/13

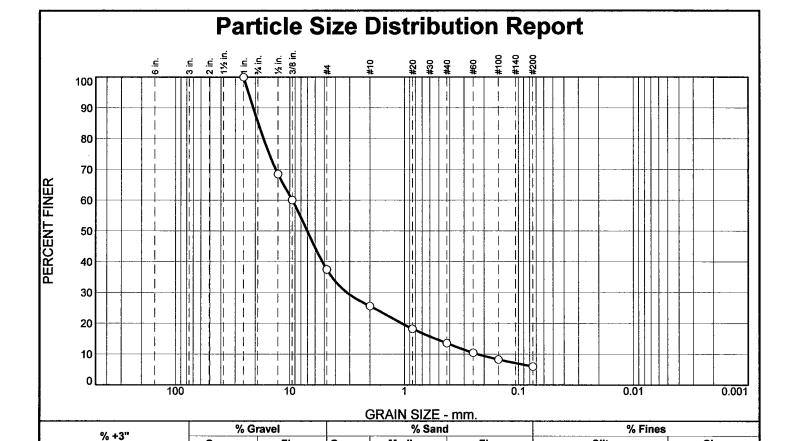
Checked By: JAM

Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 471.20

Tare Wt. = 116.10

Minus #200 from wash = 7.2%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
498.90	116.10	3"	0.00	0.00	100.0
		1"	1576.80	1469.70	72.0
		3/4"	1528.50	1504.90	65.9
		1/2"	1445.10	1419.70	59.2
		3/8"	1503.60	1483.80	54.0
		#4	1397.90	1357.30	43.4
		#10	1556.20	1515.00	32.7
		#20	1104.40	1068.00	23.2
		#40	975.60	945.20	15.2
		#60	892.00	878.50	11.7
		#100	852.00	843.70	9.5
		#200	1027.70	1020.10	7.5

Fractional Components

Cobbles	Gravel			Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	34.1	22.5	56.6	10.7	17.5	7.7	35.9			7.5

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.1702	0.4142	0.6553	1.5691	7.4771	13.3127	35.3471	43,0605	52,2107	63.1196

Fineness Modulus	c _u	C _C
5,52	78.23	1.09

Medium

12.1

Fine

7.5

Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1"	100.0		
1/2"	68.5		
3/8"	60.1		
#4	37.4	1	
#10	25.6		
#20	18.2		
#40	13.5		
#60	10.4		
#100	8.3		
#200	6.0		
1			
1			
İ			
1			
		i	

Coarse

14.5

Fine

48.1

Coarse

11.8

Material Description Olive Gray Poorly Graded Gravel W/Silt & Sand **Atterberg Limits (ASTM D 4318)** PL= Classification USCS (D 2487)= GP-GM AASHTO (M 145)= A-1-a **Coefficients D₉₀=** 20.8886 **D₅₀=** 7.0423 **D₁₀=** 0.2292 D₆₀= 9.5078 D₁₅= 0.5361 C_c= 4.65 D₈₅= 18.8719 D₃₀= 3.1839 C_u= 41.47 Remarks Date Received: 05/03/13 **Date Tested:** 05/08/13 Tested By: JF Checked By: JAM

Silt

6.0

Clay

(no specification provided)

0.0

Source of Sample: Boring E330-B-006A **Sample Number:** 7510-16/S-8

Depth: 40'-40.7'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

5/15/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450

Location: Boring E330-B-006A

Depth: 40'-40.7' Sample Number: 7510-16/S-8

Material Description: Olive Gray Poorly Graded Gravel W/Silt & Sand

Date Received: 05/03/13

USCS Classification: GP-GM AASHTO Classification: A-1-a

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D 1140

Tested By: JF Test Date: 05/08/13

Checked By: JAM

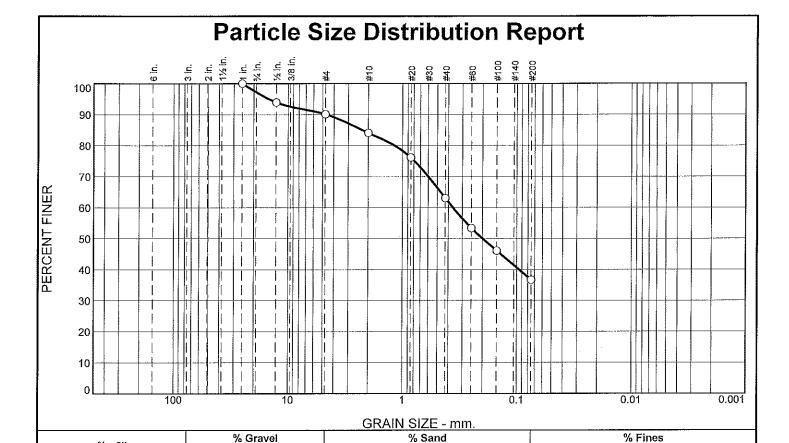
Sjeye (egideta

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 262.20

Tare Wt. = 123.50

Minus #200 from wash = 6.1%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
271.20	123.50	1"	0.00	0.00	100.0
		1/2"	1466.10	1419.60	68.5
		3/8"	1496.20	1483.70	60.1
		#4	1390.70	1357.30	37.4
		#10	1532.30	1514.80	25.6
		#20	1078.60	1067.70	18.2
		#40	952.00	945.10	13.5
		#60	883.00	878.40	10.4
		#100	846.50	843.30	8.3
		#200	1023.10	1019.70	6.0


Marialonal Composions

Cobbles		Gravel	-		Sa	nd			Fines	
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	14.5	48.1	62.6	11.8	12.1	7.5	31.4			6.0

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.2292	0.5361	1.0563	3.1839	7.0423	9.5078	16.9608	18.8719	20.8886	23.0504

Fineness Modulus	Cu	C _c
5.34	41.47	4.65

Hayre McElroy & Associates, LLC _____

Medium

21.0

Fine

26.3

Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X≔Fail)
1"	100.0		
1/2"	93.9		
#4	90.1		
#10	84.0		
#20	76.1		
#40	63.0		
#60	53.4		
#100	46.0		
#200	36.7		
-			
44		-	
1			
İ			

Coarse

2.8

Fine

7.1

Coarse

6.1

	Material Descripti	<u>on</u>
Gray W/Olive Gra	ay Silty Sand	
Atte	berg Limits (ASTM	D 4318)
PL= 22	LL= 27	PI= 5
USCS (D 2487)=	Classification SM AASHTO	M 145)= A-4(0)
D ₉₀ = 4.6776 D ₅₀ = 0.2001 D ₁₀ =	<u>Coefficients</u> D ₈₅ = 2.2749 D ₃₀ = C _u =	D ₆₀ = 0.3643 D ₁₅ = C _c =
	Remarks	
Date Received: (Tested By: 1		'ested: 05/09/13
Checked By: J	AM	
Title:		

Silt

36.7

Clay

(no specification provided)

Source of Sample: Boring E330-B-006A Sample Number: 7510-18/S-17

% +3"

0.0

Depth: 85'-86.5'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

2/18/2014

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450

Location: Boring E330-B-006A

Depth: 85'-86.5' Material Description: Gray W/Olive Gray Silty Sand

Date Received: 05/03/13 PL: 22

AASHTO Classification: A-4(0)

PI: 5

Sample Number: 7510-18/S-17

USCS Classification: SM

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D 1140

Tested By: JF

Test Date: 05/09/13

Checked By: JAM

Sleve Test Data

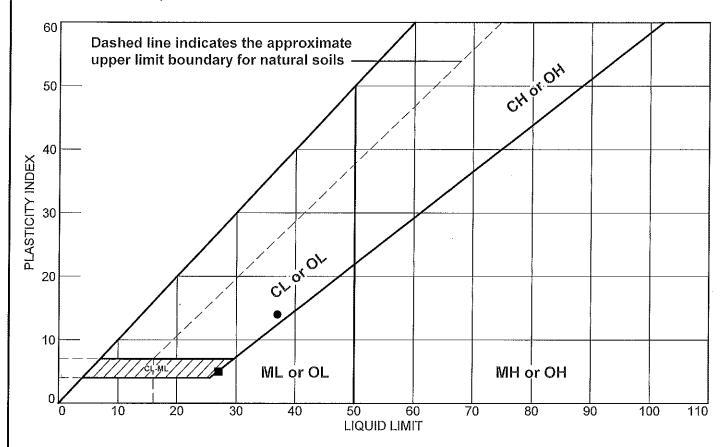
LL: 27

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 244.80

Tare Wt. = 118.40

Minus #200 from wash = 35.3%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
313.90	118.40	1"	0.00	0.00	100.0
		1/2"	1432.00	1420.10	93.9
		#4	1365.20	1357.70	90.1
		#10	1527.00	1515.20	84.0
		#20	1083.30	1067.80	76.1
		#40	970.70	945.10	63.0
		#60	897.30	878.40	53.4
		#100	857.60	843.30	46.0
		#200	1038.30	1020.00	36.7


Fractional Components

Cobbles	Gravel				Sand				Fines		
Coppies	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total	
0.0	2.8	7.1	9.9	6.1	21.0	26.3	53.4			36.7	

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.2001	0,3643	1.1817	2.2749	4.6776	14.8392

Fineness Modulus 1.83

				SOIL DA	ATA			
	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS
•	Boring E330-B-	7510-17/S-14	70'-70.8'	32.8	23	37	14	CL or OL
ı	006A							
ŀ	Boring E330-B-	7510-18/S-17	85'-86.5'	13.7	22	27	5	SM
	006A							
l								
۱								

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No.: 12-450

Figure

Tested By: JF

Checked By: JAM

LIQUID AND PLASTIC LIMIT TEST DATA

Sample Number: 7510-17/S-14

5/15/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 **Location:** Boring E330-B-006A

Depth: 70'-70.8'

Material Description: Gray Clay

USCS: CL or OL

Tested by: JF Checked by: JAM

				VEC 91		
Run No.	1	2	3	4	5	6
Wet+Tare	30.7	30.6	38.4			
Dry+Tare	26	26	31.7			
Tare	13.5	13.6	13.6			
# Blows	20	26	28			
Moisture	37.6	37.1	37.0			

Liquid Limit= _	37
Plastic Limit= _	23
Plasticity Index= _	14
Natural Moisture=	32.8
Liquidity Index=	0.7

			en elegical min	ala erre erre	Line 1831 teleplased - Period Colonia Republication of
Run No.	1	2	3	4	
Wet+Tare	18.2	21.1	19.4		
Dry+Tare	17	19.2	17.8		
Tare	11.3	11.3	11.1		
Moisture	21.1	24.1	23.9		

	7 19 19 19 19 19 19 19 19 19 19 19 19 19 19	NETT	iral Moistura Palat		
304 4.5		_			

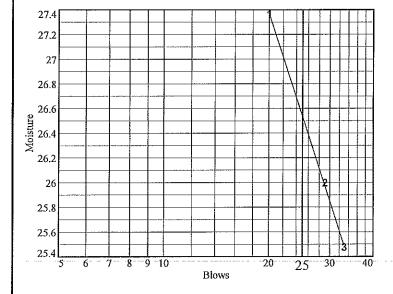
Wet+Tare	Dry+Tare	Tare	Moisture
77.6	61.8	13.7	32.8

Hayre McElroy & Associates, LLC _

LIQUID AND PLASTIC LIMIT TEST DATA

Client: Golder Associates
Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-006A

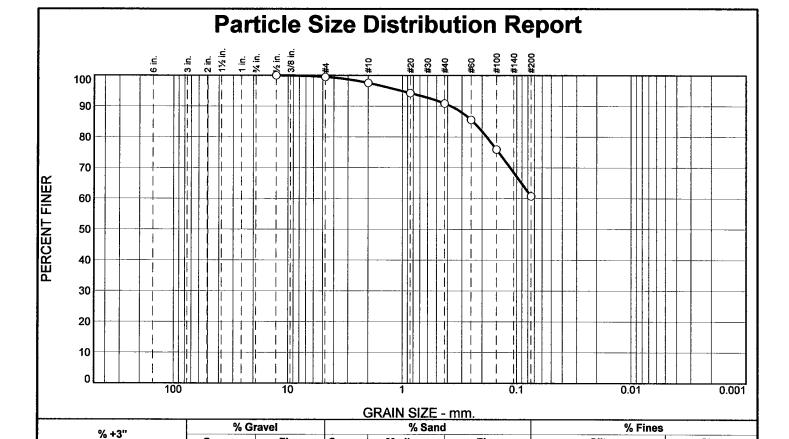

Depth: 85'-86.5'

Material Description: Gray W/Olive Gray Silty Sand

USCS: SM Tested by: JF Sample Number: 7510-18/S-17

AASHTO: A-4(0) Checked by: JAM

			Liguid Limita	ata		
Run No.	1	2	3	4	5	6
Wet+Tare	37.8	32,5	33.3			
Dry+Tare	32.6	28.6	29.3			
Tare	13.6	13.6	13.6			
# Blows	20	29	33			
Moisture	27.4	26.0	25.5			


Liquid Limit= _	27
Plastic Limit=	22
Plasticity Index=	5
Natural Moisture=	13.7
Liquidity Index=	-1.7

			Plastic Limit®	alfa,	
Run No.	1	2	3	4	
Wet+Tare	18.7	19	19.5		
Dry+Tare	17.4	17.6	17.9		
Tare	11	11.1	11		
Moisture	20.3	21.5	23.2		

Natural Moisture Data

Wet+Tare Dry+Tare Tare Moisture 340.6 313.9 118.4 13.7

Hayre McElroy & Associates, LLC _

Medium

6.7

Fine

30.2

Opening	Percent	136 & ASTM I Spec.*	Pass?
Size	Finer	į.	İ
		(Percent)	(X=Fail)
1/2"	100.0		
#4	99.5		
#10	97.6		
#20	94.3		
#40	90.9		
#60	85.6		
#100	76.0		
#200	60.7		

Coarse

0.0

Fine

0.5

Coarse

1.9

MODIIVE Gray W/Black S	aterial De Sandy Silt	scriptio	<u>n</u>	
Atterbe PL=	rg Limits (LL=	(ASTM	D 4318 Pl=)
USCS (D 2487)= MI	Classific L AA		A 145)=	A-4(0)
D ₅₀ = D	Coeffici 85= 0.2402 30= u=		D ₆₀ = D ₁₅ = C _c =	
	Remai	rks		
Date Received: 05/0 Tested By: JF	3/13	Date Te	ested:	05/09/13
Checked By: JAM Title:	I			

Silt

60.7

Clay

(no specification provided)

Source of Sample: Boring E330-B-006B **Sample Number:** 7510-19/S-2

0.0

Depth: 65'-65.9'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

5/15/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450

Location: Boring E330-B-006B

Depth: 65'-65.9' **Material Description:** Olive Gray W/Black Sandy Silt

Date Received: 05/03/13

USCS Classification: ML

Grain Size Test Method: ASTM C136

#200 Wash Method: ASTM D 1140

Tested By: JF

Test Date: 05/09/13

Sample Number: 7510-19/S-2

AASHTO Classification: A-4(0)

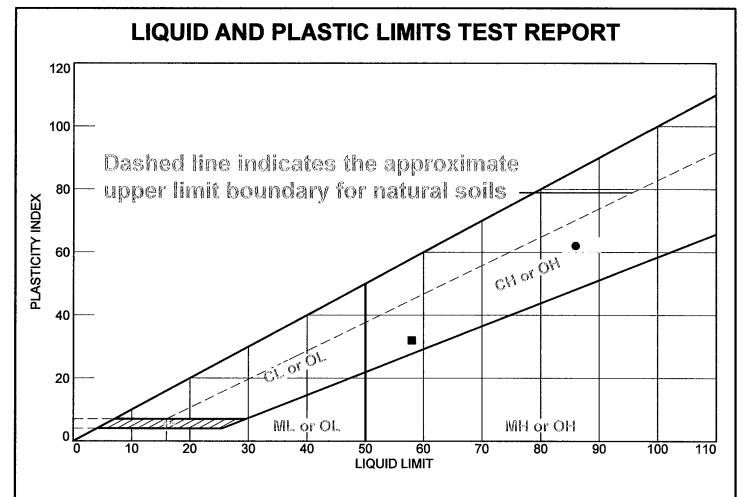
Checked By: JAM

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 310.20

Tare Wt. = 118.50

Minus #200 from wash = 58.2%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
577.10	118.50	1/2"	0.00	0.00	100.0
		#4	1359.50	1357.30	99.5
		#10	1523.60	1514.70	97.6
		#20	1083.10	1067.90	94.3
		#40	960.40	945.10	90.9
		#60	902.90	878.50	85.6
		#100	887.50	843.30	76.0
		#200	1089.90	1020.00	60.7


Factional Components

Cobbles		Gravel			Sand				Fines	
Copples	Coarse	Fine	Totai	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.5	0.5	1.9	6.7	30.2	38.8			60.7

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
						0.1821	0.2402	0.3735	1.0180

Fineness Modulus	•
0.50	

Hayre McElroy & Associates, LLC _

	SOIL DATA							
	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs
•	Boring E330-B- 006B	HMA#7510- 20/S-4	75'-76.5'	35.4	24	86	62	CH or OH
	Boring E330-B- 006B	HMA#7510- 21/S-6	85'-86.5'	32.0	26	58	32	CH or OH
	0000	21/5-0			:			

Hayre McElroy & Associates, LLC

Client: Golder Associates
Project: Sound Transit East Link

Project No.: 12-450

Figure

Tested By: JF Checked By: JAM

LIQUID AND PLASTIC LIMIT TEST DATA

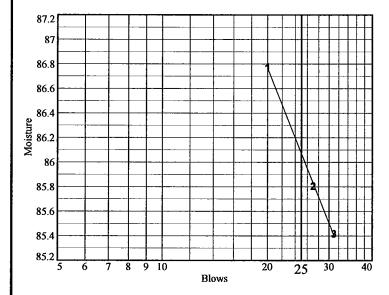
5/15/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 **Location:** Boring E330-B-006B

Depth: 75'-76.5'


Material Description: Gray Clay

USCS: CH or OH
Tested by: JF

Sample Number: HMA#7510-20/S-4

Checked by: JAM

		in the second of	den mentalanja programa	((althorate the second		
Run No.	1	2	3	4	5	6
Wet+Tare	30.82	28.32	29.97			
Dry+Tare	21.7	20.4	21.3			
Tare	11.19	11.17	11.15			
# Blows	20	27	31			
Moisture	86.8	85.8	85.4			

Liquid Limit= 86
Plastic Limit= 24
Plasticity Index= 62
Natural Moisture= 35.4
Liquidity Index= 0.2

10 May 12 May 12 May 12 May 12 May 12 May 12 May 12 May 12 May 12 May 12 May 12 May 12 May 12 May 12 May 12 Ma 10 May 12 May 12 May 12 May 12 May 12 May 12 May 12 May 12 May 12 May 12 May 12 May 12 May 12 May 12 May 12 Ma			e Pasticizimi D	aja :	
Run No.	1	2	3	4	
Wet+Tare	17.9	18.2	22		
Dry+Tare	16.6	16.9	19.8	· =	
Tare	11.2	11.2	11.2		
Moisture	24.1	22.8	25.6	, ,	

		2012				
Tare	11.2	11.2	11.2			
Moisture	24.1	22.8	25.6			
Sale Sales Sales Sales (a di di di di di di di di di di di di di	and the second	Natural Moisture	Data - Park	A CONTRACTOR	

Wet+Tare	Dry+Tare	Tare	Moisture
78.7	61.7	13.7	35.4

Hayre McElroy & Associates, LLC _

LIQUID AND PLASTIC LIMIT TEST DATA

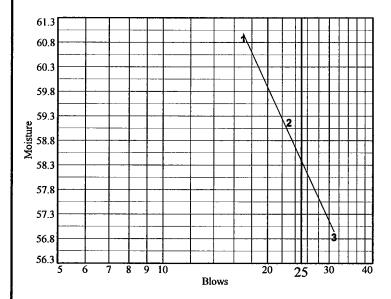
5/15/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450

Location: Boring E330-B-006B Depth: 85'-86.5'


Material Description: Gray Clay

Checked by: JAM

Sample Number: HMA#7510-21/S-6

USCS:	CH	or	OF:
Tested	by:	JF	

	Jaiquidh Eumita Detta										
Run No.	1	2	3	4	5	6					
Wet+Tare	35.8	32.7	35.4								
Dry+Tare	27.4	25.6	27.5								
Tare	13.6	13.6	13.6								
# Blows	17	23	31								
Moisture	60.9	59.2	56.8								

58 Liquid Limit= _ 26 Plastic Limit=_ 32 Plasticity Index=_ 32.0 Natural Moisture= _ 0.2 Liquidity Index= ___

		AS THE RESIDENCE OF THE PARTY O			STATE OF A THOUSAND CONTRACTOR OF STATE OF STATE AND ACTUAL STATE OF STATE
Run No.	1	2	3	4	
Wet+Tare	21.9	21.3	19.5		
Dry+Tare	19.8	19.2	17.8		
Tare	11.4	11.3	11.3		
Moisture	25.0	26.6	26.2		

Wet+Tare	Dry+Tare	Tare	Moisture	
71	57.1	13.7	32.0	

Hayre McElroy & Associates, LLC __

7499-25	S-11	E320-B-160, 35'	3/21/2013	3/26/2013	S7	116.2	474.9	451.4	7.0
7499-26	S-3	E320-B-161, 5'	3/21/2013	3/26/2013	9A	162	766.7	699.4	12.5
7499-27	S-8	E320-B-161, 20'	3/21/2013	3/26/2013	3A	213.8	463.4	447.8	6.7
7499-28	S-16	E320-B-161, 35.5'	3/21/2013	3/26/2013	X7	193	639.3	577.6	16.0
7499-7	Run 2	E330-B-006, 15'	3/21/2013	3/26/2013	С	775.5	2731.1	2649.2	4.4
7499-8	Run 7	E330-B-006, 52'	3/21/2013	3/26/2013	X2	595.9	2604.7	2526.5	4.1
7499-9	Run 10	E330-B-006, 72'	3/21/2013	3/26/2013	5A	114.3	589.4	536.4	12.6
7499-10	Run 11	E330-B-006, 76.7'	3/21/2013	3/26/2013	SR	31	84.5	77.9	14.1
7510-13	S-2	E330-B-006A, 10'	5/3/2013	5/7/2013	M5	120.2	547.8	489.5	15.8
7510-15	S-4	E330-B-006A, 20'	5/3/2013	5/7/2013	S6	118	593.6	542	12.2
7510-14	S-6	E330-B-006A, 30'	5/3/2013	5/7/2013	S7	116.1	529.5	498.9	8.0
7510-16	S-8	E330-B-006A, 40'	5/3/2013	5/7/2013	M7	123.5	279.3	271.2	5.5
7510-17	S-14	E330-B-006A, 70'	5/3/2013	5/8/2013	Z1	13.7	77.6	61.8	32.8
7510-18	S-17	E330-B-006A, 80'	5/3/2013	5/8/2013	S10	118.4	340.6	313.9	13.7
7510-19	S-2	E330-B-006B, 65'	5/3/2013	5/8/2013	S3	118.5	697	577.1	26.1
7510-20	S-4	E330-B-006B, 75'	5/3/2013	5/8/2013	3M	13.7	78.7	61.7	35.4
7519-1	S-3	E330-B-008, 7.5'	6/7/2013	6/17/2013	S10	114	742.9	650.5	17.2
7519-2	S-7	E330-B-008, 20'	6/7/2013	6/17/2013	3A	213.7	651.2	616.2	8.7
7519-3	S-9	E330-B-008, 30'	6/7/2013	6/17/2013	S6	117.9	725.5	610.6	23.3
7519-4	S-11	E330-B-008, 40'	6/7/2013	6/17/2013	X8	194.1	725.2	626.9	22.7
7519-5	S-15	E330-B-008, 60'	6/7/2013	6/17/2013	4A	212.2	671.3	593.3	20.5
7519-6	S-17	E330-B-008, 70'	6/7/2013	6/17/2013	2A	217.2	336.1	317.3	18.8
7519-7	S-21	E330-B-008, 80'	6/7/2013	6/17/2013	9A	162	434	397.8	15.4
7529-17	S-1	E330-B-008A, 2.5'	7/15/2013	7/22/2013	M6	117.3	601.8	557.7	10.0
7529-18	S-3	E330-B-008A, 7.5'	7/15/2013	7/23/2013	6A	114.6	588.3	545.8	9.9
7529-19	S-7	E330-B-008A, 20'	7/15/2013	7/23/2013	5A	114.1	527.8	471.9	15.6
7529-20	S-10	E330-B-008A, 35'	7/15/2013	7/23/2013	S4	118.4	259.1	236.9	18.7
7529-21	S-12	E330-B-008A, 45'	7/15/2013	7/23/2013	S8	113.3	463.2	423.8	12.7
7529-22	S-15	E330-B-008A, 60'	7/15/2013	7/23/2013	S1	118.2	536.8	466.2	20.3
7529-23	S-18	E330-B-008A, 75'	7/15/2013	7/23/2013	S3	118.4	282.2	251.2	23.3
7529-24	S-20	E330-B-008A, 85'	7/15/2013	7/23/2013	В3	115.2	211.3	196.4	18.3
7510-22	S-11	E330-B-009, 2.5'	5/3/2013	5/8/2013	9A	161.8	633.2	577	13.5
7510-23	S-4	E330-B-009, 10'	5/3/2013	5/8/2013	X8	194.3	671.8	613.4	13.9
7510-24	S-9	E330-B-009, 30'	5/3/2013	5/8/2013	X10	234.7	790.2	696.2	20.4
7510-25	S-12	E330-B-009, 45	5/3/2013	5/8/2013	2M	13.7	83.7	66.9	31.6

7510-26	S-17	E330-B-009, 70'	5/3/2013	5/8/2013	43M	13.7	71.7	58.9	28.3
7510-27	S-21	E330-B-009, 90	5/3/2013	5/8/2013	M109	13.6	70.2	54.6	38.0
7510-28	S-26	E330-B-009, 115'	5/3/2013	5/8/2013	M108	13.7	61.9	49.8	33.5
7510-29	S-30	E330-B-009, 135'	5/3/2013	5/8/2013	34M	13.7	62.9	49.5	37.4
7511-22	2	E330-B-010, 2.5'	5/10/2013	5/13/2013	44M	13.6	67.6	56.6	25.6
7511-23	5	E330-B-010, 10'	5/10/2013	5/13/2013	S8	113.2	402.1	374.1	10.7
7511-24	7	E330-B-010, 15'	5/10/2013	5/13/2013	S1	118.2	358.8	327.5	15.0
7511-25	13	E330-B-010, 30'	5/10/2013	5/13/2013	5M	117.9	278.7	264.9	9.4
7511-26	10	E330-B-010, 45'	5/10/2013	5/13/2013	S6	13.4	61.4	50.9	28.0
7511-27	15	E330-B-010, 55'	5/10/2013	5/13/2013	38M	13.7	72.5	63.5	18.1
7511-28	18	E330-B-010, 70'	5/10/2013	5/13/2013	51	11.2	47.9	41.2	22.3
7511-35	21	E330-B-010, 85'	5/10/2013	5/15/2013	M100	13.9	63.8	56.3	17.7
7511-36	24	E330-B-010, 100'	5/10/2013	5/15/2013	71M	13.5	45.8	42	13.3
7514-9	S-2	E330-B-011, 2.5'	5/30/2013	6/6/2013	M2	214.1	732.6	695.6	7.7
7514-10	S-5	E330-B-011, 12.5'	5/30/2013	6/6/2013	M5	120.1	371.4	331.3	19.0
7514-11	S-8	E330-B-011, 25'	5/30/2013	6/6/2013	S 3	118.5	238.8	229.6	8.3
7514-12	S-13	E330-B-011, 50'	5/30/2013	6/6/2013	S1	118.1	270.4	240	24.9
7514-13	S-17	E330-B-011, 70'	5/30/2013	6/6/2013	SR	31.1	78.9	68.9	26.5
7514-14	S-20	E330-B-011, 85'	5/30/2013	6/6/2013	S6	117.9	245.8	215.1	31.6
7514-15	S-2	E330-B-012, 2.5'	5/30/2013	6/6/2013	M7	123.2	405.7	380.2	9.9
7514-16	S-5	E330-B-012, 10'	5/30/2013	6/7/2013	S5	118.7	322.2	277	28.6
7514-17	S-7	E330-B-012, 15'	5/30/2013	6/7/2013	S7	116.1	617.7	546.5	16.5
7514-18	S-13	E330-B-012, 45'	5/30/2013	6/7/2013	S 9	114.1	240.7	213.9	26.9
7514-19	S-17	E330-B-012, 65'	5/30/2013	6/7/2013	S10	114.1	263.2	232.9	25.5
7514-20	S-21	E330-B-012, 85'	5/30/2013	6/7/2013	X5	198.2	367.1	334.9	23.6
7514-21	S-2	E330-B-013, 2.5'	5/30/2013	6/7/2013	S7	193	623.6	581.2	10.9
7514-22	S-5	E330-B-013, 10'	5/30/2013	6/7/2013	S6	196.1	459.8	435.2	10.3
7514-23	S-9	E330-B-013, 25'	5/30/2013	6/7/2013	AJ2	164.9	405.4	383	10.3
7514-24	S-12	E330-B-013, 40'	5/30/2013	6/7/2013	M4	190.2	701.4	642	13.1
7514-25	S-18	E330-B-013, 70'	5/30/2013	6/7/2013	9A	162	317.5	283.2	28.3
7514-26	S-21	E330-B-013, 85'	5/30/2013	6/7/2013	AB	157.5	364.6	325.6	23.2
7514-27	S-3	E330-B-014, 5'	5/30/2013	6/7/2013	Х9	230.9	413.5	381	21.7
7514-28	S-4	E330-B-014, 7.5'	5/30/2013	6/10/2013	Х8	194.2	413.6	379.2	18.6
7514-29	S-8	E330-B-014, 20'	5/30/2013	6/10/2013	X10	234.7	474.3	432.7	21.0
7514-30	S-11	E330-B-014, 35'	5/30/2013	6/10/2013	В3	115.3	445.2	399.3	16.2

7514-31	S-14	E330-B-014, 50'	5/30/2013	6/10/2013	7A	87.3	277.6	254.4	13.9
7514-32	S-19	E330-B-014, 75'	5/30/2013	6/10/2013	8A	136.1	258.4	230.7	29.3
7514-33	S-23	E330-B-014, 95'	5/30/2013	6/10/2013	DEF	31.1	116.7	97.9	28.1
7514-34	S-2	E330-B-014B, 2.5'	5/30/2013	6/10/2013	M6	117.5	602.9	547.9	12.8
7514-35	S-7	E330-B-014B, 15'	5/30/2013	6/10/2013	6A	114.8	346.4	324.2	10.6
7514-36	S-10	E330-B-014B, 30'	5/30/2013	6/10/2013	5A	114.2	288.7	271.4	11.0
7514-37	S-17	E330-B-014B, 65'	5/30/2013	6/10/2013	S4	118.3	360	318.4	20.8
7514-38	S-20	E330-B-014B, 80'	5/30/2013	6/11/2013	JF	31.2	113.3	95.9	26.9
7514-39	s-2	E330-B-017, 12.5'	5/30/2013	6/11/2013	S8	113.2	400.7	369.3	12.3
7514-40	S-4	E330-B-017, 20'	5/30/2013	6/11/2013	X2	595.7	838.5	806.7	15.1
7514-41	S-9	E330-B-017, 45'	5/30/2013	6/11/2013	BB	621.4	868.8	840.6	12.9
7514-42	S-14	E330-B-017, 70'	5/30/2013	6/11/2013	1A	213.1	623.5	535.7	27.2
7514-43	S-17	E330-B-017, 85'	5/30/2013	6/11/2013	ABC	31.2	117.9	101.9	22.6
7514-44	S-3	E330-B-018, 5'	5/30/2013	6/11/2013	S 1	118.3	501	435.5	20.6
7514-45	S-6	E330-B-018, 12.5'	5/30/2013	6/11/2013	M5	120.3	640.1	583.8	12.1
7514-46	S-12	E330-B-018, 40'	5/30/2013	6/12/2013	E4	199	405.8	384	11.8
7514-47	S-17	E330-B-018, 65'	5/30/2013	6/12/2013	S9	114.1	290.3	277.3	8.0
7514-48	S-21	E330-B-018, 85'	5/30/2013	6/12/2013	2A	217.3	342.7	321.8	20.0
7514-49	S-3	E330-B-019, 5'	5/30/2013	6/12/2013	S10	114	761.4	647.2	21.4
7514-50	S-6	E330-B-019, 12.5'	5/30/2013	6/13/2013	3A	213.7	706.2	652.2	12.3
7514-51	S-10	E330-B-019, 30'	5/30/2013	6/13/2013	S6	118	434.5	392.5	15.3
7514-52	S-15	E330-B-019, 55'	5/30/2013	6/13/2013	4A	212.5	511	483.8	10.0
7514-53	S-20	E330-B-019, 75'	5/30/2013	6/13/2013	2AA	214.2	501.9	457.9	18.1
7514-54	S-23	E330-B-019, 90'	5/30/2013	6/13/2013	Α	603.6	802.9	766.3	22.5
7514-55	S-4	E330-B-021, 7.5'	5/30/2013	6/13/2013	M1	225.9	1006.4	914.3	13.4
7514-56	S-10	E330-B-021, 30'	5/30/2013	6/13/2013	M3	198.2	495.9	461.5	13.1
7514-57	S-15	E330-B-021, 55'	5/30/2013	6/13/2013	M2	214.1	563	528.8	10.9
7514-58	S-18	E330-B-021, 70'	5/30/2013	6/13/2013	A5	598.8	1385.9	1329.4	7.7
7514-59	S-21	E330-B-021, 85'	5/30/2013	6/13/2013	С	775.4	1044	1005.5	16.7
7514-60	S-22	E330-B-021, 89.4'	5/30/2013	6/13/2013	M7	123.2	232.9	206.9	31.1
7510-30	S-2	E330-B-022, 5'	5/3/2013	5/9/2013	Х9	230.7	541.6	508.5	11.9
7510-31	S-5	E330-B-022, 12.5'	5/3/2013	5/9/2013	M4	190.3	595.2	557.1	10.4
7510-32	S-9	E330-B-022, 30'	5/3/2013	5/9/2013	AJ	164.9	402.1	380.6	10.0
7510-33	S-14	E330-B-022, 55'	5/3/2013	5/9/2013	X5	198.2	462.6	434.4	11.9
7510-34	S-17	E330-B-022, 70'	5/3/2013	5/9/2013	AB	157.4	462.7	416.5	17.8

6/24/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-008

Depth: 7.5'-9.0'

Sample Number: HMA #7519-1/S-3

Material Description: Olive Brown Silty Sand

Date Received: 6/7/2013 USCS Classification: SM

AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: TP/JF

Test Date: 6/17/2013

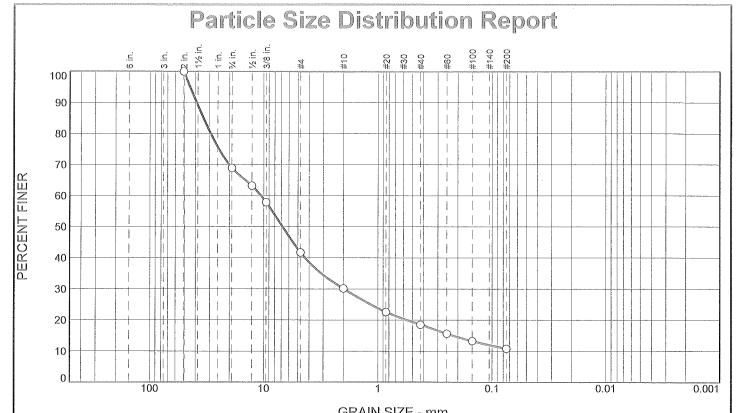
Checked By: JAM

Shave Hashings

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 461.50

Tare Wt. = 114.00

Minus #200 from wash = 35.2%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
650.50	114.00	3/4"	0.00	0.00	100.0
		1/2"	1429.50	1419.40	98.1
		3/8"	1486.40	1483.60	97.6
		#4	1375.60	1357.00	94.1
		#10	1533.80	1514.40	90.5
		#20	1084.80	1067.00	87.2
		#40	985.90	944.50	79.5
		#60	954.60	878.20	65.2
		#100	918.00	843.30	51.3
		#200	1098.20	1019.50	36.6

Franklon: (Cempenacia

Cobbles	Gravel				Sa		Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	5.9	5.9	3.6	11.0	42.9	57.5			36.6

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.1420	0.2084	0.4362	0.6228	1.7095	5.5245

Fineness Modulus 1.22

GRAIN SIZE - IIIII.									
% ÷3"	% Gr	avel		% Sand	k	% Fines			
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay		
0.0	31.1	27.2	11.6	11.6	7.7	10.8			

Test Results (ASTM C136 & ASTM D1140)									
Opening	Percent	Spec.*	Pass?						
Size	Finer	(Percent)	(X≔Fail)						
2"	100.0								
3/4"	68.9								
1/2"	63.2								
3/8"	57.8								
#4	41.7								
#10	30.1								
#20	22.6								
#40	18.5								
#60	15.7								
#100	13.3								
#200	10.8								

=

(no specification provided)

Source of Sample: Boring E330-B-008 Sample Number: HMA #7519-2/S-7 Depth: 20'-20.8'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

6/24/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-008

Depth: 20'-20.8'

Sample Number: HMA #7519-2/S-7

Material Description: Olive Gray Poorly Graded Gravel with Silt and Sand

Date Received: 6/7/2013

USCS Classification: GP-GM

AASHTO Classification: A-1-a

Grain Size Test Method: ASTM C136 **#200** Wash Method: ASTM D1140

Tested By: TP/JF

Test Date: 6/17/2013

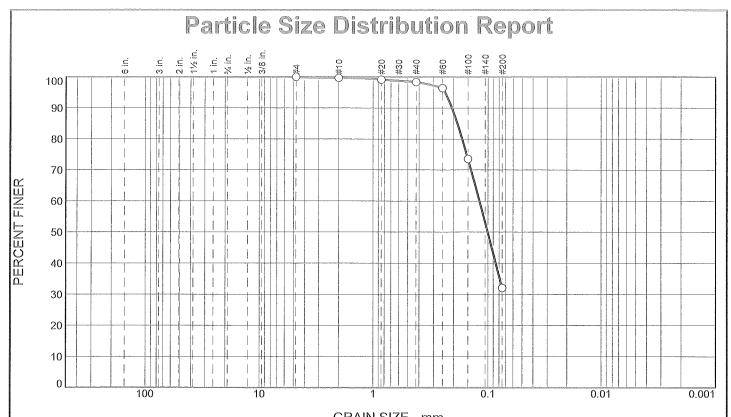
Checked By: JAM

State Tale Tale

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 587.10

Tare Wt. = 213.70

Minus #200 from wash = 7.2%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
616.20	213.70	2"	0.00	0.00	100.0
		3/4"	1630.10	1504.90	68.9
		1/2"	1442.60	1419.50	63.2
		3/8"	1505.10	1483.60	57.8
		#4	1421.80	1357.00	41.7
		#10	1560.90	1514.20	30.1
		#20	1097.30	1067.00	22.6
		#40	960.90	944.60	18.5
		#60	889.80	878.20	15.7
		#100	852.90	843.30	13.3
		#200	1029.40	1019.60	10.8

Freithel Component

Cobbles	Gravel				Sa		Fines			
	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	31.1	27.2	58.3	11.6	11.6	7.7	30.9			10.8

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.2198	0.5575	1.9775	6.8307	10.5918	29.3404	34.0307	39.0716	44.6081

Fineness	
Modulus	
5.35	

GRAIN SIZE - MM.										
% ÷3"	% Gr	avel	% Sand			% Fines				
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay			
0.0	0.0	0.0	0.3	1.3	66.4	32.0				

Test Re	esults (ASTM C		D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
#4	100.0		
#10	99.7		
#20	99.1		
#40	98.4		
#60	96.4		
#100	73.6		
#200	32.0		

Material Description Gray Silty Sand
Atterberg Limits (ASTM D 4318) PL= LL= PI=
USCS (D 2487)= SM
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Remarks
Date Received: 6/7/2013 Date Tested: 6/17/2013
Tested By: TP/JF
Checked By: JAM
Title:

(no specification provided)

Source of Sample: Boring E330-B-008 Sample Number: HMA #7519-3/S-9 Depth: 30'-31.5'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

6/24/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-008

Depth: 30'-31.5'

Sample Number: HMA #7519-3/S-9

Material Description: Gray Silty Sand

Date Received: 6/7/2013 **USCS** Classification: SM

AASHTO Classification: A-2-4(0)

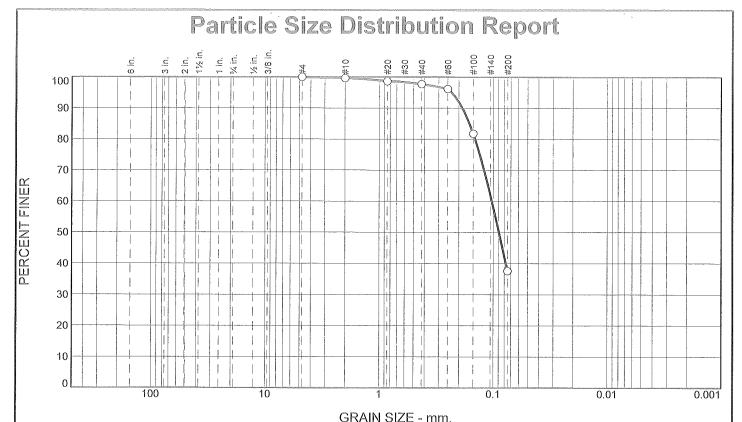
Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: TP/JF

Test Date: 6/17/2013

Checked By: JAM

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 499.80


Tare Wt. = 117.90 Minus #200 from wash = 22.5%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
610.60	117.90	#4	0.00	0.00	100.0
		#10	1515.60	1514.20	99.7
		#20	1069.90	1067.00	99.1
		#40	948.10	944.50	98.4
		#60	887.70	878.10	96.4
		#100	955.90	843.20	73.6
		#200	1224.10	1019.50	32.0

		Gravel			Sa	nd	Fines			
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.3	1.3	66.4	68.0			32.0

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.1006	0.1189	0.1683	0.1851	0.2062	0.2366

Fineness Modulus 0.31

				1 17 111 4 47 16 1 1 1 1 1	111111		
% +3"	% G	% Gravel				% Fines	
/0 TJ	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.0	0.3	1.9	60.2	37.6	
<u> </u>	(ASTM C136 & AS	. 	′ ——	Olive Grav		Description	

Test R	Results (ASTM C	:136 & ASTM	D1140)	
Opening	Percent	Spec.*	Pass?	
Size	Finer	(Percent)	(X=Fail)	
#4	100.0			
#10	99.7			
#20	98.7			
#40	97.8			
#60 #100	96.2 81.8			
#200	37.6			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	27.0			
•				
	I	l		

Material Description							
Olive Gray Silty Sand							
Atte	erberg Limits (ASTM D 4318)						
I- E	tes tes						
USCS (D 2487)=	Classification SM AASHTO (M 145)= A-4(0)						
Coefficients							
$D_{90} = 0.1861$ $D_{50} = 0.0891$	$D_{85} = 0.1616$ $D_{60} = 0.1030$						
D ₅₀ = 0.0891 D ₁₀ =	$\begin{array}{ccc} D_{30}^{\circ} & & D_{15}^{\circ} = \\ C_{U}^{\circ} & & C_{c}^{\circ} \end{array}$						
- 10							
Remarks							
Date Received:	6/7/2013 Date Tested: 6/17/2013						
Tested By:	TP/JF						
Checked By:	JAM						
Title:							
·	JAM						

(no specification provided)

Source of Sample: Boring E330-B-008 Sample Number: HMA #7519-4/S-11

Depth: 40'-40.9'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

6/24/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 **Location:** Boring E330-B-008

Depth: 40'-40.9'

Sample Number: HMA #7519-4/S-11

Material Description: Olive Gray Silty Sand

Date Received: 6/7/2013 USCS Classification: SM

AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: TP/JF

Test Date: 6/17/2013

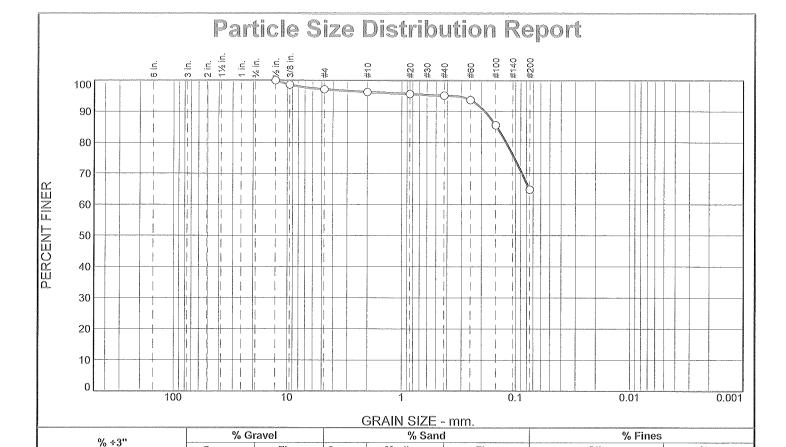
Checked By: JAM

State March 1990

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 508.70

Tare Wt. = 194.10

Minus #200 from wash = 27.3%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
626.90	194.10	#4	0.00	0.00	100.0
		#10	1515.70	1514.30	99.7
		#20	1071.20	1066.90	98.7
		#40	948.30	944.40	97.8
		#60	884.80	878.00	96.2
		#100	905.70	843.20	81.8
		#200	1210.80	1019.60	37.6

REMINIBLE COMBINED AND

Cobbles	Gravel			Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.3	1.9	60.2	62.4			37.6

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.0891	0.1030	0.1445	0.1616	0.1861	0.2300

Fineness Modulus 0.24

Medium

1.2

Fine

30.3

Test R	esults (ASTM C	136 & ASTM	D1140)	
Opening	Percent	Spec.*	Pass?	
Size	Finer	(Percent)	(X≂Fail)	
1/2"	100.0			
3/8"	98.7			
#4	97.1			
#10	96.3			
#20	95.6			
#40	95.1			
#60	93.7			
#100	85.6			
#200	64.8		·	
*	04 - 40 0-mark			

Coarse

0.0

0.0

Fine

2.9

Coarse

8.0

Material Description								
Olive Gray Sandy Silt								
· ·	rberg Lim LL= <u>Clas</u> :	its <u>(</u> ASTM D 43 Pl= <u>sification</u> AASHTO (M 145	·					
		,	,(*)					
D ₉₀ = 0.1866 D ₅₀ = D ₁₀ =	D ₈₅ = 0. D ₃₀ = C _u =	fficients 1465 D ₆₀ : D ₁₅ : C _c =	803 805 805					
Remarks								
Date Received:	6/7/2013	Date Tested	l: 6/17/2013					
Tested By:	TP/JF							
Checked By:	JAM							
Title:								

Silt

64.8

Clay

* (no specification provided)

Source of Sample: Boring E330-B-008 Sample Number: HMA #7519-5/S-15

Depth: 60'-60.8'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

6/24/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-008

Depth: 60'-60.8'

Sample Number: HMA #7519-5/S-15

Material Description: Olive Gray Sandy Silt

Date Received: 6/7/2013 USCS Classification: ML

AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: TP/JF

Test Date: 6/17/2013

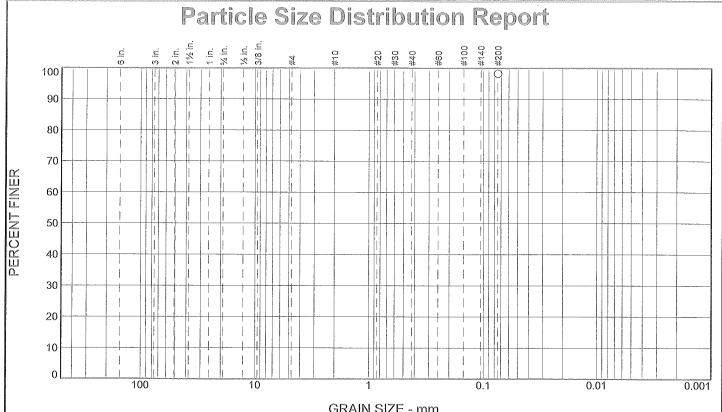
Checked By: JAM

State Teach off

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 358.80

Tare Wt. = 212.20

Minus #200 from wash = 61.5%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
593.30	212.20	1/2"	0.00	0.00	100.0
		3/8"	1488.70	1483.60	98.7
		#4	1362.60	1356.80	97.1
		#10	1517.50	1514.20	96.3
		#20	1069.40	1067.00	95.6
		#40	946.40	944.40	95.1
		#60	883.50	878.10	93.7
		#100	874.20	843.20	85.6
		#200	1098.40	1019.40	64.8

Seculomal Commissions

Cobbles	Gravel			Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	2.9	2.9	0.8	1.2	30.3	32.3			64.8

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
						0.1212	0.1465	0.1866	0.3405

Fineness Modulus 0.36

	OTAIN OZE - IIIII.									
% ÷3"	% Gravel			% Sand		% Fines				
70 T J	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay			
						98.3				
Test Results (AS	TM C136 & AS	TM D1140)		CETOTO CONTRACTOR OF THE CONTR		Description				

Test R	esults (ASTM C	136 & ASTM	D1140)	
Opening	Percent	Spec.*	Pass?	
Size	Finer	(Percent)	(X=Fail)	
#200	98.3			

	Material E	escription	
Gray Clay			
Atte	erberg Limit	s (ASTM D	4318)
PL= 23	LL= 51	2 (7 (4) 111 (5)	PI= 28
USCS (D 2487)=	Classi CH or OH A	fication ASHTO (M 1	45)=
	Coeff	icients	
D ₉₀ = D ₅₀ =	D ₈₅ = D ₃₀ =	D D	60 ⁼ 15 ⁼ c ⁼
D ₁₀ =	C _u =	Č	c ⁼
	Rem	narks	
Date Received:	6/7/13	Date Test	ed: 6/17/13
Tested By:	JF/TP		
Checked By:	JAM		
Title:		***	

(no specification provided)

Source of Sample: Boring E330-B-008 Sample Number: HMA#7519-6/S-17

Depth: 70'-71.5'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

7/2/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-008

Depth: 70'-71.5'

Sample Number: HMA#7519-6/S-17

Material Description: Gray Clay

Date Received: 6/7/13

PL: 23

LL: 51

PI: 28

USCS Classification: CH or OH Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/17/13

Checked By: JAM

Stave Lest bei:

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 218.90

Tare Wt. = 217.20

Minus #200 from wash = 98.3%

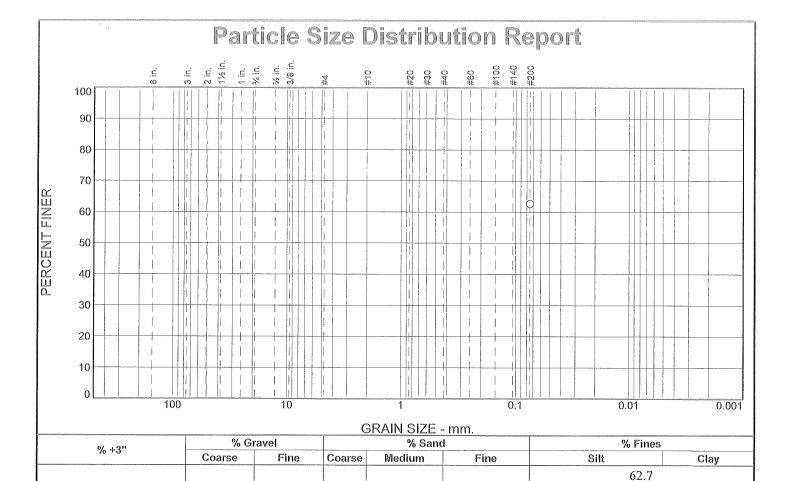
Dry

Sample and Tare (grams)

Tare (grams) Sieve Opening Size Weight Retained (grams) Sieve Weight (grams)

Percent Finer

317.30 217.20


#200

98.3

Firement Compougns

Cobbles	Gravel		Sand				Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
										98.3

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

Test Re	esults (ASTM (C136 & ASTM	D1140)	Material Description
pening	Percent	Spec.*	Pass?	Gray Clay
Size	Finer	(Percent)	(X=Fail)	
#200	62.7			
				PL= 16 Atterberg Limits (ASTM D 4318) LL= 32 PI= 16
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				Classification USCS (D 2487)= CL or OL AASHTO (M 145)=
•				<u>Coefficients</u>
				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
				Remarks
				Date Received: 6/7/13 Date Tested: 6/18/13
				Tested By: JF/TP
				Checked By: JAM
				Title:

Depth: 90'-90.9'

Client: Golder Associates

Project No: 12-450

Project: Sound Transit East Link

Date Sampled:

<u>Figure</u>

Source of Sample: Boring E330-B-008 Sample Number: HMA#7519-7/S-21

Hayre McElroy & Associates, LLC

Redmond, WA

7/2/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-008

Depth: 90'-90.9'

Sample Number: HMA#7519-7/S-21

Material Description: Gray Clay

Date Received: 6/7/13

PL: 16

LL: 32

PI: 16

USCS Classification: CL or OL

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/18/13

Checked By: JAM

STATE FOR FAIR

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 250.00

Tare Wt. = 162.00

Minus #200 from wash = 62.7%

Dry

Sample and Tare Tare (grams) (grams)

Sieve re Opening

Weight Retained

(grams)

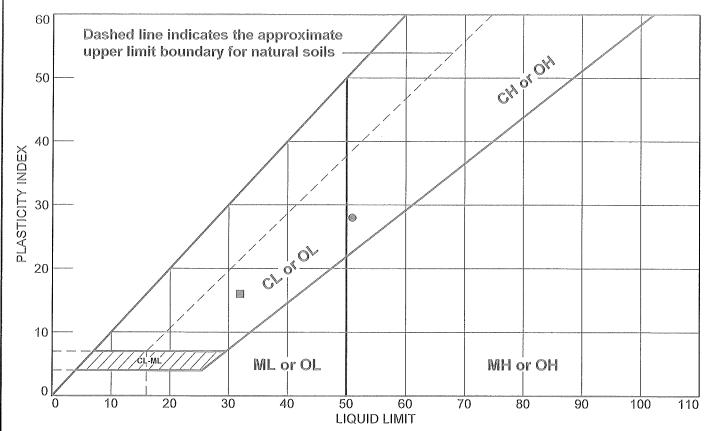
Sieve Weight (grams)

Percent Finer

397.80

162.00

\$ize #200


62.7

Erteilentilleententans

Cobbles	Coarse Fine Total		Sand				Fines			
Copples			Coarse	Medium	Fine	Total	Silt	Clay	Total	
										62.7

D ₁₀	D ₁₅	D ₂₀	D ₃₀	. D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

				SOIL DA	ATA			
	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS
0	Boring E330-B-008	HMA#7519-6/	70'-71.5'	18.8	23	51	28	CH or OH
		S-17						
	Boring E330-B-008	HMA#7519-7/	90'-90.9'	15.4	16	32	. 16	CL or OL
		S-21						
		:						

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No.: 12-450

Figure

Tested By: JF/TP

Checked By: JAM

LIQUID AND PLASTIC LIMIT TEST DATA

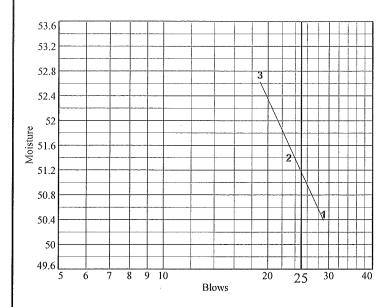
7/2/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-008

Depth: 70'-71.5'


Material Description: Gray Clay

USCS: CH or OH Tested by: JF/TP

Sample Number: HMA#7519-6/S-17

Checked by: JAM

	e Kecasaga			are en en en		
Run No.	1	2	3	4	5	6
Wet+Tare	29	29.8	26.33			
Dry∻Tare	23.8	24.3	21.9			
Tare	13.5	13.6	13.5			
# Blows	29	23	19			
Moisture	50.5	51.4	52.7			

Liquid Limit= .	51
Plastic Limit≡	0.0
Plasticity Index=	28
Natural Moisture= .	18.8
Liquidity Index=	-0.1
100.0101101101	

. 11. 12. 12. 12. 12. 12. 12. 12. 12. 12			Pesikolimia	Date:	
Run No.	1	2	3	4	
Wet÷Tare	18	19.58	19.04		
Dry+Tare	16.7	18	17.6		
Tare	11.1	11.2	11		
Moisture	23.2	23.2	21.8		

Natitio I Moisture Date

Wet+Tare	Dry+Tare	Tare	Moisture
336.1	317.3	217.2	18.8

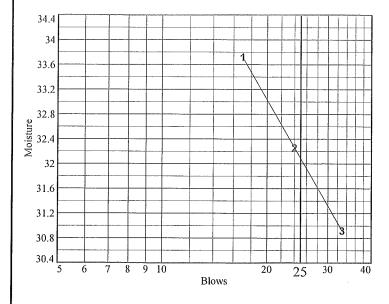
LIQUID AND PLASTIC LIMIT TEST DATA

7/2/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-008

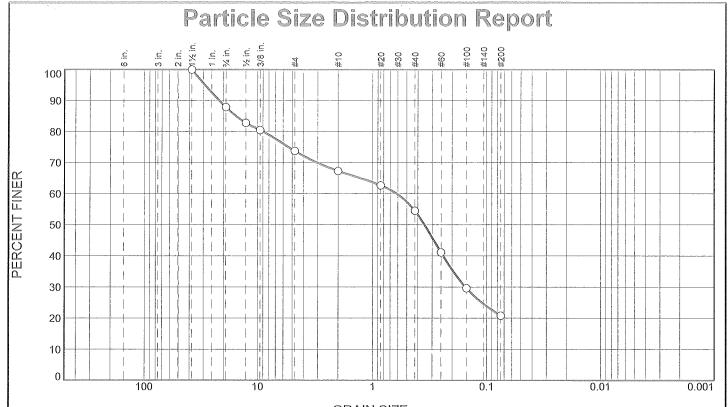

Depth: 90'-90.9'

Material Description: Gray Clay

USCS: CL or OL Tested by: JF/TP Sample Number: HMA#7519-7/S-21

Checked by: JAM

	20 TO 160		Listofel Limit (F)	W = -		
Run No.	1	2	3	4	5	6
Wet+Tare	36.5	30	33.6			
Dry+Tare	30.7	26.	28.9			
Tare	13.5	13.6	13.7			
# Blows	17	24	33			
Moisture	33.7	32.3	30.9			



Liquid Limit= 32
Plastic Limit= 16
Plasticity Index= 16
Natural Moisture= 15.4
Liquidity Index= 0.0

		Parameter (1977)	Plastic kimi/D	alka)	
Run No.	1	2	3	4	
Wet+Tare	19.7	19.2	20.8		
Dry+Tare	18.5	18.1	19.4		
Tare	11	11.1	11.2		
Moisture	16.0	15.7	17.1		

t+Tare Dry+Tare Tare Moisture		# 1		tije(ti/(foles(u)/e)/b)
	et+Tare	are Dry+Tare	Tare	Moisture

Hayre McElroy & Associates, LLC

GRAIN SIZE - mm. % Gravel % Sand % Fines % ÷3" Coarse Fine Coarse Medium Fine Silt Clay 0.0 12.1 14.1 6.5 12.8 33.7 20.8

	Test R	esults (ASTM C	136 & ASTM	D1140)
	Opening	Percent	Spec.*	Pass?
	Size	Finer	(Percent)	(X=Fail)
	1 1/2"	100.0		
	3/4"	87.9		
	1/2"	82.8		
	3/8"	80.5		
	#4	73.8		
	#10	67.3		
	#20	62.7		
	#40	54.5		
	#60	41.1		
	#100	29.6		
	#200	20.8		
l				

1210	20.0
Olive Brow	Material Description wn Silty Sand W/Gravel
PL=	Atterberg Limits (ASTM D 4318) LL= PI=
USCS (D 2	2487)= SM Classification AASHTO (M 145)= A-2-4(0)
D ₉₀ = 21.7 D ₅₀ = 0.34 D ₁₀ =	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Remarks
Date Rece	Date Tested: 7/22/13
Teste	d By: JF/TP
Checke	d By: JAM
	Title:

(no specification provided)

Source of Sample: Boring E330-B-008A Sample Number: HMA#7529-17/S-1

Depth: 2.5'-4'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

7/25/2013

GRAIN SIZE DISTRIBUTION TEST DATA

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450

Location: Boring E330-B-008A

Depth: 2.5'-4'

Sample Number: HMA#7529-17/S-1

Material Description: Olive Brown Silty Sand W/Gravel

Date Received: 7/15/13 **USCS Classification: SM**

AASHTO Classification: A-2-4(0)

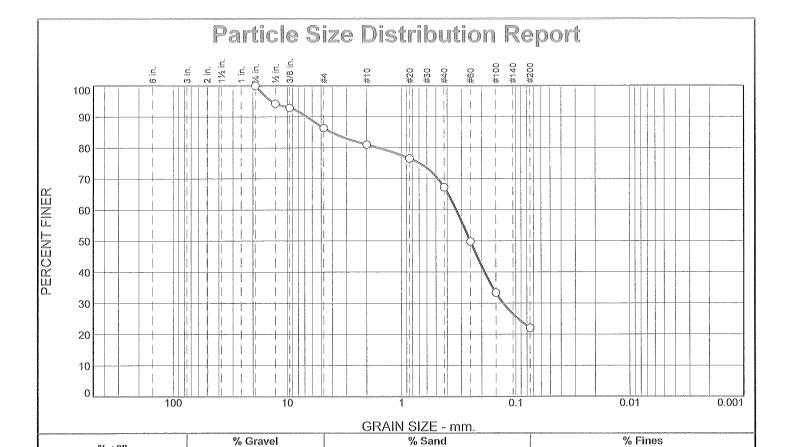
Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 7/22/13

Checked By: JAM

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 471.40


Tare Wt. = 117.30 Minus #200 from wash = 19.6%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
557.70	117.30	1 1/2"	0.00	0.00	100.0
		3/4"	1558.10	1504.90	87.9
		1/2"	1442.00	1419.40	82.8
		3/8"	1493.60	1483.60	80.5
		#4	1386.60	1356.80	73.8
		#10	1542.50	1514.10	67.3
		#20	1087.20	1066.80	62.7
		#40	980.10	944.10	54.5
		#60	936.90	878.00	41.1
		#100	893.90	843.30	29.6
		#200	1058.20	1019.30	20.8

Calalalaa	Gravel				Sand			Fines		
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	12.1	14.1	26.2	6.5	12.8	33.7	53.0			20.8

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.1531	0.3495	0.6142	8.9462	15.4911	21.7219	29.0076

Fineness Modulus 2.90

Medium

13.7

Fine

45.2

Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3/4"	100.0		
1/2"	94.2		
3/8"	92.9		
#4	86.3		
#10	81.0		
#20	76.6		
#40	67.3		
#60	49.8		
#100	33.3		
#200	22.1		
ļ			

Coarse

0.0

Fine

13.7

Coarse

5.3

	Material De	scriptio	n	
Gray Silty Sand				
Atta	rberg Limits	/ACTRAF	1 42491	
PL= Atte	FF=	(ASIME	Pl=	-
USCS (D 2487)=	Classific SM AA		145)=	A-2-4(0)
D ₉₀ = 6.7071 D ₅₀ = 0.2513 D ₁₀ =	Coeffic D ₈₅ = 4.073; D ₃₀ = 0.129; C _u =	3 3	D ₆₀ = 0 D ₁₅ = C _c =	.3326
	Rema	rks		
Date Received:	7/15/13	Date Te	sted:	7/23/13
Tested By:				
Checked By:	JAM			
Title:	,			

Silt

22.1

Clay

(no specification provided)

% +3"

0.0

Source of Sample: Boring E330-B-08A Sample Number: HMA#7529-18/S-3

Depth: 7.5'-9'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

7/25/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-08A

Depth: 7.5'-9'

Sample Number: HMA#7529-18/S-3

Material Description: Gray Silty Sand

Date Received: 7/15/13 USCS Classification: SM

AASHTO Classification: A-2-4(0)

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 7/23/13

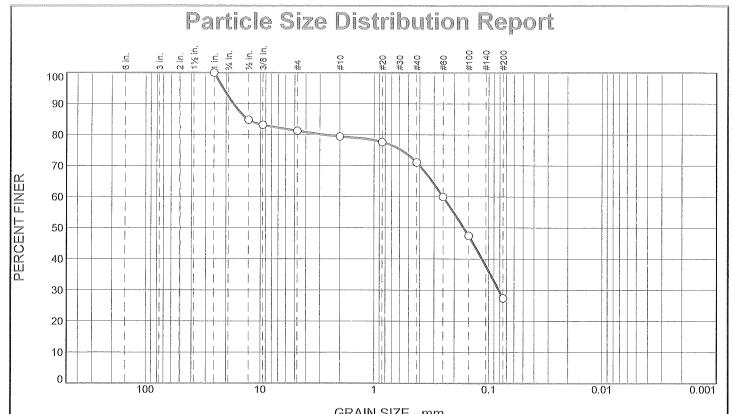
Checked By: JAM

Sieva festene

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 454.60

Tare Wt. = 114.60

Minus #200 from wash = 21.2%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
545.80	114.60	3/4"	0.00	0.00	100.0
		1/2"	1444.20	1419.40	94.2
		3/8"	1489.20	1483.40	92.9
		#4	1384.90	1356.60	86.3
		#10	1536.90	1514.00	81.0
		#20	1086.10	1066.80	76.6
		#40	984.10	944.20	67.3
		#60	953.30	877.90	49.8
		#100	914.30	843.30	33.3
		#200	1068 00	1019 40	22.1

Figural (Clabel E Claber) and a contraction

Cobbles		Gravel Sand Fines								
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	13.7	13.7	5.3	13.7	45.2	64.2			22.1

	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
ŀ				0.1293	0.2513	0.3326	1.5933	4.0733	6.7071	13.7334

Fineness	
Modulus	
1.97	

			GRAIN SIZE - IIIII.				
% ÷3"	% Gı	ravel	% Sand % Fines				
76 43	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	7.6	11.2	1.8	8.3	43.7	27.4	

Opening	esults (ASTM C	Spec.*	Pass?
Size	Finer	(Percent)	(X≈Fail)
1"	100.0	***************************************	
1/2"	84.8		
3/8"	83.1		
#4	81.2		
#10	79.4		
#20	77.6		
#40	71.1		
#60	60.0		
#100	47.5		
#200	27.4		
į			
İ			

Gray Silty Sand	Material Description W/Gravel
Atte	erberg Limits (ASTM D 4318) LL= PI=
USCS (D 2487)=	E SM AASHTO (M 145)= A-2-4(0)
D ₉₀ = 17.2295 D ₅₀ = 0.1654 D ₁₀ =	Coefficients D ₈₅ = 12.9048 D ₆₀ = 0.2502 D ₃₀ = 0.0818 D ₁₅ = C _u = C _c =
	Remarks
	remands
Date Received:	7/15/13 Date Tested: 7/23/13
Tested By:	JF/TP
Checked By:	JAM
Title:	

(no specification provided)

Source of Sample: Boring E330-B-08A Sample Number: HMA#7529-19/S-7

Depth: 20'-21'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

7/29/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-08A

Depth: 20'-21'

Material Description: Gray Silty Sand W/Gravel

Date Received: 7/15/13 USCS Classification: SM

SCS Classification: SM AASHTO Classification: A-2-4(0)

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: JF/TP

Checked By: JAM

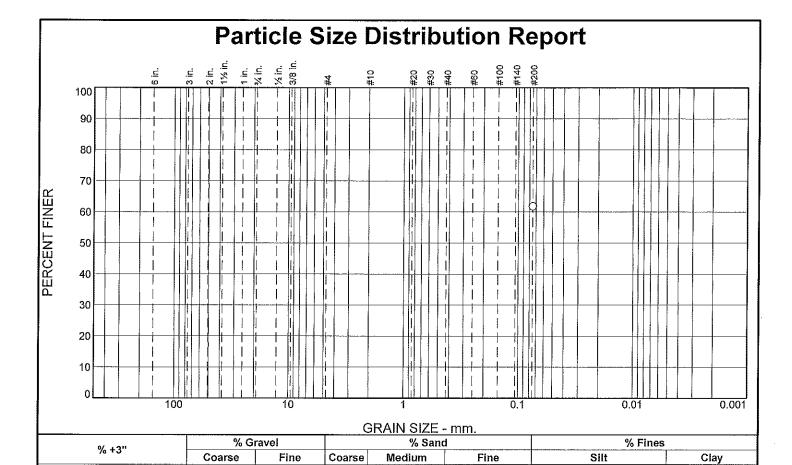
Test Date: 7/23/13

Sample Number: HMA#7529-19/S-7

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 389.90

Tare Wt. = 114.10

Minus #200 from wash = 22.9%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
471.90	114.10	1"	0.00	0.00	100.0
		1/2"	1474.00	1419.70	84.8
		3/8"	1489.70	1483.70	83.1
		#4	1364.00	1357.20	81.2
		#10	1520.80	1514.30	79.4
		#20	1073.60	1067.10	77.6
		#40	967.90	944.50	71.1
		#60	917.90	878.20	60.0
		#100	888.40	843.60	47.5
		#200	1091.60	1019 70	27.4

Renelfiergell Genneroisteinic

Cobbles		Gravel Sand Fines				Sand Fin				
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	7.6	11.2	18.8	1.8	8.3	43.7	53.8			27.4

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.0818	0.1654	0.2502	2.7627	12.9048	17.2295	21.1255

Fineness
Modulus
1.98

Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X≔Fail)
#200	61.9		
			!
]	
1000			
			•

Material Description Gray Silty Clay Atterberg Limits (ASTM D 4318) PL= 21 Classification USCS (D 2487)= CL or ML AASHTO (M 145)= Coefficients $D_{85} =$ D₉₀= $D_{60} =$ D₅₀= D₁₀= Remarks Date Received: 7/15/13 Date Tested: 7/23/13 Tested By: JF/TP Checked By: JAM Title:

(no specification provided)

Source of Sample: Boring E330-B-08A Sample Number: HMA#7529-20/S-10

Depth: 35'-36.5'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

Figure

61.9

11/13/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-08A

Depth: 35'-36.5'

Sample Number: HMA#7529-20/S-10

Material Description: Gray Silty Clay

Date Received: 7/15/13

PL: 21

LL: 27

PI: 6

USCS Classification: CL or ML #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 7/23/13

Checked By: JAM

Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 163.60

Tare Wt. = 118.40

Minus #200 from wash = 61.9%

Dry

Sample and Tare

Tare (grams)

Sieve Opening Size

Weight Retained (grams)

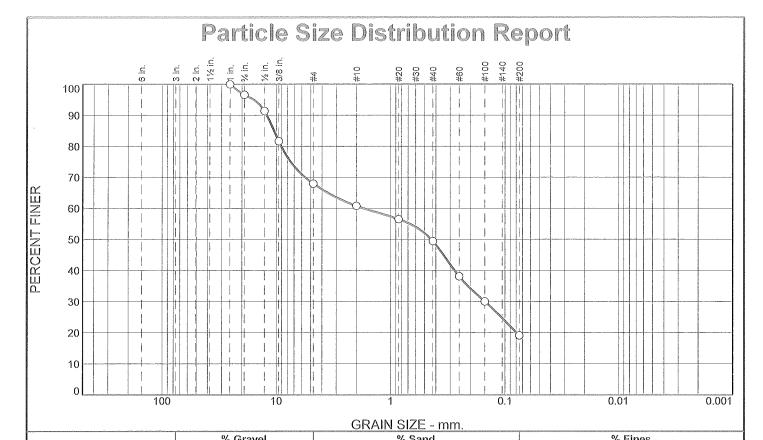
Sieve Weight (grams)

Percent Finer

(grams) 236,90

118.40

#200


61.9

Fractional Components

Cobbloo	Gravel			Sand				Fines		
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
										61.9

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

Hayre McElroy & Associates, LLC _____

% * 3		% Grav	eı		% Sand	1	% Fines	
7 ₀ %3	,	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0		3.4	28.7	7.1	11.4	30.3	19.1	
Test R	esults (ASTM	C136 & ASTN	1 D1140)			<u>Materia</u>	Il Description	
Opening	Percent	Spec.*	Pass	3?	Gray Silty	Sand with Grave	1	ŀ
Size	Finer	(Percent)	(X=Fa	ail)				
1"	100.0							
3/4"	96.6					Atterberg Lin	nits (ASTM D 4318)	
1/2"	91.4				PL=		PI=	

Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X≡Fail)
1"	100.0		
3/4"	96.6		
1/2"	91.4		
3/8"	81.6		
#4	67.9		
#10	60.8		
#20	56.5		
#40	49.4		
#60	38.1		
#100	30.0		
#200	19.1		
	:		!

Gray Silty Sand with Gravel
Atterberg Limits (ASTM D 4318) PL= LL= PI=
USCS (D 2487)= SM AASHTO (M 145)= A-1-b
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Remarks
Date Received: 7/15/13 Date Tested: 7/23/13
Tested By: JF/TP
Checked By: JAM
Title:

(no specification provided)

Source of Sample: Boring E330-B-08A Sample Number: HMA#7529-21/S-12

Depth: 45'-45.8'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

Sample Number: HMA#7529-21/S-12

AASHTO Classification: A-1-b

7/29/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-08A

Depth: 45'-45.8'

Material Description: Gray Silty Sand with Gravel

Date Received: 7/15/13 **USCS Classification: SM**

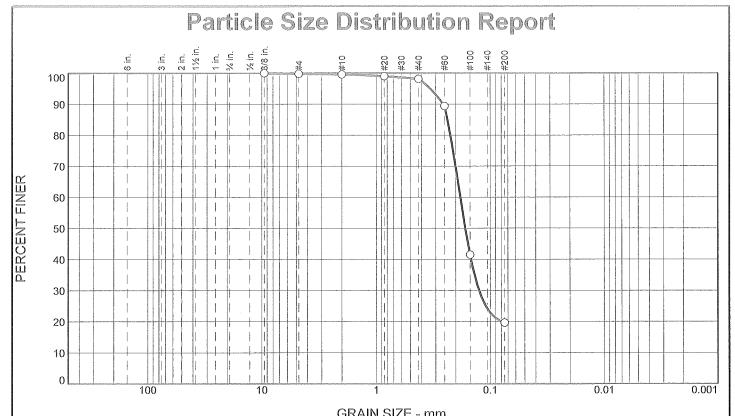
Grain Size Test Method: ASTM C136

#200 Wash Method: ASTM D1140

Tested By: JF/TP Test Date: 7/23/13

Checked By: JAM

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 368.30


Tare Wt. = 113.30 Minus #200 from wash = 17.9%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
423.80	113.30	1"	0.00	0.00	100.0
		3/4"	1515.60	1505.10	96.6
		1/2"	1436.00	1419.80	91.4
		3/8"	1514.40	1484.00	81.6
		#4	1399.70	1357.20	67.9
		#10	1536.90	1514.70	60.8
		#20	1080.60	1067.30	56.5
		#40	966.80	944.80	49.4
		#60	913.70	878.60	38.1
		#100	868.90	843.90	30.0
		#200	1054.00	1019.90	19.1

Gravel Fines Sand Cobbles Coarse Fine Total Coarse Medium Fine Total Silt Clay Total 7.1 0.0 3.4 28.7 32.1 11.4 48.8 19.1 30.3

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
		0.0794	0.1495	0.4398	1.7354	9.0644	10.4730	12.0924	15.7513

Fineness	_
Modulus	_
3.08	

	GIVAIN SIZL - IIIII.									
% +3"	% Gravel		% Sand			% Fines				
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay			
0.0	0.0	0.2	0.2	1.4	78.5	19.7				
0.002.000										

Test Re	esults (ASTM C	136 & ASTM I	D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3/8"	100.0	The state of the s	
#4	99.8		
#10	99.6		
#20	99.0		
#40	98.2		
#60	89.4		
#100	41.5		
#200	19.7		
		i.	
		-	

<u>Material Description</u> Gray Silty Sand	
Atterberg Limits (ASTM D 4318)	
PL= LL= Pl=	١
USCS (D 2487)= $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Remarks	Ī
Date Received: 7/15/2013	
Date Received: 7/15/2013 Date Tested: 7/23/2013 Tested By: TP/JF	
Checked By: JAM	
Title:	

Source of Sample: Boring E330-B-08A Sample Number: HMA#7529-22/S-15

Depth: 60'-60.8'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

⁽no specification provided)

7/29/2013

GRAIN SIZE DISTRIBUTION TEST DATA

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-08A

Depth: 60'-60.8'

Material Description: Gray Silty Sand

Date Received: 7/15/2013 **USCS Classification: SM**

Grain Size Test Method: ASTM C136

#200 Wash Method: ASTM D1140

Tested By: TP/JF

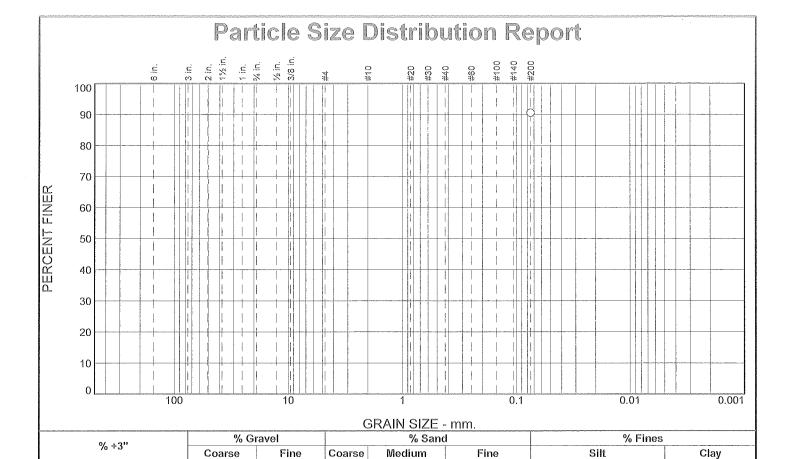
Test Date: 7/23/2013

Sample Number: HMA#7529-22/S-15

AASHTO Classification: A-2-4(0)

Checked By: JAM

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 403.80


Tare Wt. = 118,20 Minus #200 from wash = 17.9%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
466.20	118.20	3/8"	0.00	0.00	100.0
		#4	1357.30	1356.60	99.8
		#10	1514.80	1514.10	99.6
		#20	1068.70	1066.70	99.0
		#40	947.10	944.10	98.2
		#60	908.50	877.90	89.4
		#100	1010.10	843.50	41.5
		#200	1095.40	1019.40	19.7

Cobbles	Gravel			Sand				Fines		
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.2	0.2	0.2	1.4	78.5	80.1			19.7

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
		. 0.0789	0.1251	0.1649	0.1820	0.2219	0.2353	0.2570	0.3331

Fineness
Modulus
0.68

	TEST RE	ESULTS		COLUMN CO	Material I	<u>Description</u>
Opening	Percent	Spec.*	Pass?	Gray Silt		· · · · · · · · · · · · · · · · · · ·
Size	Finer	(Percent)	(X=Fail)			
#200	90.6			PL= 27	LL= 40 <u>Class</u> 87)= ML <u>Coeff</u> D ₈₅ = D ₃₀ = C _u =	ts (ASTM D 4316 PI= ification AASHTO (M 145)= ficients D ₆₀ = D ₁₅ = C _c =
				Checked I	By: <u>TP/JF</u>	Date Tested:

= A-6(13)7/24/2013

(no specification provided)

Source of Sample: Boring E330-B-08A Sample Number: HMA#7529-23/S-18

Depth: 75'-76'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

Figure

90.6

7/29/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-08A

Depth: 75'-76'

Material Description: Gray Silt

Date Received: 7/15/2013

PL: 27

LL: 40

PI: 13

USCS Classification: ML

#200 Wash Method: ASTM D1140

Tested By: TP/JF

Test Date: 7/24/2013

Sample Number: HMA#7529-23/S-18

AASHTO Classification: A-6(13)

Checked By: JAM

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 130.90

Tare Wt. = 118.40

Minus #200 from wash = 90.6%

Dry

Sample and Tare (grams)

Tare (grams)

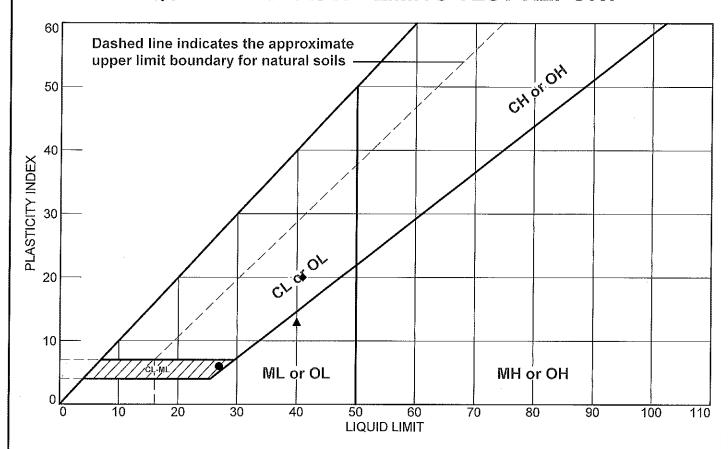
Sieve Opening Size

Weight Retained (grams)

Sieve Weight (grams)

Percent Finer 90.6

251.20


118.40

#200

Cobbles	Gravel			Sand				Fines		
0000063	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
****										90.6

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

LIQUID AND PLASTIC LIMITS TEST REPORT

				SOIL DA	ATA			
	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS
•	Boring E330-B-08A	HMA#7529-	35'-36,5'	18.7	21	27	6	CL or ML
		20/S-10						
	Boring E330-B-08A	HMA#7529-	45'-45.8'		NP	NP	NP	SM
		21/S-12						
4	Boring E330-B-08A	HMA#7529-	75'-76'	23.3	27	40	13	ML
		23/S-18						
•	Boring E330-B-08A	HMA#7529-	85'-85.5'	18.3	21	41	20	CL
		24/S-20						
	A							

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

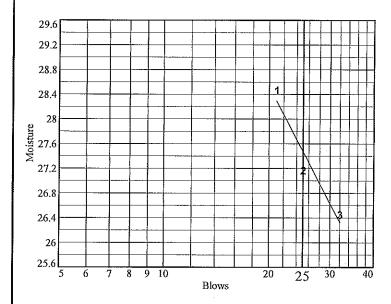
Project No.: 12-450

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-08A

Depth: 35'-36.5'


Sample Number: HMA#7529-20/S-10

Material Description: Gray Silty Clay

USCS: CL or ML Tested by: JF/TP

Checked by: JAM

			Liquid Limit Data							
Run No.	1	2	3	4	5	6				
Wet+Tare	31.1	31.55	33.1	-						
Dry+Tare	27.2	27.7	29							
Tare	13.5	13.53	13.5							
# Blows	21	25	32							
Moisture	28.5	27.2	26.5							

Liquid Limit=	27
Plastic Limit= .	21
Plasticity Index=	6
Natural Moisture=	18.7
	-0.4
Liquidity Index=	

Run No.	1	2	3	4	
	10.20	17.20	10.6	- T	
/et+Tare	18.30	17.32	18.6		
Dry+Tare	17.1	16.2	17.3		
Tare	11.02	11.04	11,12		
Moisture	19.7	21.7	21.0		

Wet+Tare Dry+Tare Tare Moisture 259.1 236.9 118.4 18.7

. Hayre McEiroy & Associates, LLC ______

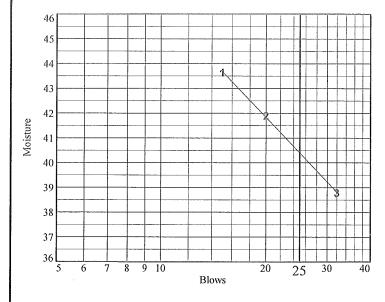
7/29/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-08A

Depth: 75'-76'


Material Description: Gray Silt

USCS: ML Tested by: TEP **Sample Number:** HMA#7529-23/S-18

AASHTO: A-6(13)

	Chec	ked	by: J	AM	
Litterio L	mili	k(b)			

Run No.	1	2	3	4	5	6
Wet+Tare	37.1	36.6	34.0	\ <u>\</u>		
Dry+Tare	29.2	29.1	27.6			
Tare	11.1	11.2	11.1			
# Blows	15	20	32			
Moisture	43.6	41.9	38.8			

Liquid Limit=	40
Plastic Limit= .	27
Plasticity Index=	13
Natural Moisture= .	23.3
Liquidity Index=	-0.3
and an array in terest.	

			: Pestie Umii D	les de la companya de la companya de la companya de la companya de la companya de la companya de la companya d	
Run No.	1	2	3	4	
Wet+Tare	20.8	20.2	20.0		
Dry+Tare	19.3	18.8	18.7		
Tare	13.7	13.6	13.7		
Moisture	26.8	26.9	26.0		

Newnell Motsons Date:

Wet+Ta	are Dry+T	are Tare	Moisture
282.2	2 251	.2 118.4	23.3

7/29/2013

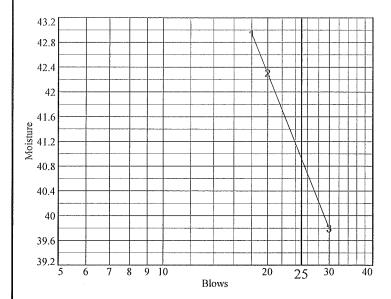
Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-08A

Depth: 85'-85.5'

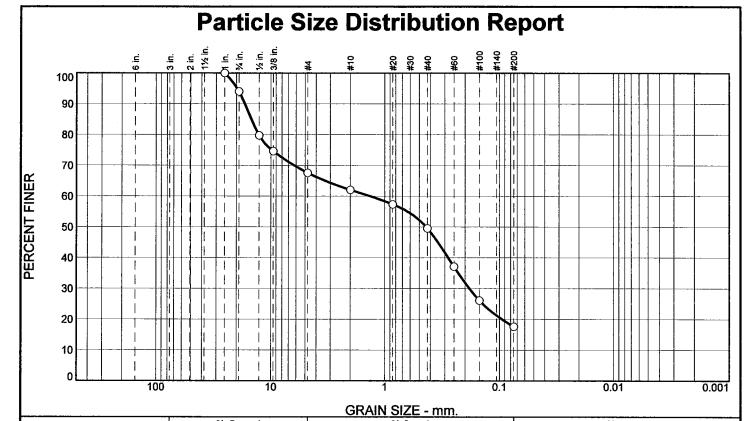
Sample Number: HMA#7529-24/S-20


Material Description: Gray Lean Clay

USCS: CL

Tested by: TEP

Checked by: JAM


	T-1		Literation Eight a De	W.		
Run No.	1	2	3	4	5	6
Wet+Tare	37.9	35.8	27.4			
Dry+Tare	30.6	29.2	23.5			
Tare	13.6	13.6	13.7			
# Blows	18	20	30			
Moisture	42.9	42.3	39.8			

Liquid Limit=_ 41 21 Plastic Limit=_ 20 Plasticity Index=_ 18.3 Natural Moisture= ___ -0.1 Liquidity Index=_

			Pesic Limb		
Run No.	1	2	3	4	
Wet+Tare	23.0	20.2	23.2		
Dry+Tare	21.4	19.1	21.5		
Tare	13.6	13.6	13.6		
Moisture	20.5	20.0	21.5		

Wet+Tare	Dry+Tare	Tare	Moisture
211.3	196.4	115.2	18.3

% +3'	" % Gravel				% Sand	İ	% Fines		
/0 TJ		Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0		6.0	26.4	5.6	12.5	31.9	17.6	5	
Test Re	esults (ASTM	C136 & ASTM	D 1140)			Material	Description		
Opening	Percent	Spec.*	Pass	7	Gray/Olive	Silty Sand W/Gra	avel	į	
Size	Finer	(Percent)	(X=Fa	ii)					
1.0	100.0								

Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1"	100.0		
3/4"	94.0		
1/2"	79.8		
3/8"	74.6		
#4	67.6		
#10	62.0		
#20	57.4		
#40	49.5		
#60	37.1	1	
#100	26.1		
#200	17.6		
ļ			
1			
i			

Atte	rberg Limi LL=	ts (AST	「 <u>M D 4318)</u> Pl=				
USCS (D 2487)=		ification	o <u>n</u> O (M 145)= A-1-b				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
Date Received: Tested By: Checked By:	JF	Date	P Tested: 05/09/13				
Title:	J2 1171						

(no specification provided)

Source of Sample: Boring E330-B-009 **Sample Number:** HMA#7510-22/S-1

Depth: 2.5'-4'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

5/15/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 **Location:** Boring E330-B-009

Depth: 2.5'-4'

Material Description: Gray/Olive Silty Sand W/Gravel

Date Received: 05/03/13 USCS Classification: SM

AASHTO Classification: A-1-b

Sample Number: HMA#7510-22/S-1

Grain Size Test Method: ASTM C136 **#200 Wash Method:** ASTM D 1140

Tested By: JF

Test Date: 05/09/13

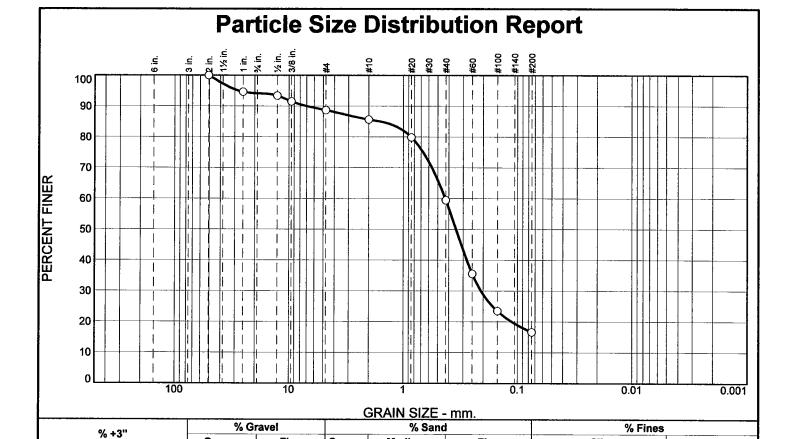
Checked By: JAM

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 510,90

Tare Wt. = 161.80

Minus #200 from wash = 15.9%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
577.00	161.80	1"	0.00	0.00	100.0
		3/4"	1530.00	1505.10	94.0
		1/2"	1478.80	1419.70	79.8
		3/8"	1505.10	1483.80	74.6
		#4	1386.50	1357.20	67.6
		#10	1537.80	1514.80	62.0
		#20	1087.20	1067.80	57.4
		#40	977.50	945.00	49.5
		#60	930.10	878.40	37.1
		#100	889.20	843.60	26.1
		#200	1055.30	1020.10	17.6


Fractional Components

Cobbles	Gravel			Sand				Fines		
Coppies	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	6.0	26.4	32.4	5.6	12.5	31.9	50.0			17.6

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
		0.0950	0.1838	0.4357	1.3390	12.8047	14.8380	16.9252	19.7402

Fineness	
Modulus	
3.19	

Hayre McElroy & Associates, LLC _____

Medium

26.1

Fine

42.9

Test Re	sults (ASTM (136 & ASTM [1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
2"	100.0		
1"	94.6		
1/2"	93.4		
3/8"	91.5	ŀ	
#4	88.7		
#10	85.6		
#20	79.9		
#40	59.5		
#60	35.6		
#100	23.5		
#200	16.6		
		,	
ł			

Coarse

5.8

0.0

Fine

5.5

Coarse

3.1

Gray Silty	Material Description Sand	
PL=	Atterberg Limits (ASTM D 4318) LL= P =	
USCS (D 2	Classification AASHTO (M 145)= A-2-4(0)	
D ₉₀ = 7.01 D ₅₀ = 0.34 D ₁₀ =	Coefficients 86	
	ived: 05/03/13	
	d By: JAM Fitle:	_

Silt

16.6

Clay

(no specification provided)

Source of Sample: Boring E330-B-009 Sample Number: HMA#7510-23/S-4

Depth: 10'-11.5'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

Sample Number: HMA#7510-23/S-4

5/15/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 **Location:** Boring E330-B-009

Depth: 10'-11.5'

Material Description: Gray Silty Sand

Date Received: 05/03/13 USCS Classification: SM

USCS Classification: SM AASHTO Classification: A-2-4(0)

Grain Size Test Method: ASTM C136 **#200 Wash Method:** ASTM D 1140

Tested By: JF Test Date: 05/09/13

Checked By: JAM

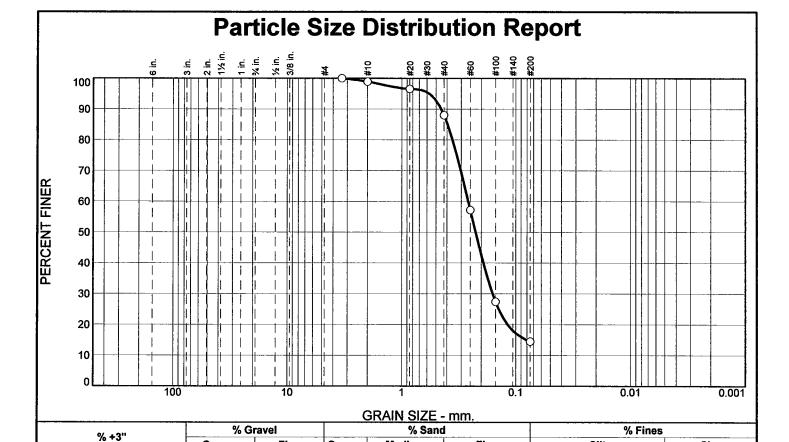
Sieve Teat de le

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 548.40

Tare Wt. = 194.30

Minus #200 from wash = 15.5%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
613.40	194.30	2"	0.00	0.00	100.0
		1"	1492.10	1469.60	94.6
		1/2"	1424.80	1419.60	93.4
		3/8"	1491.40	1483.60	91.5
		#4	1369.00	1357.10	88.7
		#10	1527.50	1514.70	85.6
		#20	1091.80	1067.60	79.9
		#40	1030.30	945.00	59.5
		#60	978.70	878.50	35.6
		#100	894.10	843.40	23.5
		#200	1048.80	1020.00	16.6


Fractional Components

Cobbles	Gravel			Sand Fines						
Connies	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	5.8	5.5	11.3	3.1	26.1	42.9	72.1			16.6

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
		0.1121	0.2091	0.3462	0.4299	0.8573	1.5903	7.0186	27.7086

Fineness Modulus 2.20

Hayre McElroy & Associates, LLC ___

Medium

10.8

Fine

73.6

Test Re	sults (ASTM (136 & ASTM I	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X≃Fail)
#6	100.0		
#10	98.9		
#20	96.6		
#40	88.1		
#60	57.2		
#100	27.4		
#200	14.5		
			:

Coarse

0.0

0.0

Fine

0.0

Coarse

1.1

	Material Description
Dark Gray Silty Sa	and
Atter	berg Limits (ASTM D 4318) LL= PI=
USCS (D 2487)=	SM AASHTO (M 145)= A-2-4(0)
D ₉₀ = 0.4493 D ₅₀ = 0.2244 D ₁₀ =	Coefficients D ₈₅ = 0.3952 D ₆₀ = 0.2605 D ₃₀ = 0.1590 D ₁₅ = 0.0802 C _u = C _c =
	Remarks
Date Received: 0	
Checked By: J	AM
Title:	

Silt

14.5

Clay

* (no specification provided)

Source of Sample: Boring E330-B-009 Sample Number: HMA#7510-24/S-9

Depth: 30'-31'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

5/15/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 **Location:** Boring E330-B-009

Depth: 30'-31'

Sample Number: HMA#7510-24/S-9

Material Description: Dark Gray Silty Sand

Date Received: 05/03/13 USCS Classification: SM

AASHTO Classification: A-2-4(0)

Grain Size Test Method: ASTM C136 **#200 Wash Method:** ASTM D 1140

Tested By: JF

Test Date: 05/09/13

Checked By: JAM

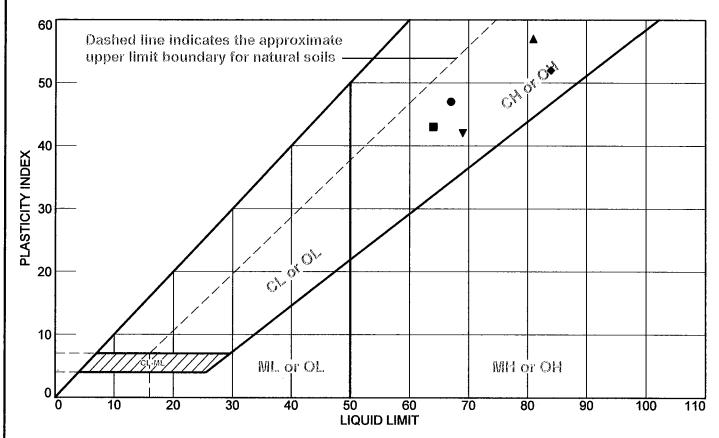
Post #200 Wash Test Weights (grams): Dry Sample and Tare = 646.80

Tare Wt. = 234.70

Minus #200 from wash = 10.7%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
696.20	234.70	#6	0.00	0.00	100.0
		#10	1519.60	1514.60	98.9
		#20	1078.50	1067.70	96.6
		#40	984.30	945.00	88.1
		#60	1020.70	878.40	57.2
		#100	980.90	843.40	27.4
		#200	1079.70	1020.00	14.5

Electronal Components


Cobbles	Gravel			Sand Fines						
CODDIES	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	1.1	10.8	73.6	85.5			14.5

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.0802	0.1179	0.1590	0.2244	0.2605	0.3579	0.3952	0.4493	0.5700

Fineness
Modulus
1.11

Hayre McElroy & Associates, LLC _____

SOIL DATA							
SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs
• Boring E330-B-009	HMA#7510-	45'-46.5'	31.6	20	67	47	CH or OH
	25/S-12						
■ Boring E330-B-009	HMA#7510-	70'-71.5'	27.2	21	64	43	CH or OH
	26/S-17						
▲ Boring E330-B-009	HMA#7510-	115'-116.5'	33.5	24	81	57	CH or OH
	28/S-26						
◆ Boring E330-B-009	HMA#7510-	90'-91.5'	38.0	32	84	52	CH or OH
	27/S-21						
▼ Boring E330-B-009	HMA#7510-	135'-136.5'	37.4	27	69	42	CH or OH
	29/S-30						

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No.: 12-450

Figure

Tested By: JF

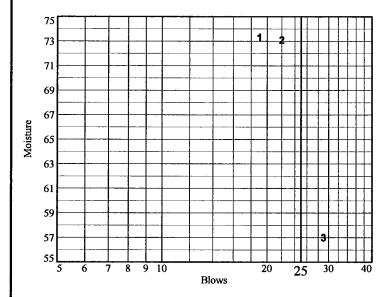
Checked By: JAM

5/15/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 **Location:** Boring E330-B-009


Depth: 45'-46.5'

Sample Number: HMA#7510-25/S-12

USCS: CH or OH
Tested by: JF

Tested by: JAM

Run No.	1	2	3	4	5	6
Wet+Tare	32.72	31.49	29.61			
Dry+Tare	23.6	22.9	22.9			
Tare	11.16	11.15	11.13			
# Blows	19	22	29			
Moisture	73.3	73.1	57.0			

Liquid Limit= _	67	
Plastic Limit=	20	
Plasticity Index= _	47	
Natural Moisture= _	31.6	
Liquidity Index= _	0.2	
		-

	tir i a rige fatter		es de la la la la la la la la la la la la la	eliano volt, busto e	
Run No.	1	2	3	4	
Wet+Tare	19.1	17	17.4		
Dry+Tare	17.7	16.1	16.4		
Tare	11.2	11.1	11.3		
Moisture	21.5	18.0	19.6		

Natural MoiSture Dala

Wet+Tare	Dry+Tare	Tare	Moisture
83.7	66.9	13.7	31.6

_ Hayre McElroy & Associates, LLC _

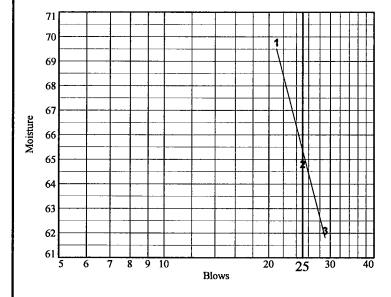
5/15/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 **Location:** Boring E330-B-009

Depth: 70'-71.5'


Material Description: Gray Clay

USCS: CH or OH
Tested by: JF

Sample Number: HMA#7510-26/S-17

Chec	:ked	bv:	JAM

Run No.	1	2	3	4	5	6
Wet+Tare	28.3	31.4	29.1			
Dry+Tare	22.3	24.4	23.2			
Tare	13.7	13.6	13.7			
# Blows	21	25	29			
Moisture	69.8	64.8	62.1			

Liquid Limit= 65
Plastic Limit= 21
Plasticity Index= 44
Natural Moisture= 27.2
Liquidity Index= 0.1

			e Rasife Minida	alia	
Run No.	1	2	3	4	
Wet+Tare	21.4	23.3	24.3		
Dry+Tare	20.2	21.5	22.4		
Tare	13.5	13.6	13.6		
Moisture	17.9	22.8	21.6		

Natural Moisture Data

W	et+Tare	Dry+Tare	Tare	Moisture
	71.2	58.9	13.7	27.2

Hayre McElroy & Associates, LLC _

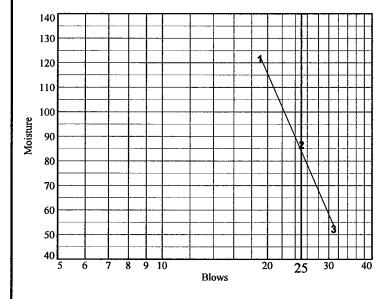
5/15/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 **Location:** Boring E330-B-009

Depth: 90'-91.5'


Material Description: Gray Clay

USCS: CH or OH
Tested by: JF

Sample Number: HMA#7510-27/S-21

Ch	ecke	d b	v:	ĪΑ	M
~	vvnv	u		,,,	TAT

Run No.	1	2	3	4	5	6
Wet+Tare	30.7	29.3	27.4			
Dry+Tare	20	20.9	21.7			
Tare	11.2	11.2	10.8			
# Blows	19	25	31			
Moisture	121.6	86.6	52.3			

Liquid Limit= _	84
Plastic Limit=	32
Plasticity Index= _	52
Natural Moisture= _	38.0
l iquidity Index=	0.1

Plastic Limit Bata Section (Plastic Limit Bata)								
Run No.	1	2	3	4				
Wet+Tare	19.6	19.5	19					
Dry+Tare	17.7	17.5	17.1					
Tare	11.4	11.2	11.4					
Moisture	30.2	31.7	33.3					

Natural Moisture Data

Wet+Tare	Dry+Tare	Tare	Moisture
70.2	54.6	13.6	38.0

Hayre McElroy & Associates, LLC _

5/15/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 **Location:** Boring E330-B-009

Depth: 115'-116.5'


Material Description: Gray Clay

USCS: CH or OH
Tested by: JF

Sample Number: HMA#7510-28/S-26

	_			_
Cha	cked	l	IAB	Λ
	LINE	I DV.	JAI	vı

Ejquid Bijmji Deita								
Run No.	1	2	3	4	5	6		
Wet+Tare	31	33.5	32.3					
Dry+Tare	23.2	24.6	24.1					
Tare	13.7	13.5	13.7					
# Blows	20	26	32					
Moisture	82.1	80.2	78.8	· · · · · · · · · · · · · · · · · · ·				

Liquid Limit= 81

Plastic Limit= 24

Plasticity Index= 57

Natural Moisture= 33.5

Liquidity Index= 0.2

Consider the Planticum (Planticum Pl							
Run No.	1	2	3	4			
Wet+Tare	23.7	23.6	22.7				
Dry+Tare	21.7	21.7	20.9				
Tare	13.6	13.6	13.6				
Moisture	24.7	23.5	24.7	• • •			

National Moistrice Data

Wet+Tare	Dry+Tare	Tare	Moisture	
61.9	49.8	13.7	33.5	

Hayre McElroy & Associates, LLC _

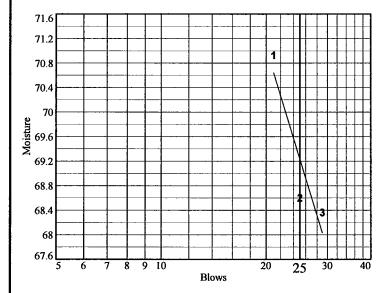
Sample Number: HMA#7510-29/S-30

5/15/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 **Location:** Boring E330-B-009

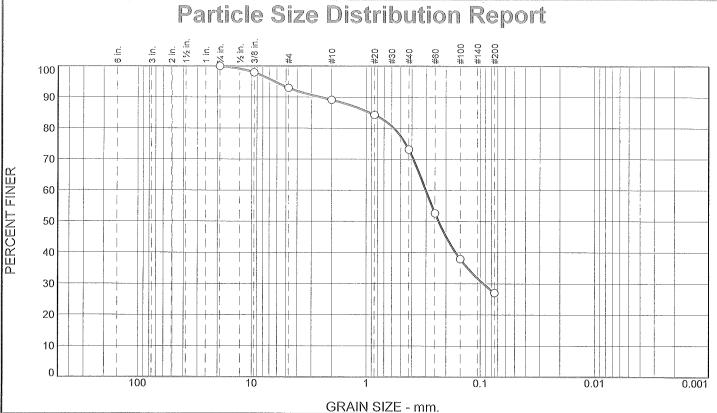

Depth: 135'-136.5'

Material Description: Gray Clay

USCS: CH or OH

Tested by: JF Checked by: JAM

(Ejepilöllejlei)								
Run No.	1	2	3	4	5	6		
Wet+Tare	28.3	28.1	30.1					
Dry+Tare	22.2	22.2	23.4					
Tare	13.6	13.6	13.6	, , , , , , , , , , , , , , , , , , , ,				
# Blows	21	25	29					
Moisture	70.9	68.6	68.4					


Liquid Limit= _	69
Plastic Limit=	27
Plasticity Index=	42
Natural Moisture= _	37.4
Liquidity Index= _	0.2

va energia partici dimindrata								
Run No.	1	2	3	4				
Wet+Tare	20.8	20.7	19.6					
Dry+Tare	18.9	18.7	17.9					
Tare	11.6	11.4	11.5					
Moisture	26.0	27.4	26.6					

Natural Moisture Data

Wet+Tare	Dry+Tare	Tare	Moisture
62.9	49.5	13.7	37.4

Hayre McElroy & Associates, LLC ___

% +3"		% Gravel % Sand			% Fines		
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	7.0	3.8	16.0	46.1	27.1	

Test Results (ASTM C1363 & ASTM D1140)						
Opening	Percent Spec.* Pas					
Size	Finer	(Percent)	(X≡Fail)			
3/4"	100.0					
3/8"	98.0					
#4	93.0					
#10	89.2					
#20	84.3					
#40	73.2					
#60	52.7					
#100	37.9					
#200	27.1					

	Material Description
Olive Gray Silty	-
Onve Gray Siny	Sand
Atte	rberg Limits (ASTM D 4318)
PL=	LL= PI=
	Classification
USCS (D 2487)=	
	Coefficients
D ₉₀ = 2.4935 D ₅₀ = 0.2322	$D_{86} = 0.9365$ $D_{60} = 0.3005$
D ₅₀ = 0.2322 D ₁₀ =	D30= 0.0938 D15= Cu= Cc=
210-	
	Remarks
Date Received:	5/10/13 Date Tested: 5/15/13
Tested By:	
Checked By:	JAM
Title:	

(no specification provided)

Source of Sample: Boring E330-B-010 Sample Number: HMA#7511-23/S-5

Depth: 10'-10.7'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

<u>Figure</u>

5/23/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-010

Depth: 10'-10.7'

Material Description: Olive Gray Silty Sand

Date Received: 5/10/13

USCS Classification: SM

Grain Size Test Method: ASTM C1363 **#200** Wash Method: ASTM D1140

Tested By: JF/TP Checked By: JAM AASHTO Classification: A-2-4(0)

Sample Number: HMA#7511-23/S-5

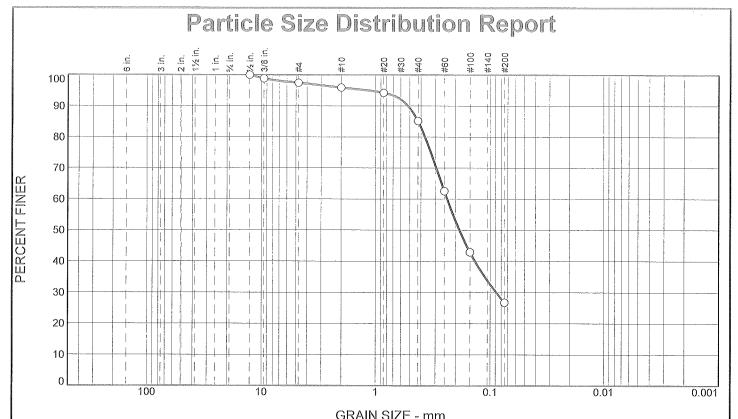
Test Date: 5/15/13

Parada and the second state of the second se

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 311.20

Tare Wt. = 113.20

Minus #200 from wash = 24.1%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
374.10	113.20	3/4"	0.00	0.00	100.0
		3/8"	1489.10	1483.80	98.0
		#4	1370.30	1357.30	93.0
		#10	1524.60	1514.60	89.2
		#20	1080.20	1067.50	84.3
		#40	973.80	944.80	73.2
		#60	931.90	878.40	52.7
		#100	881.60	843.20	37.9
		#200	1048 30	1019 90	27.1

Recodered Comments

Cabbles	Gravel			Sand				Fines		
	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	7.0	7.0	3.8	16.0	46.1	65.9			27.1

D	10	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.0938	0.2322	0.3005	0.5721	0.9365	2.4935	6.2594

Fineness
Modulus
1.54

	% Gr	avel		% Sand	111111	% Fines			
% ÷3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay		
0.0	0.0	2.5	1.6	10.7	58.4	26.8			

Test Re	esults (ASTM C	136 & ASTM	D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X≊Fail)
1/2"	100.0		
3/8"	98.9		
#4	97.5		
#10	95.9		
#20	94.2		
#40	85.2		
#60 #100	62.5 42.9		
#200	26.8		
#200	20.0		

Olive Gray Silty	Material Description
onve dray oney	Sund
Atte	erberg Limits (ASTM D 4318) LL= P =
USCS (D 2487)=	SM AASHTO (M 145)= A-2-4(0)
D ₉₀ = 0.5178 D ₅₀ = 0.1847 D ₁₀ =	Coefficients D ₈₅ = 0.4225 D ₆₀ = 0.2361 D ₃₀ = 0.0884 D ₁₅ = C _u = C _c =
	Remarks
Date Received: Tested By:	
Checked By:	
Title:	

(no specification provided)

Source of Sample: Boring E330-B-010 Sample Number: HMA#7511-24/S-7

Depth: 15'-15.4'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

5/23/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-010

Depth: 15'-15.4'

Material Description: Olive Gray Silty Sand

Date Received: 5/10/13 **USCS Classification: SM**

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: JF/TP

Checked By: JAM

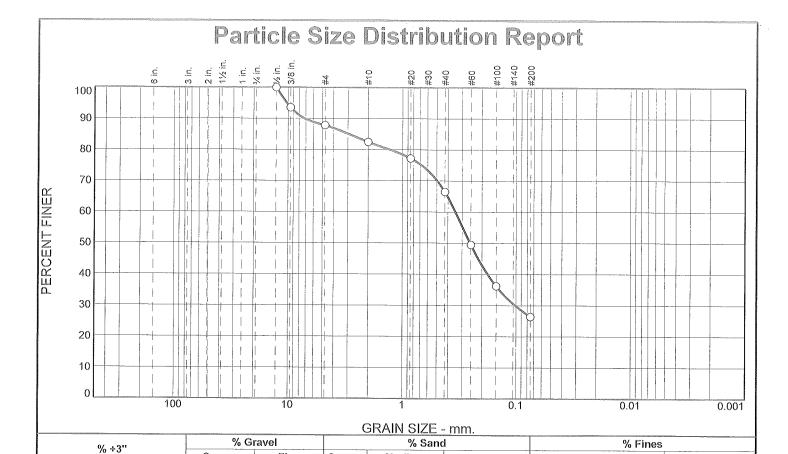
Sample Number: HMA#7511-24/S-7

AASHTO Classification: A-2-4(0)

Test Date: 5/16/13

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 278.40

Tare Wt. = 118.20


Minus #200 from wash = 23.5%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
327.50	118.20	1/2"	0.00	0.00	100.0
		3/8"	1486.40	1484.00	98.9
		#4	1360.00	1357.10	97.5
		#10	1517.90	1514.60	95.9
		#20	1070.80	1067.30	94.2
		#40	963.70	944.80	85.2
		#60	925.80	878.40	62.5
		#100	884.30	843.20	42.9
		#200	1053.50	1019.70	26.8

Cobbles		Gravel		Sand					Fines	
GODDICS	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	2.5	2.5	1.6	10.7	58.4	70.7			26.8

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.0884	0.1847	0.2361	0.3681	0.4225	0.5178	1.1643

Fineness Modulus 1.06

Medium

15.9

Fine

40.1

	esults (ASTM (C136 & ASTM	D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X≔Fail)
1/2"	100.0		
3/8"	93.5		
#4	87.8		
#10	82.4		
#20	77.2		
#40	66.5		
#60	49.5		
#100	36.2		
#200	26.4		
İ			

Coarse

0.0

0.0

Fine

12.2

Coarse

5.4

Gray Brown Silty		Descripti	<u>on</u>	
Atte	<u>rberg Limi</u> LL=	ts (ASTM	D 4318	1
USCS (D 2487)=		<u>ification</u> AASHTO (M 145)=	A-2-4(0)
D ₉₀ = 7.1850 D ₅₀ = 0.2543 D ₁₀ =	D ₈₅ = 2.9 D ₃₀ = 0.1 C _u =	017	D ₆₀ = 0 D ₁₅ = C _c =	.3429
	Rei	marks		
Date Received: 5		Date T	ested:	5/16/2013
Checked By: 1	AM			
Title:		7*************************************		

Silt

26.4

Clay

(no specification provided)

Source of Sample: Boring E330-B-010 Sample Number: HMA#7511-26/S-10

Depth: 30'-30.9'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

5/23/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-010

Depth: 30'-30.9'

Material Description: Gray Brown Silty Sand

Date Received: 5/10/2013 USCS Classification: SM

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: JF/TP

Checked By: JAM

Sample Number: HMA#7511-26/S-10

AASHTO Classification: A-2-4(0)

Test Date: 5/16/2013

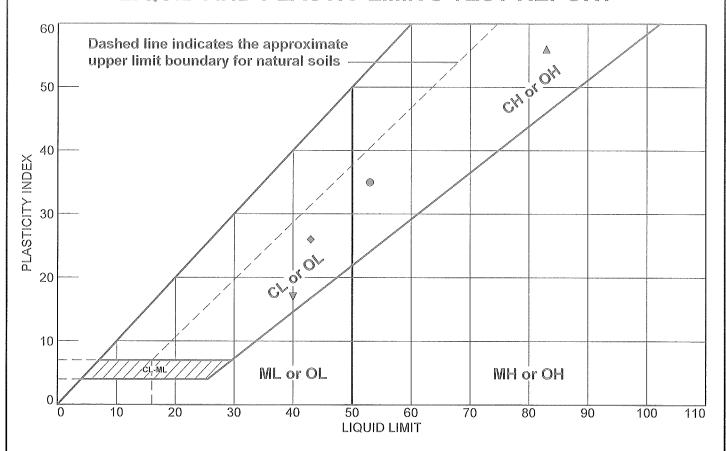
Bleve rear bit

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 231.40

Tare Wt. = 117.90

Minus #200 from wash = 22.8%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
264.90	117.90	1/2"	0.00	0.00	100.0
		3/8"	1493.50	1484.00	93.5
		#4	1365.70	1357.30	87.8
		#10	1522.70	1514.80	82.4
		#20	1075.40	1067.70	77.2
		#40	960.80	945.00	66.5
		#60	903.50	878.50	49.5
		#100	863.10	843.60	36.2
#\$5.4mmc~mc-ch.2.25.44.44.44.44.44.44.44.4		#200	1034.40	1020.00	26.4


Sada (Tarik dominerasia

Cobbles		Gravel			Sa	nd	× 1000000000000000000000000000000000000		Fines	
	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	12.2	12.2	5.4	15.9	40.1	61.4			26.4

				T	· · · · · · · · · · · · · · · · · · ·				
D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.1017	0.2543	0.3429	1.2867	2.9542	7.1850	10.2627

Fineness Modulus	
1.91	

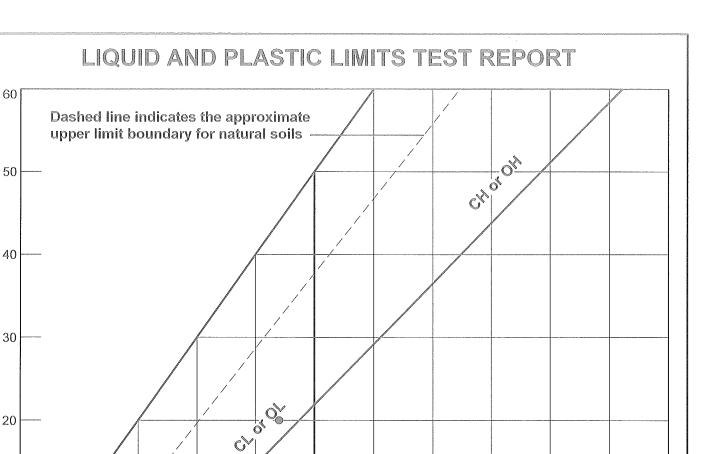
LIQUID AND PLASTIC LIMITS TEST REPORT

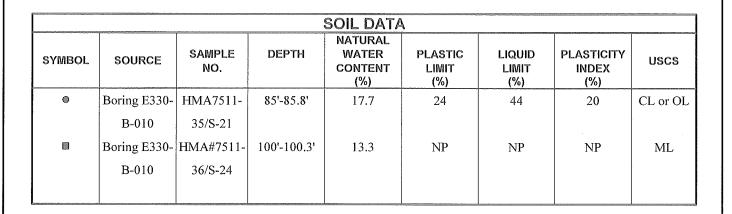
				SOIL DA	NTA			
	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs
•	Boring E330-B-010	HMA#7511-	2.5'-4'	25.6	18	53	35	CH or OH
		22/S-2						
	Boring E330-B-010	HMA#7511-	15'-15.4'		NP	NP	NP	SM
		24/S-7						
4	Boring E330-B-010	HMA#7511-	45'-46.5'	28.0	27	83	56	CH or OH
		25/S-13						
k	Boring E330-B-010	HMA#7511-	55'-56'	18.1	17	43	26	CL or OL
		27/S-15						
1	Boring E330-B-010	HMA#7511-	70'-70.9'	22.3	23	40	17	CL or OL
		28/S-18						

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link


Redmond, WA


Project No.: 12-450

Figure

Tested By: JF/TP

Checked By: JAM

50

LIQUID LIMIT

60

70

ML or OL

40

Hayre McElroy & Associates, LLC

CL-ML

10

20

30

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No.: 12-450

Figure

MH or OH

80

90

100

110

Tested By: ○ TP/JF □ JF/TP

PLASTICITY INDEX

20

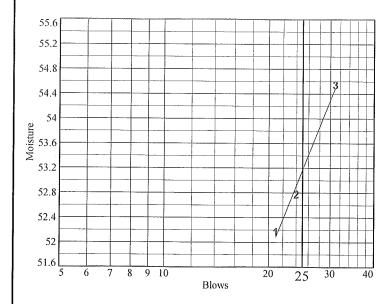
10

Checked By: JAM

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-010


Depth: 2.5'-4'

Material Description: Brown Clay

USCS: CH or OH Tested by: JF/TP Sample Number: HMA#7511-22/S-2

Checked by: JAM

Run No.	1	2	3	4	5	6
Wet+Tare	21.8	22.3	19.9			
Dry+Tare	18.2	18.5	16.9			
Tare	11.3	11.3	11.4			
# Blows	21	24	31			
Moisture	52.2	52.8	54.5			

Liquid Limit= _	53
Plastic Limit= _	18
Plasticity Index≡ _	35
Natural Moisture=	25.6
Liquidity Index≡	0.2

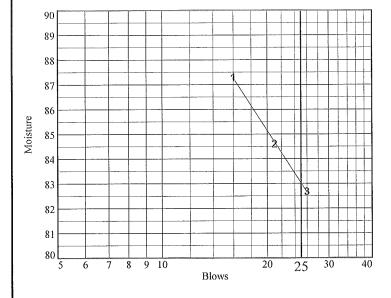
			Telerako bimikib	Yes The second s	
Run No.	1	2	3	4	
Wet+Tare	17.6	17.4	19.5		
Dry+Tare	16.6	16.4	18.3		
Tare	11.4	11	11.2		
Moisture	19.2	18.5	16.9		

	Experience of the second secon		učil Majskurce D
Wet+Tare	Dry+Tare	Tare	Moisture
67.6	56.6	13.6	25.6

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-010


Depth: 45'-46.5'

Material Description: Gray Clay

USCS: CH or OH Tested by: JF/TP Sample Number: HMA#7511-25/S-13

Checked by: JAM

		English States	Lanie Elimie e	interes		
Run No.	1	2	3	4	5	6
Wet+Tare	23.1	20.7	20.8			
Dry+Tare	17.6	16.3	16.5			
Tare	11.3	11.1	11.3		·	
# Blows	16	21	26			
Moisture	87.3	84.6	82.7			

83 Liquid Limit=_ 27 Plastic Limit=_ 56 Plasticity Index=_ 28.0 Natural Moisture=_ 0.0 Liquidity Index=_

Plastic Limit Data								
Run No.	1	2	3	4				
Wet+Tare	20.7	22.1	20.0					
Dry+Tare	18.7	19.8	18.1					
Tare	11.2	11.0	11.2					
Moisture	26.7	26.1	27.5					

Wet+Tare	Dry+Tare	Tare	Moisture
61.4	50.9	13.4	28.0

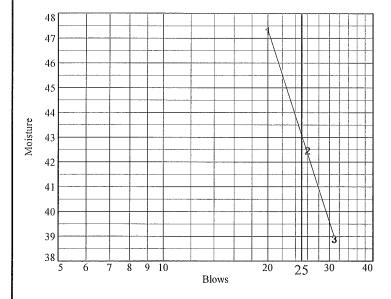
5/23/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-010

Depth: 55'-56'


Sample Number: HMA#7511-27/S-15

Material Description: Dark Gray Clay

USCS: CL or OL Tested by: JF/TP

Checked by: JAM

			Empliel Birmier	nkit i i i i i i i i i i i i i i i i i i		
Run No.	1	2	3	4	5	6
Wet+Tare	24.5	24.2	26.1			
Dry+Tare	21.0	21.1	22.6			
Tare	13.6	13.8	13.6			
#Blows	20	26	31			
Moisture	47.3	42.5	38.9			

Liquid Limit= 43
Plastic Limit= 17
Plasticity Index= 26
Natural Moisture= 18.1
Liquidity Index= 0.0

			Plastie Limit ()	a ta	
Run No.	1	2	3	4	
Wet+Tare	18.4	20.0	19.9		
Dry+Tare	17.3	18.6	18.7		
Tare	11.1	11.2	11.0		
Moisture	17.7	18.9	15.6		

_				
	Wet+Tare	Dry+Tare	Tare	Moisture
	72.5	63.5	13.7	18.1

Hayre McElroy & Associates, LLC _____

5/23/2013

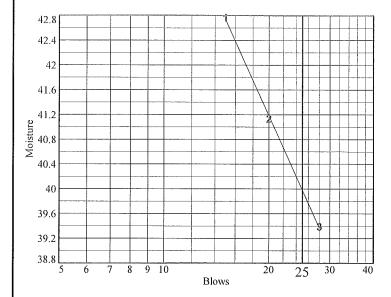
Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-010

Depth: 70'-70.9'

Material Description: Gray Clay


USCS: CL or OL Tested by: JF/TP

47.9

Sample Number: HMA#7511-28/S-18

Checked by: JAM

			Elejbitehitehik (b)	Value Telephone		
Run No.	1	2	3	4	5	6
Wet+Tare	36.1	33.5	41.2			
Dry+Tare	29.3	27.7	33.4			_
Tare	13.4	13.6	13.6			
# Blows	15	20	28			
Moisture	42.8	41.1	39.4			

Liquid Limit= 40
Plastic Limit= 23
Plasticity Index= 17
Natural Moisture= 22.3
Liquidity Index= 0.0

			Plastic Limit®	(M)	
Run No.	1	2	3	4	
Wet+Tare	21.2	23.7	24.6		
Dry+Tare	19.8	21.8	22.5		
Tare	13.5	13.6	13.6		
Moisture	22.2	23.2	23.6		

Wet+Tare	Drv+Tare	Tare	Moisture

11.2

41.2

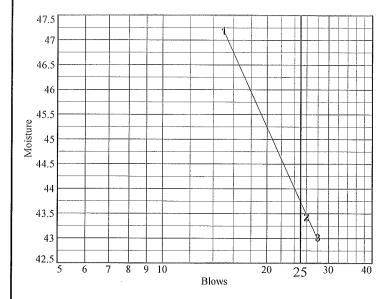
Hayre McElroy & Associates, LLC __

22.3

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-010


Depth: 85'-85.8'

Material Description: Gray Clay

USCS: CL or OL Tested by: TP/JF Sample Number: HMA7511-35/S-21

Checked by: JAM

Run No.	1	2	3	4	5	6
Net+Tare	24.3	27.7	23.6			
Dry+Tare	20.1	23.4	19.9			
Tare	11.2	13.5	11.3			
# Blows	15	26	28			
Moisture	47.2	43.4	43.0			

Liquid Limit=	44
Plastic Limit=	24
Plasticity Index=	20
Natural Moisture=	17.7
Liquidity Index=	-0.3

	Plastic Limit Data								
Run No.	1	2	3	4					
Wet+Tare	18.4	20.0	16.0						
Dry+Tare	17.0	18.7	15.1						
Tare	11.2	13.7	11.1						
Moisture	24.1	26.0	22.5						

Wet+Tare	Dry+Tare	Tare	Moisture
63.8	56.3	13.9	17.7

Hayre McElroy & Associates, LLC _____

5/23/2013

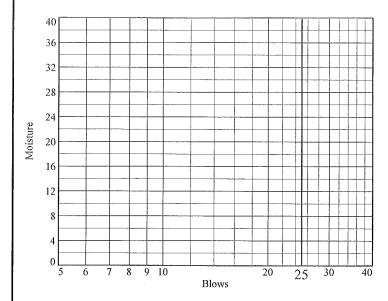
Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-010

Depth: 100'-100.3'

Material Description: Gray Silt

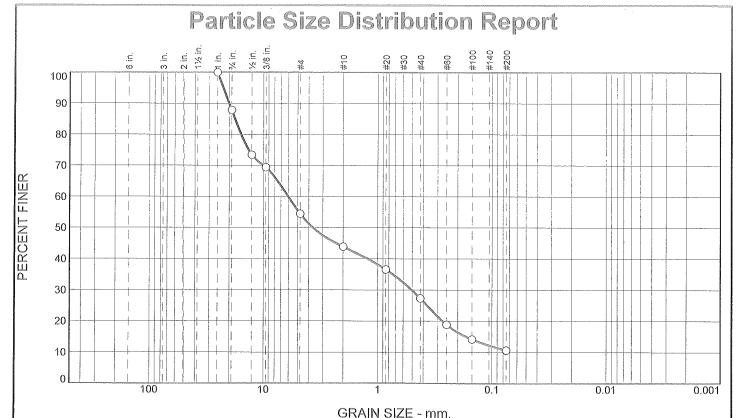

USCS: ML

Tested by: JF/TP

Sample Number: HMA#7511-36/S-24

Checked by: JAM

	100 TES	100 TO	a kinggiri Kinggas	ilki		
Run No.	1	2	3	4	5	6
Wet+Tare						
Dry+Tare						
Tare						
# Blows						
Moisture						



Liquid Limit=_	NP
Plastic Limit= _	NP
Plasticity Index= _	NP
Natural Moisture= _	13.3

			PasieLimito	ata	
Run No.	1	2	3	4	
Wet+Tare					
Dry+Tare					
Tare					
Moisture					

Next the Hall When test to you be see

Wet+Tare	Dry+Tare	Tare	Moisture
45.8	42	13.5	13.3

					,				
% +3"	% Gr	avel		% Sand		% Fines			
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay		
0.0	12.2	33.4	10.6	16.5	16.7	10.6			

Test R	esults (ASTM C		D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X≔Fail)
1"	100.0		
3/4"	87.8		
1/2"	73.4		
3/8"	69.4		
#4	54.4		
#10	43.8		
#20	36.6		
#40	27.3		
#60	18.9		
#100	14.2		
#200	10.6		
İ			
	:		

Olive Gray Poor	Material Des ly Graded Gravel								
Atte PL=	erberg Limits (/ LL=	ASTM D 4318 PI=)						
USCS (D 2487)=	Classific GP-GM AAS		A-1-a						
D ₉₀ = 20.0503 D ₅₀ = 3.6752 D ₁₀ =	Coefficie D ₈₅ = 17.817 D ₃₀ = 0.5050 C _u =	3 Doos (5.0571 0.1693						
Remarks									
Date Received:	5/30/13	Date Tested:	6/6/13						
Tested By:	JF/TP								
Checked By:	JAM								
Title:									

(no specification provided)

Source of Sample: Boring E330-B-011 Sample Number: HMA#7514-9/S-2 Depth: 2.5'-4'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

6/14/2013

GRAIN SIZE DISTRIBUTION TEST DATA

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-011

Depth: 2.5'-4'

Sample Number: HMA#7514-9/S-2

Material Description: Olive Gray Poorly Graded Gravel W/Silt & Sand

Date Received: 5/30/13

USCS Classification: GP-GM

AASHTO Classification: A-1-a

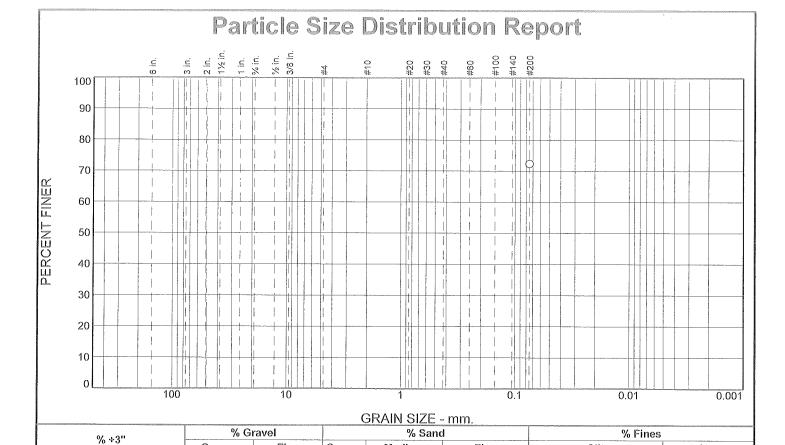
Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/6/13

Checked By: JAM

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 645.10


Tare Wt. = 214.10 Minus #200 from wash = 10.5%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
695.60	214.10	1"	0.00	0.00	100.0
		3/4"	1563.60	1505.00	87.8
		1/2"	1488.90	1419.40	73.4
		3/8"	1502.80	1483.50	69.4
		#4	1428.90	1356.90	54.4
		#10	1565.50	1514.50	43.8
		#20	1102.40	1067.30	36.6
		#40	989.10	944.70	27.3
		#60	919.10	878.30	18.9
		#100	865.80	843.20	14.2
		#200	1036.80	1019.60	10.6

Cobbles	Gravel			Sand				Fines			
	Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
	0.0	12.2	33.4	45.6	10.6	16.5	16.7	43.8			10.6

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.1693	0.2714	0.5050	3.6752	6.0571	15.7383	17:8173	20.0503	22.5649

Fineness	
Modulus	
4.35	

	TEST R	ESULTS		Material Description
Opening	Percent	Spec.*	Pass?	Gray Silt W/Sand
Size	Finer	(Percent)	(X=Fail)	
#200	72.3			
				Atterberg Limits (ASTM D 4318) PL= LL= PI=
er (C-Ma				USCS (D 2487)= ML AASHTO (M 145)=
				$\begin{array}{c cccc} & & & & & & & & \\ D_{90} = & & D_{85} = & & D_{60} = \\ D_{50} = & & D_{30} = & & D_{15} = \\ D_{10} = & & C_u = & & C_c = \\ \end{array}$
				Remarks
				Date Received: 5/30/13 Date Tested: 6/6/13
				Tested By: JF/TP
				Checked By: JAM
				Title:

Depth: 12.5'-14'

Client: Golder Associates

Project No: 12-450

Project: Sound Transit East Link

Medium

Fine

Silt

72.3

Date Sampled:

Figure

Clay

Coarse

Source of Sample: Boring E330-B-011 Sample Number: HMA#7514-10/S-5

Hayre McElroy & Associates, LLC

Redmond, WA

Fine

Coarse

6/14/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-011

Depth: 12.5'-14'

Material Description: Gray Silt W/Sand

Date Received: 5/30/13 USCS Classification: ML

#200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/6/13

Sample Number: HMA#7514-10/S-5

Checked By: JAM

Sinyaniasi mi

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 178.60

Tare Wt. = 120.10

Minus #200 from wash = 72.3%

Dry

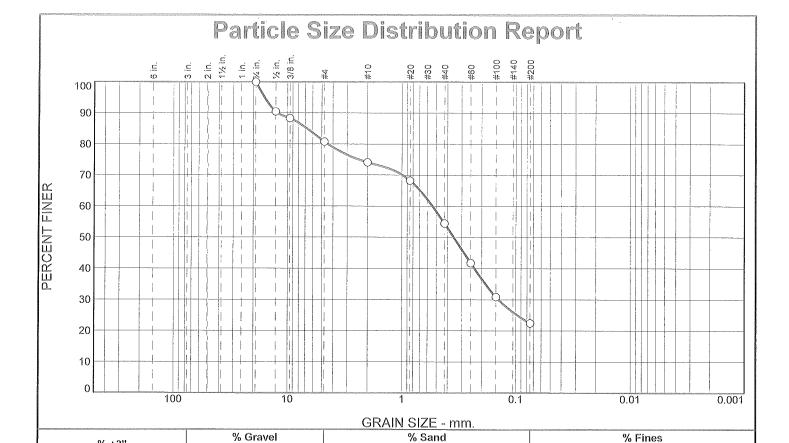
Sample and Tare (grams)

Tare (grams) Sieve Opening Size Weight Retained (grams) Sieve Weight (grams)

Percent Finer

331.30

120.10


#200

72.3

Product Composions

Cobbles	Gravel				Sa	nd	Fines				
	Coarse	Fine	Total	Coarse Medium Fine Total				Silt			
			Water Agentin Manager							72.3	

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	В	Dog
					90	00	- 00	$_{ m D}90$	D ₉₅

Medium

19.6

Fine

32.1

Opening	Percent	Spec.*	Pass?		
Size	Finer	(Percent)	(X=Fail)		
3/4"	100.0				
1/2"	90.5				
3/8"	88.3				
#4	80.7				
#10	74.1				
#20	68.2				
#40	54.5				
#60	41.8				
#100	30.9				
#200	22.4				

Coarse

0.0

Gray Silty Sand	<u>Material Descri</u> W/Gravel	ption						
Atte	rberg Limits (AS LL=	ГМ D 4318) PI=						
USCS (D 2487)=	Classification SM AASHT	on O (M 145)= A-2-4(0)						
D ₉₀ = 12.2287 D ₅₀ = 0.3526 D ₁₀ =	Coefficient D ₈₅ = 6.7487 D ₃₀ = 0.1424 C _u =	D ₆₀ = 0.5414 D ₁₅ = C _c =						
Remarks								
Date Received: Tested By:	2,20,12	e Tested: 6/6/13						
Checked By:	JAM							
Title:								

Silt

22.4

Clay

* (no specification provided)

% +3"

0.0

Source of Sample: Boring E330-B-011 Sample Number: HMA#7514-11/S-8

Depth: 25'-25.7'

Coarse

6.6

Fine

19.3

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

6/14/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-011

Depth: 25'-25.7'

Sample Number: HMA#7514-11/S-8

Material Description: Gray Silty Sand W/Gravel

Date Received: 5/30/13 USCS Classification: SM

AASHTO Classification: A-2-4(0)

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/6/13

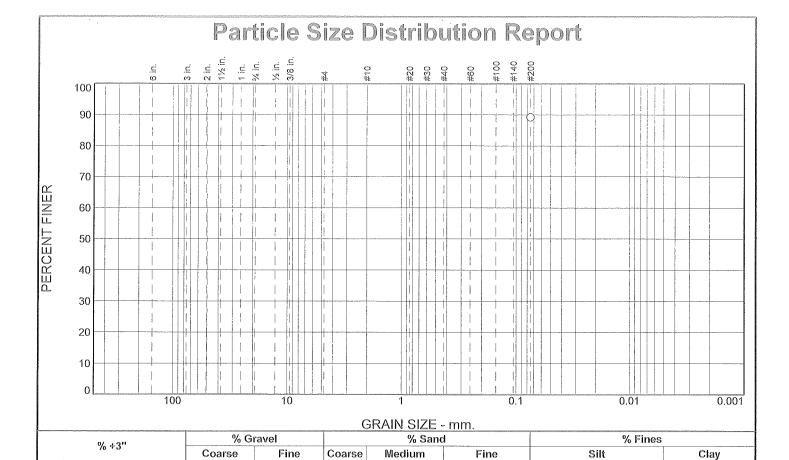
Checked By: JAM

STATESTATION

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 199.80

Tare Wt. = 118.50

Minus #200 from wash = 26.8%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
229.60	118.50	3/4"	0.00	0.00	100.0
		1/2"	1430.10	1419.50	90.5
		3/8"	1486.10	1483.70	88.3
		#4	1365.30	1356.90	80.7
		#10	1521.80	1514.40	74.1
		#20	1073.80	1067.30	68.2
		#40	959.80	944.50	54.5
		#60	892.30	878.20	41.8
		#100	855.30	843.20	30.9
		#200	1029.20	1019.80	22.4

Emickleski Celuppentelni

Cobbles	Gravel			Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	19.3	19.3	6.6	19.6	32.1	58.3			22.4

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.1424	0.3526	0.5414	4.4434	6.7487	12.2287	15.8888

Fineness	•
Modulus	
2.45	

<u>Materi</u>			SULTS	TEST RE	
	Gray Clay	Pass?	Spec.*	Percent	Opening
		(X≔Fail)	(Percent)	Finer	Size
		OCCUPATION OF THE PROPERTY OF		89.3	#200
Atterberg Li	PL= 24				
Cla 487)= CH or C	USCS (D 248				T PROCESS
D ₈₅ = D ₃₀ = C _u =	D ₉₀ = D ₅₀ = D ₁₀ =				
1					
ved: 5/30/13 By: JF/TP	Date Receive Tested E				
By: JAM	Checked E				

Atterberg Limits (ASTM D 4318) PL= 24	0.11 110.000 100.0000	Material D	escription						
Date Received: 5/30/13 Date Tested: 6/6/13 Tested By: JAM Classification Classifi	Gray Clay								
Date Received: 5/30/13 Date Tested: 6/6/13 Tested By: JAM Classification Classifi									
Date Received: 5/30/13 Date Tested: 6/6/13 Tested By: JAM Classification Classifi	Atte	arhara Limite	: (ASTM D	1318)					
USCS (D 2487)= CH or OHAASHTO (M 145)= Coefficients D90= D85= D60= D50= D30= D15= Cu= Cc= Remarks Date Received: 5/30/13 Date Tested: 6/6/13 Tested By: JF/TP Checked By: JAM			S (AO HAI D						
Description									
D90= D85= D60= D50= D30= D15= D10= Cu= Cc= Remarks Date Received: 5/30/13 Date Tested: 6/6/13 Tested By: JF/TP Checked By: JAM	USCS (D 2487)=	CH or OH ▲	ASHTO (M	145)=					
Date Received: 5/30/13 Date Tested: 6/6/13 Tested By: JF/TP Checked By: JAM	_	Coeffi							
Date Received: 5/30/13 Date Tested: 6/6/13 Tested By: JF/TP Checked By: JAM		D ₈₅ =		060 ⁼					
Date Received: 5/30/13 Date Tested: 6/6/13 Tested By: JF/TP Checked By: JAM		C _u =	Č	715 CC=					
Tested By: JF/TP Checked By: JAM	Remarks								
Tested By: JF/TP Checked By: JAM									
Tested By: JF/TP Checked By: JAM									
Checked By: JAM	Date Received:	5/30/13	Date Tes	ted: 6/6/13					
	Tested By:	JF/TP							
Title:	Checked By:	JAM							
	Title:								

(no specification provided)

Source of Sample: Boring E330-B-011 Sample Number: HMA#7514-12/S-13 Depth: 50'-51.5'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

Figure

89.3

6/14/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-011

Depth: 50'-51.5'

Sample Number: HMA#7514-12/S-13

Material Description: Gray Clay

Date Received: 5/30/13

LL: 64

PI: 40

USCS Classification: CH or OH #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/6/13

Checked By: JAM

Slave RaseDak

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 131.20

PL: 24

Tare Wt. = 118.10

Minus #200 from wash = 89.3%

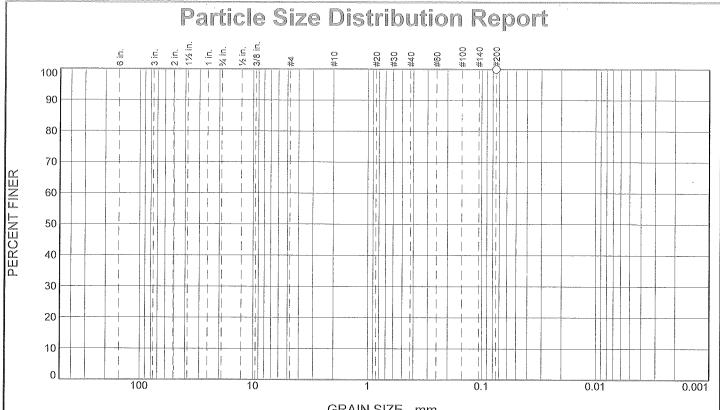
Dry

Sample and Tare (grams)

Tare (grams) Sieve Opening Size Weight Retained (grams)

Sieve Weight (grams)

Percent Finer 89.3


240.00 118.10

#200

Microstrophill Greinheising in

Cobblee	Gravel			Sand				Fines		
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
										89.3

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

GRAIN SIZE - MM.										
% +3"	% Gravel			% Sanc		% Fines				
78 +3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay			
0.0	0.0	0.0	0.0 0.0 0.0		100.0					

	TEST R	ESULTS	
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
#200	100.0		
*			

	<u>Materia</u>	I Description	
Gray Silt		<u>, </u>	
oraj om			
A 44			
PL= NP	erberg Lin LL=	nits <u>(ASTM D 4318</u> NP PI= 1	
PL= INP	lenz Jens 1000	NP PE 1	NP
	Clas	sification	ŀ
USCS (D 2487)=	· ML	AASHTO (M 145)=	A-4(0)
	Car	Afiaianta	
D ₉₀ =		efficients	
D ₅₀ =	D ₈₅ =	D ₆₀ =	
D ₁₀ =	Cu= Cu=	D ₁₅ = C _c =	
10		<u> </u>	
	R	emarks	
Date Received:	5/30/13	Date Tested:	6/6/13
Tested By:	IF/TP		
-			
Checked By:	JAM		
Title:			

* (no specification provided)

Source of Sample: Boring E330-B-011 Sample Number: HMA#7514-13/S-17

Depth: 70'-70.4'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

6/20/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-011

Depth: 70'-70.4'

Sample Number: HMA#7514-13/S-17

Material Description: Gray Silt

Date Received: 5/30/13

PL: NP

PI: NP

USCS Classification: ML

#200 Wash Method: ASTM D1140

FAF

AASHTO Classification: A-4(0)

#200 wash wethou. A

Tested By: JF/TP

Test Date: 6/6/13

Checked By: JAM

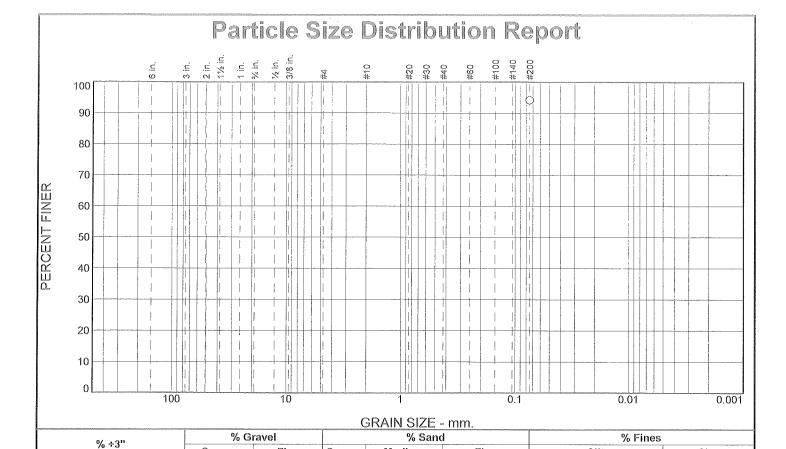
sitaya Kasebak

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 31.10

Tare Wt. = 31.10

Dry

Sample and Tare (grams) (grams) 31.10


Sieve Opening Size #200 Weight Retained (grams) 0.00 Sieve Weight (grams) 0.00

Percent Finer 100.0

a Bertalda de Melanda da de Care

Cabbles	Gravel				Sa	nd	Fines			
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			100.0

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

Medium

Fine

Silt

94.2

Date Sampled:

Figure

Clay

	TEST R	ESULTS			Material	Description
Opening	Percent	Spec.*	Pass?	Gray Clay		
Size	Finer	(Percent)	(X=Fail)			
#200	94.2		0.000			
				PL= 23	Atterberg Lim LL= 6	<u>its (ASTM D 4318)</u> 2 PI= 39
ng a si				USCS (D 248		sification TAASHTO (M 145)=
		77000			Coe	<u>fficients</u>
				D ₉₀ = D ₅₀ = D ₁₀ =	D ₈₅ = D ₃₀ = C _u =	D ₆₀ = D ₁₅ = C _c =
				-10		emarks
				Date Receive Tested E		Date Tested: 6/6/
				Checked E	 В у: ЈАМ	
				Tit		

Depth: 85'-86.3'

Client: Golder Associates

Project No: 12-450

Project: Sound Transit East Link

Coarse

(no specification provided)

Source of Sample: Boring E330-B-011 Sample Number: HMA#7514-14/S-20

Hayre McElroy & Associates, LLC

Redmond, WA

Fine

Coarse

6/14/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-011

Depth: 85'-86.3'

Sample Number: HMA#7514-14/S-20

Material Description: Gray Clay

Date Received: 5/30/13

LL: 62

PI: 39

USCS Classification: CH or OH #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/6/13

Checked By: JAM

Sileve Testi Date

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 123.50

PL: 23

Tare Wt. = 117.90

Minus #200 from wash = 94.2%

Dry

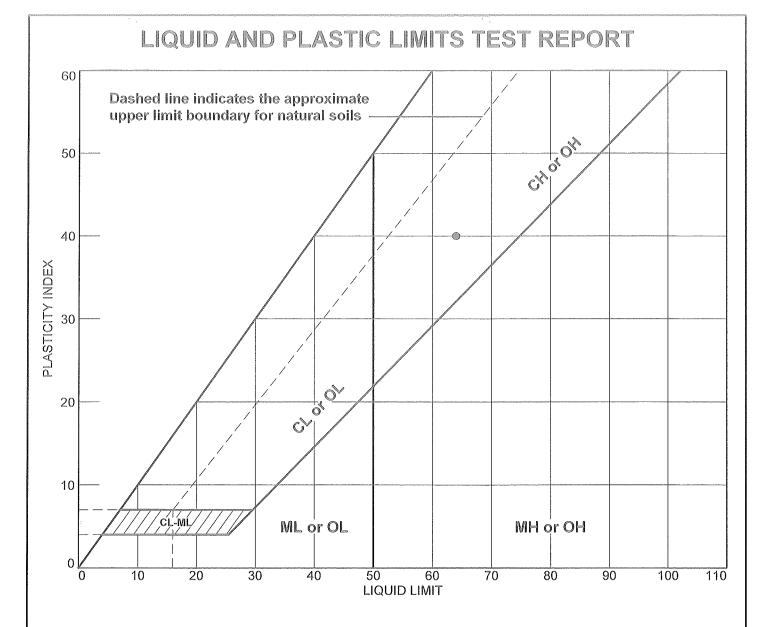
Sample and Tare (grams)

Tare (grams) Sieve Opening F Size

Weight Retained (grams)

Sieve Weight (grams)

Percent Finer 94.2


215.10 117.90

#200

Fractional Compensions

	Gravel				Sa	nd	Fines			
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
										94.2

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

				SOIL DATA	1			
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS
©	Boring E330-	HMA#7514-	50'-51.5'	24.9	24	64	40	CH or OH
	B-011	12/S-13						
								:
								:
								:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No.: 12-450

Figure

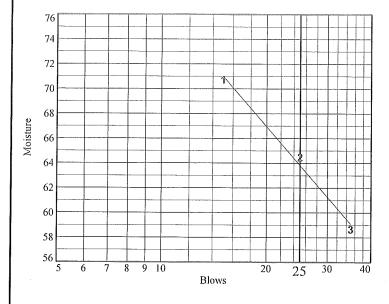
Tested By: JF/TP

Checked By: JAM

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-011

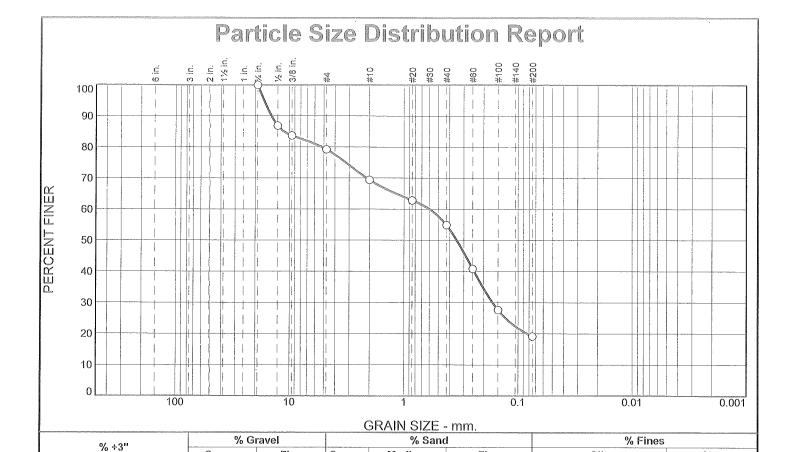

Depth: 50'-51.5'

Material Description: Gray Clay

USCS: CH or OH Tested by: JF/TP Sample Number: HMA#7514-12/S-13

Checked by: JAM

Run No.	1	2	3	A	5	6
Wet+Tare	34.5	31.2	32.7			•
Dry+Tare	25.8	24.3	25.6			
Tare	13.5	13.6	13.5			
# Blows	15	25	35			
Moisture	70.7	64.5	58.7			



Liquid Limit= _	64
Plastic Limit=	24
Plasticity Index= _	40
Natural Moisture=	24.9
Liquidity Index=	0.0

distance of the second	The same of the sa			aim) –	
Run No.	1	2	3	4	
Wet+Tare	21	19.2	20.9		
Dry+Tare	19.5	18.1	19.6		
Tare	13.7	13.6	13.6		
Moisture	25.9	24.4	21.7		

Assental Motering (Date

Wet+Tare	Dry+Tare	Tare	Moisture
270.4	240	118.1	24.9

Medium

Fine

Opening	Percent	136 & ASTM Spec.*	Pass?
Size	Finer	(Percent)	(X≡Fail)
3/4"	100.0		
1/2"	86.8		
3/8"	83.7		
#4	79.2		
#10	69.4		
#20	62.8		
#40	54.9		
#60	40.8		
#100	27.6		
#200	19.1	***	
-			

Coarse

0.0

0.0

Fine

20.8

Coarse

9.8

			• •	- roiy
14.5	35.8		19.1	
Olive Brow	Materi vn Silty Sand W	i <mark>al Descript</mark> //Gravel	ion	
PL=	Atterberg Li LL=	mits (ASTN	1 D 4318) PI=	
USCS (D 2		assification AASHTO	(M 145)=	A-2-4(0)
D ₉₀ = 14.39 D ₅₀ = 0.343 D ₁₀ =	938 D ₈₅ = 52 D ₃₀ = C _u =	Defficients 11.2421 0.1674	D ₆₀ = 0.5 D ₁₅ = C _c =	5986
		Remarks		
	ived: 5/30/13	Date [°]	Γ ested: 6	/6/13
Checked	By: JAM			
7	Γitle:			

Silt

Clay

(no specification provided)

Source of Sample: Boring E330-B-12 Sample Number: HMA#7514-15/S-2 Depth: 2.5'-3.3'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

6/14/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-12

Depth: 2.5'-3.3'

Sample Number: HMA#7514-15/S-2

Material Description: Olive Brown Silty Sand W/Gravel

Date Received: 5/30/13 **USCS Classification: SM**

AASHTO Classification: A-2-4(0)

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

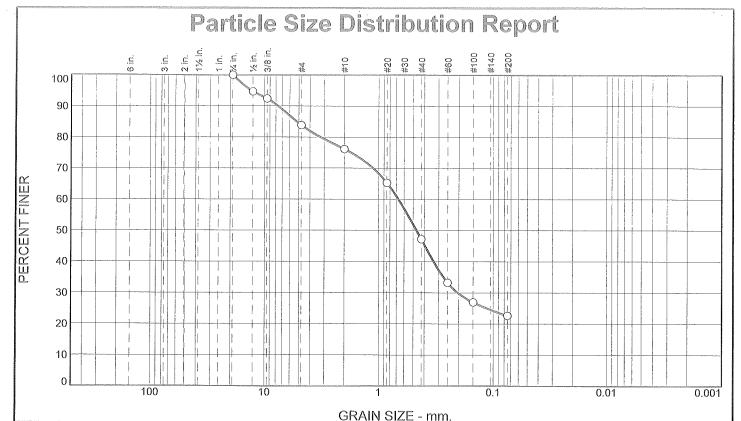
Tested By: JF/TP

Test Date: 6/6/13

Checked By: JAM

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 332.30

Tare Wt. = 123.20


Minus #200 from wash = 18.6%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
380.20	123.20	3/4"	0.00	0.00	100.0
		1/2"	1453.30	1419.50	86.8
		3/8"	1491.70	1483.60	83.7
		#4	1368.40	1356.90	79.2
		#10	1539.50	1514.30	69.4
		#20	1084.10	1067.20	62.8
		#40	964.80	944.40	54.9
		#60	914.20	878.00	40.8
		#100	877.10	843.20	27.6
		#200	1041.40	1019.60	19.1

	obles Gravel			Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	20.8	20.8	9.8	14.5	35.8	60.1			19.1

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
		0.0830	0.1674	0.3452	0.5986	5.2134	11.2421	14.3938	16.7009

Fineness Modulus 2.67

% ÷3"	% Gra	% Gravel		% Sand		% Fines		
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	0.0	16.2	7.7	28.9	24.6	22.6		

Test Re	esults (ASTM C	136 & ASTM	D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3/4"	100.0		
1/2"	94.7		
3/8"	92.4		
#4	83.8		
#10	76.1		
#20	65.3		
#40	47.2		
#60	33.2		
#100	26.9		
#200	22.6		
-			

	Material Description
Gray Brown Silt	y Sand W/Gravel
Atte	erberg Limits (ASTM D 4318) LL= PI=
USCS (D 2487)=	Classification SM AASHTO (M 145)= A-1-b
D ₉₀ = 7.5968 D ₅₀ = 0.4680 D ₁₀ =	Coefficients D ₈₅ = 5.2134 D ₆₀ = 0.6735 D ₃₀ = 0.2046 D ₁₅ = C _u = C _c =
	Remarks
Date Received: Tested By:	i
Checked By:	JAM
Title:	

(no specification provided)

Source of Sample: Boring E330-B-12 Sample Number: HMA#7514-16/S-5 Depth: 10'-10.5'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

6/14/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 **Location:** Boring E330-B-12

Depth: 10'-10.5'

Sample Number: HMA#7514-16/S-5

AASHTO Classification: A-1-b

Material Description: Gray Brown Silty Sand W/Gravel

Date Received: 5/30/13 USCS Classification: SM

Grain Size Test Method: ASTM C136

#200 Wash Method: ASTM D1140

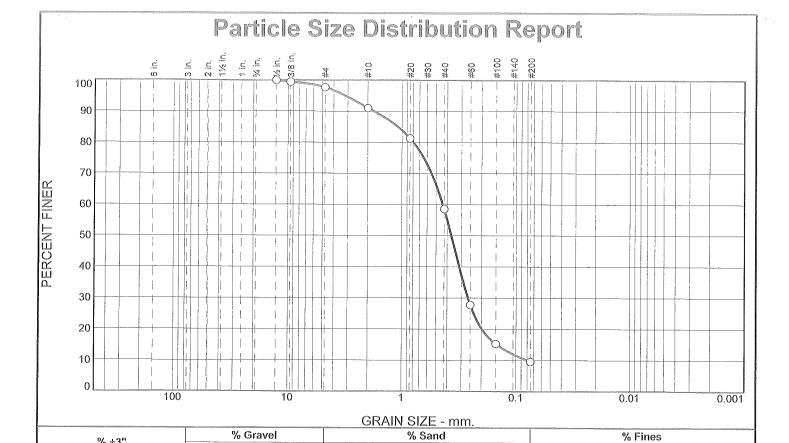
Tested By: JF/TP

Test Date: 6/7/13

Checked By: JAM

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 277.00

Tare Wt. = 118.70


Minus #200 from wash = 22.2%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
322.20	118.70	3/4"	0.00	0.00	100.0
		1/2"	1430.50	1419.70	94.7
		3/8"	1488.40	1483.80	92.4
		#4	1374.60	1357.10	83.8
		#10	1530.30	1514.60	76.1
		#20	1089.50	1067.50	65,3
		#40	981.50	944.60	47.2
		#60	906.60	878.20	33.2
		#100	855.90	843.10	26.9
		#200	1028.40	1019.60	22.6

Cobbles	bbles Gravel			Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	16.2	16.2	7.7	28.9	24.6	61.2			22.6

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.2046	0.4680	0.6735	3.2497	5.2134	7.5968	13.1034

Fineness Modulus	
2.54	

Medium

Fine

Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1/2"	100.0		
3/8"	99.5		
#4	97.7		
#10	91.1		
#20	81.2		
#40	58.6		
#60	27.8		
#100	15.3		
#200	9.5		

Coarse

0.0

Fine

2.3

Coarse

6.6

7770 4774777	1 1110	WIII.		Giay
32.5	49.1		9.5	
Gray Brov	<u>Mater</u> vn Poorly Grade	ial Descriptio d Sand W/Silt	n	
PL=	Atterberg L LL=	imits (ASTM I	D 4318) PI=	
USCS (D 2	<u>Cla</u> 2487)= SP-SM	assification AASHTO (N	1 145)= A-3	
D ₉₀ = 1.76 D ₅₀ = 0.36 D ₁₀ = 0.08	592 D ₈₅ = 71 D ₃₀ = 05 C _u =	0efficients 1.0848 0.2619 5.43	D ₆₀ = 0.4368 D ₁₅ = 0.1464 C _c = 1.95	
		Remarks		
Date Rece	ived: 5/30/13	Date Te	sted: 6/7/13	3
Teste	d By: <u>JF/TP</u>			
Checke	d By: JAM			
	Title:			

Silt

Clay

(no specification provided)

% +3"

0.0

Source of Sample: Boring E330-B-12 Sample Number: HMA#7514-17/S-7

Depth: 15'-16.4'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

6/14/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-12

Depth: 15'-16.4'

Sample Number: HMA#7514-17/S-7

Material Description: Gray Brown Poorly Graded Sand W/Silt

Date Received: 5/30/13

USCS Classification: SP-SM

AASHTO Classification: A-3

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/7/13

Checked By: JAM

Stevellesting

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 507.20

Tare Wt. = 116.10

Minus #200 from wash = 9.1%

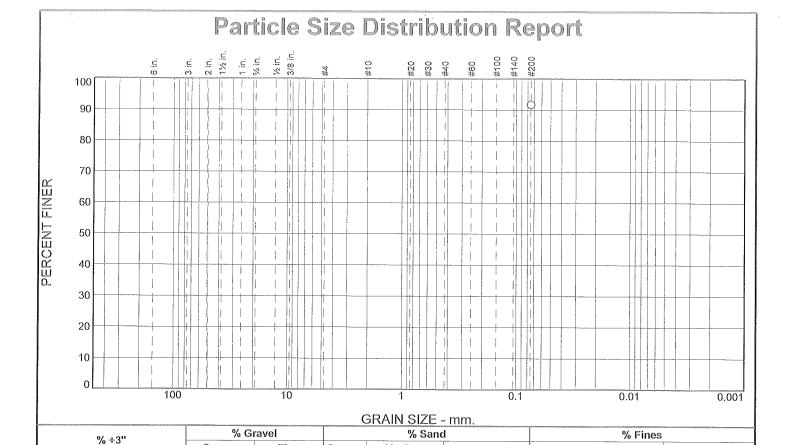

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
546.50	116.10	1/2"	0.00	0.00	100.0
		3/8"	1485.90	1483.60	99.5
		#4	1364.30	1356.80	97.7
		#10	1543.00	1514.30	91.1
		#20	1109.40	1067.20	81.2
		#40	1042.20	944.50	58.6
		#60	1010.60	878.20	27.8
		#100	896.90	843.10	15.3
		#200	1044.30	1019.60	9.5

Figure (de) and (Commercial Commer

Cobbles	Gravel			Sand				Fines		
Coppies	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	2.3	2.3	6.6	32.5	49.1	88.2			9.5

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0805	0.1464	0.1984	0.2619	0.3671	0.4368	0.7955	1.0848	1.7692	3.1583

Fineness Modulus	c _u	С _С
1.99	5.43	1.95

Medium

Fine

		ESULTS	TEST RE	
Gray Clay	Pass?	Spec.*	Percent	Opening
	(X=Fail)	(Percent)	Finer	Size
			91.7	#200
PL= 26				
USCS (D 2487)= (
D ₉₀ = D ₅₀ = D ₁₀ =				Š
D ₅₀ = D ₁₀ =				
Date Received: 5/3				
Tested By: JF/				
Checked By: JA				
Title:				

Fine

Coarse

Coarse

	Material [Descriptio	<u>n</u>						
Gray Clay									
A 44.		- /AOTAS I	D 4040)						
PL= 26	erberg Limit LL= 64	S (ASTIVIT	D 4318) PI= 38						
		fication							
USCS (D 2487)=	CH or OH	AASHTO (N	/1 145)=						
	Coeff	<u>icients</u>							
D ₉₀ = D ₅₀ =	D ₈₅ =		D ₆₀ =						
D ₁₀ =	D ₃₀ = C _u =		D ₆₀ = D ₁₅ = C _c =						
	Remarks								
			_						
Date Received:		Date Te	ested: 6/7/13						
Tested By:	JF/TP								
Checked By:	JAM								
Title:									

Silt

91.7

Clay

(no specification provided)

Source of Sample: Boring E330-B-12 Sample Number: HMA#7514-18/S-13 Depth: 45'-46.5'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

6/14/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-12

Depth: 45'-46.5'

Sample Number: HMA#7514-18/S-13

Material Description: Gray Clay

Date Received: 5/30/13

LL: 64

PI: 38

USCS Classification: CH or OH #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/7/13

Checked By: JAM

Mayor February

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 122.40

PL: 26

Tare Wt. = 114.10

Minus #200 from wash = 91.7%

Dry

Sample and Tare (grams)

Tare (grams) Sieve Opening Size

Weight Retained (grams) Sieve Weight (grams)

Percent Finer 91.7

213.90 114.10

#200

care danger to the control of the

Cobbles	Gravel			Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
										91.7

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

% ÷3"	% Gra	% Gravel		% Sand		% Fines	
/0 TJ	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
						85.9)
No.	PAT BEALU TA					-	

	TEST RE	SULTS	
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
#200	85.9		
ľ			

	Material I	Description						
Gray Clay								
Att	erbera Limis	ts (ASTM D	13181					
PL= 24	LL= 68		PI= 44					
USCS (D 2487):		ification AASHTO (M 1	45)=					
	Coefi	ficients						
D ₉₀ =	D ₈₅ =		60 ²					
D ₅₀ = D ₁₀ =	D ₃₀ = C _u =	C,	5					
Remarks								
Date Received:	5/30/13	Date Test	ed: 6/7/13					
Tested By:	JF/TP							
Checked By:	JAM							
Title:								

* (no specification provided)

Source of Sample: Boring E330-B-12 Sample Number: HMA#7514-19/S-17

Depth: 65'-66.4'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

6/14/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-12

Depth: 65'-66.4'

Sample Number: HMA#7514-19/S-17

Material Description: Gray Clay

Date Received: 5/30/13

PL: 24

LL: 68

PI: 44

USCS Classification: CH or OH #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/7/13

Checked By: JAM

-Slava (Galeria)

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 130.80

Tare Wt. = 114.10

Minus #200 from wash = 85.9%

Dry

Sample and Tare Tare (grams) (grams)

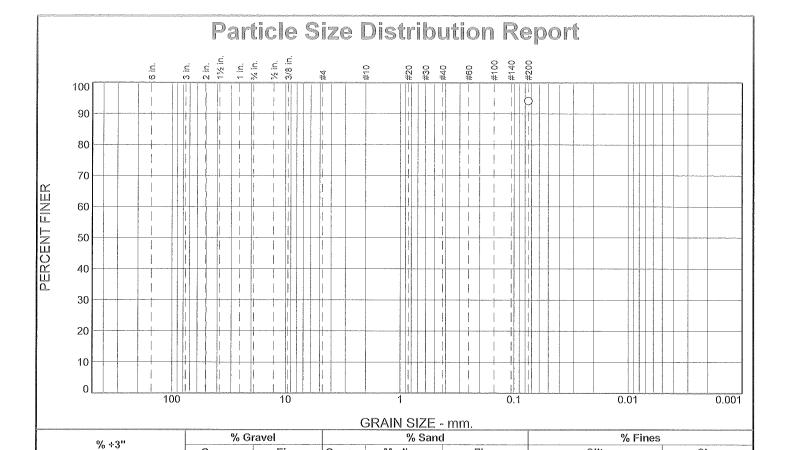
O_f

Sieve Opening Size

Weight Retained (grams)

Sieve Weight (grams)

Percent Finer 85.9


232.90 114.10

#200

energy for the property of the

Cobbles	Gravel			Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
						908 40.11 · · · · · · · · · · · · · · · · · ·				85.9

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

	TEST R	ESULTS		Material Description
Opening	Percent	Spec.*	Pass?	Gray Clay
Size	Finer	(Percent)	(X=Fail)	
#200	94.1			
				PL= 24 Atterberg Limits (ASTM D 4318) PL= 24 PI= 28
				USCS (D 2487)= CH or OHAASHTO (M 145)=
				Coefficients
				$\begin{array}{cccccccccccccccccccccccccccccccccccc$
				Remarks
				Date Received: 5/30/13 Date Tested: 6/7/13
				Tested By: JF/TP
				Checked By: JAM
				Title:

Client: Golder Associates

Project No: 12-450

Project: Sound Transit East Link

Depth: 85'-86'

Medium

Fine

Silt

94.1

Date Sampled:

Figure

Clay

Coarse

Source of Sample: Boring E330-B-012 Sample Number: HMA#7514-20/S-21

Hayre McElroy & Associates, LLC

Redmond, WA

Fine

Coarse

6/17/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-012

Depth: 85'-86'

Sample Number: HMA#7514-20/S-21

Material Description: Gray Clay

Date Received: 5/30/13

PL: 24

PI: 28

USCS Classification: CH or OH #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/7/13

Checked By: JAM

LL: 52

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 206.20 Tare Wt. = 198.20

Minus #200 from wash = 94.1%

Dry

Sample and Tare (grams)

334.90

Tare (grams)

198.20

Sieve Opening Size

#200


Weight Retained (grams)

Sieve Weight (grams)

Percent Finer 94.1

	Gravel				Sa		Fines			
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
										94.1

1	10	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

				SOIL DATA	1			
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS
0	Boring E330-	HMA#7514-	45'-46.5'	26.9	26	64	38	CH or OH
	B-012	18/S-13						
	Boring E330-	HMA#7514-	65'-66.4'	25.5	24	68	44	CH or OH
	B-012	19/S-17						
A	Boring E330-	HMA#7514-	85'-86'	23.6	24	52	28	CH or OH

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No.: 12-450

Figure

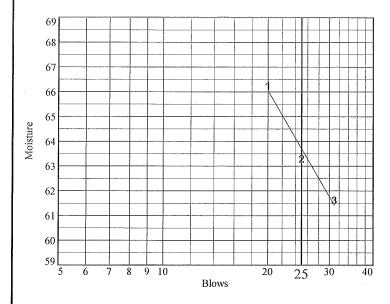
Tested By: JF/TP

Checked By: JAM

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-12


Depth: 45'-46.5'

Material Description: Gray Clay

USCS: CH or OH Tested by: JF/TP Sample Number: HMA#7514-18/S-13

Checked by: JAM

			tijanijekimite			
Run No.	1	2	3	4	5	6
Wet+Tare	27.2	31.6	27.8			
Dry+Tare	21.9	24.7	22.5			
Tare	13.9	13.8	13.9			
# Blows	20	25	31			
Moisture	66.3	63.3	61.6			

Liquid Limit=	64
Plastic Limit=	26
Plasticity Index=	38
Natural Moisture=	26.9
Liquidity Index=	0.0

14			PlasifeLimito	2(8)	
Run No.	1	2	3	4	
Wet+Tare	22.2	22.1	21		
Dry+Tare	20.1	20	18.8		
Tare	11.4	11.4	11.4		
Moisture	24.1	24.4	29.7		

Wet+Tare	Dry+Tare	Tare	Moisture
240.7	213.9	114.1	26.9

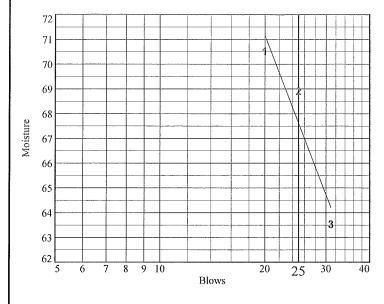
Hayre McElroy & Associates, LLC _____

6/14/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-12


Depth: 65'-66.4'

Material Description: Gray Clay

USCS: CH or OH Tested by: JF/TP Sample Number: HMA#7514-19/S-17

Checked by: JAM

			and the state of t	re a la companya de la companya de la companya de la companya de la companya de la companya de la companya de		155 155 155 155
Run No.	1	2	3	4	5	6
Wet+Tare	30.0	29.24	26.62			
Dry+Tare	23.3	22.9	21.6			
Tare	13.8	13.7	13.7	4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4		
# Blows	20	25	31			
Moisture	70.5	68.9	63.5			

Liquid Limit= 68
Plastic Limit= 24
Plasticity Index= 44
Natural Moisture= 25.5
Liquidity Index= 0.0

			- Phsiic Limko	el¥e)	
Run No.	1	2	3	4	
Wet+Tare	22.0	20.0	20.2		
Dry+Tare	19.9	18.3	18.4		
Tare	11.3	11.2	11.2		
Moisture	24.4	23.9	25,0		

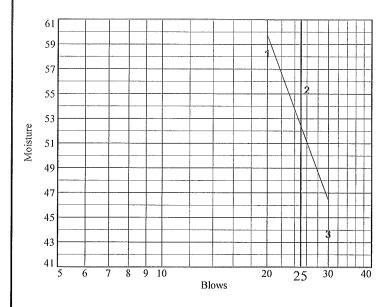
Wet+Tare	Dry+Tare	Tare	Moisture
263.2	232.9	114.1	25.5

Hayre McElroy & Associates, LLC _____

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-012

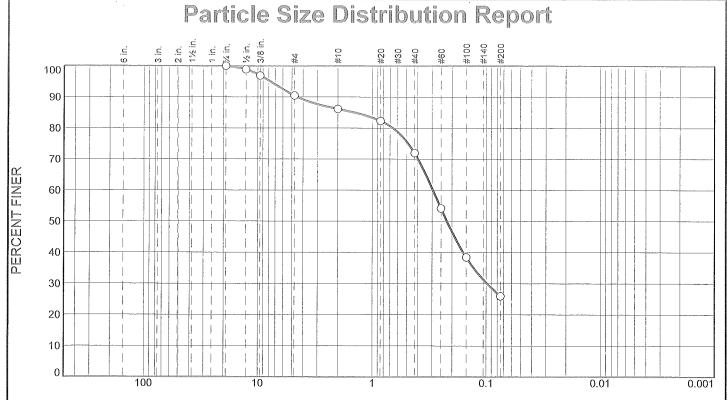

Depth: 85'-86'

Material Description: Gray Clay

USCS: CH or OH Tested by: JF/TP Sample Number: HMA#7514-20/S-21

Checked by	:	JAM
------------	----------	-----

	Liquid Limit Data					
Run No.	1	2	3	4	5	6
Wet+Tare	33.7	28.2	28.3			
Dry+Tare	26.3	23.0	23.8			
Tare	13.6	13.6	13.5			
# Blows	20	26	30			
Moisture	58.3	55.3	43.7			



Liquid Limit=	52
Plastic Limit=	24
Plasticity Index=	28
Natural Moisture=	23.6
	0.0
.=\Natural Moisture .=\Liquidity Index	

			Plasife(L(m)):0)	alta	
Run No.	1	2	3	4	
Wet+Tare	21.2	23.6	23.5		
Dry+Tare	19.2	21.2	21.1		
Tare	11.3	11.1	11.1		
Moisture	25.3	23.8	24.0		

Next that Mension call are

Wet+Tare	Dry+Tare	Tare	Moisture
367.1	334.9	198.2	23.6

GRAIN SIZE - mm.

% ÷3"	% Gravel			% Sand		% Fines	
76 +3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	9.6	4.2	14.2	46.0	26.0	

Test R	tesults (ASTM C	136 & ASTM	D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X≡Fail)
3/4"	100.0		
1/2"	98.9		
3/8"	96.9		
#4	90.4		
#10 .	86.2		
#20	82.3		
#40	72.0		
#60	54.2		
#100	38.4		
#200	26.0		
			•

Material Description					
Gray Brown Silty Sand					
	<u>rberg Limits (AS</u>	TM D 4318)			
PLE	dense dense	Pl=			
USCS (D 2487)=	Classificati SM AASH	on FO (M 145)= A-2-4(0)			
D ₉₀ = 4.4829 D ₅₀ = 0.2214 D ₁₀ =	Coefficient D ₈₅ = 1.4237 D ₃₀ = 0.0979 C _u =	D ₆₀ = 0.2938 D ₁₅ = C _c =			
	Remarks				
Date Received: 5/30/13 Date Tested: 6/7/13					
Tested By: JF/TP					
Checked By: JAM					

(no specification provided)

Source of Sample: Boring E330-B-013 Sample Number: HMA#7514-21/S-2

Depth: 2.5'-3.3'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Title:

Redmond, WA

Project No: 12-450

6/17/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-013

Depth: 2.5'-3.3'

Sample Number: HMA#7514-21/S-2

Material Description: Gray Brown Silty Sand

Date Received: 5/30/13
USCS Classification: SM

AASHTO Classification: A-2-4(0)

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/7/13

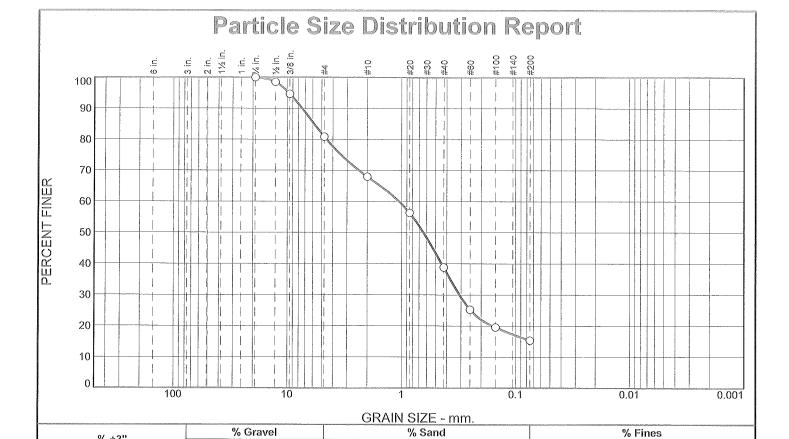
Checked By: JAM

Steve London

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 482.00

Tare Wt. = 193.00

Minus #200 from wash = 25.6%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
581.20	193.00	3/4"	0.00	0.00	100.0
		1/2"	1423.80	1419.50	98.9
		3/8"	1491.30	1483.60	96.9
		#4	1382.00	1356.90	90.4
		#10	1530.90	1514.30	86.2
		#20	1082.20	1067.10	82.3
		#40	984.50	944.50	72.0
		#60	947.20	878.20	54.2
		#100	904.30	843.10	38.4
		#200	1067.80	1019.50	26.0

Pictellion Electronic en la

Cobbles	Gravel			Sand			Fines			
	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	9.6	9.6	4.2	14.2	46.0	64.4			26.0

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.0979	0.2214	0.2938	0.6617	1.4237	4.4829	7.7370

Fineness Modulus 1.64

Medium

Fine

Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3/4"	100.0		
1/2"	98.5		
3/8"	94.7		
#4	80.8		
#10	68.0		
#20	56.3		
#40	38.8		
#60	25.3		
#100	19.5		
#200	15.3		
İ			
-			

Coarse

0.0

Fine

19.2

Coarse

12.8

29.2	23.5	15.3
Gray Brov	Materi vn Silty Sand W	al Description /Gravel
Pl_=	Atterberg Li LL=	mits (ASTM D 4318) PI=
USCS (D 2		essification AASHTO (M 145)= A-1-b
D ₉₀ = 7.42 D ₅₀ = 0.64 D ₁₀ =	91 D ₈₅ =	5.8380 D ₆₀ = 1.0502 0.3093 D ₁₅ = C _c =
		Remarks
	ived: 5/30/13 d By: JF/TP	Date Tested: 6/7/13
	d By: <u>JAM</u>	
	Title:	

Silt

Clay

(no specification provided)

% +3"

0.0

Source of Sample: Boring E330-B-013 Sample Number: HMA#7514-22/S-5

Depth: 10'-11'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

6/17/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 **Location:** Boring E330-B-013

Depth: 10'-11'

Sample Number: HMA#7514-22/S-5

Material Description: Gray Brown Silty Sand W/Gravel

Date Received: 5/30/13 USCS Classification: SM

AASHTO Classification: A-1-b

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/7/13

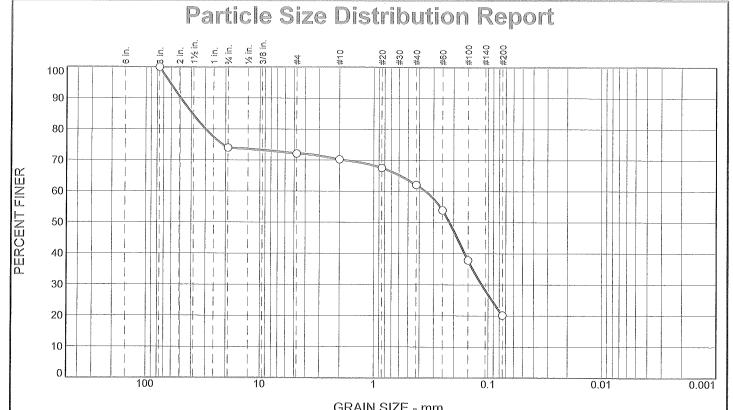
Checked By: JAM

Shazaria, Larie

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 399.00

Tare Wt. = 196.10

Minus #200 from wash = 15.1%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
435.20	196.10	3/4"	0.00	0.00	100.0
		1/2"	1423.10	1419.60	98.5
		3/8"	1492.90	1483.70	94.7
		#4	1390.20	1357.10	80.8
		#10	1545.30	1514.50	68.0
		#20	1095.10	1067.30	56.3
		#40	986.40	944.50	38.8
		#60	910.50	878.10	25.3
		#100	856.80	843.10	19.5
		#200	1029.70	1019.60	15.3

Figurificatificatification (2014)

Cobbles	Gravel			Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	19.2	19.2	12.8	29.2	23.5	65.5			15.3

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
		0.1601	0.3093	0.6410	1.0502	4.5425	5.8380	7.4291	9.7030

Fineness Modulus 2.96

			<u> </u>	IVAIIA OISE .	· [[[[]].			
% +3"	% Gravel		% Sand			% Fines		
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	26.0	1.9	1.8	8.2	41.9	20.2		

Test Re	esults (ASTM C	136 & ASTM	D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3"	100.0		
3/4"	74.0		
#4	72.1		
#10	70.3		
#20	67.5		
#40	62.1		
#60	53.9		
#100	37.8		
#200	20.2		
İ			

0,2	11.7		20.2	07/2007
Gray Silty	Mate Sand W/Grave	rial Descript	tion	
PLz	Atterberg I LL:	_imits (ASTI =	<u>/I D 4318)</u> PI=	
USCS (D 2	2487)= SM C	lassification AASHTO	(M 145)= <i>A</i>	1-2-4(0)
D ₉₀ = 49.4 D ₅₀ = 0.21 D ₁₀ =	4600 D ₈₅ = 74 D ₃₀ = C _u =	Coefficients = 39.1113 = 0.1138	D ₆₀ = 0.35 D ₁₅ = C _c =	515
		Remarks		
	rived: 5/30/13	Date	Tested: 6/	7/13
	d By: JF/TP d By: JAM			
1	Title:			

(no specification provided)

Source of Sample: Boring E330-B-013 Sample Number: HMA#7514-23/S-9

Depth: 25'-25.9'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

6/17/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-013

Depth: 25'-25.9'

Sample Number: HMA#7514-23/S-9

Material Description: Gray Silty Sand W/Gravel

Date Received: 5/30/13 USCS Classification: SM

AASHTO Classification: A-2-4(0)

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/7/13

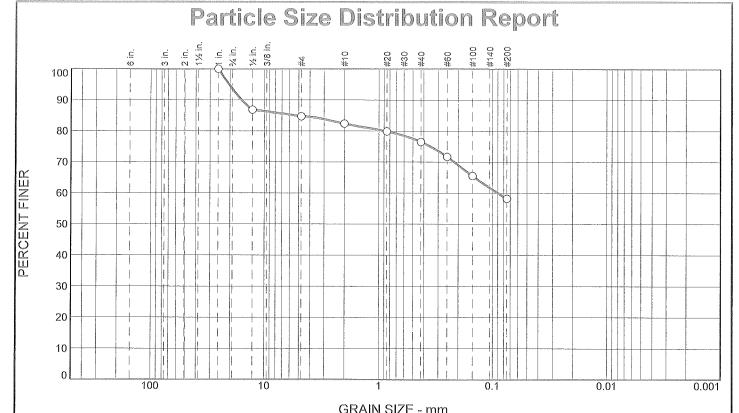
Checked By: JAM

Shave Test but

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 341.10

Tare Wt. = 164.90

Minus #200 from wash = 19.2%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
383.00	164.90	3"	0.00	0.00	100.0
		3/4"	1561.70	1504.90	74.0
		#4	1360.90	1356.90	72.1
		#10	1518.40	1514.40	70.3
		#20	1073.20	1067.20	67.5
		#40	956.40	944.50	62.1
		#60	896.00	878.20	53.9
		#100	878.30	843.20	37.8
		#200	1058.10	1019.60	20.2

[26to Rein: Il Colombon(2016

	Gravel				Sa	nd	Fines			
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	26.0	1.9	27.9	1.8	8.2	41.9	51.9			20.2

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.1138	0.2174	0.3515	29.9530	39.1113	49.4600	61.5917

Fineness Modulus 2.96

% +3"	% Gravel			% Sand		% Fines		
76 +3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	6.4	8.9	2.3	5.9	18.3	58.2		

Test R	esults (ASTM C	136 & ASTM I	D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1"	100.0		
1/2"	86.8		
#4	84.7		
#10	82.4		
#20	79.9		
#40	76.5		
#60	71.7		
#100	65.5		
#200	58.2		

			······································	
	<u>Material</u>	Description	<u>on</u>	
Gray Sandy Silt	W/Gravel			
Atte	erberg Lim	its (ASTM	D 4318)	
PLE	ĽL=		Pla	
	Class	sification		
USCS (D 2487)=			M 145)= A-4(0)	İ
, ,		·	, , ,	
D ₉₀ = 15.8043	D ₈₅ = 5.3	fficients 3683	D ₆₀ = 0.0896	
D ₅₀ =		7003	D ₁₅ =	
D ₁₀ =	C _u =		$C_{i}^{\mathbf{c}}$	
	Re	marks		
Date Received:	5/30/13	Date To	ested: 6/7/13	
		Date i	63664. U///13	
Tested By:	<u>JF/1F</u>	***************************************	max	
Checked By:	JAM		104-7a	
Title:				

(no specification provided)

Source of Sample: Boring E330-B-013 Sample Number: HMA#7514-24/S-12

Depth: 40'-41.3'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

6/17/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-013

Depth: 40'-41.3'

Sample Number: HMA#7514-24/S-12

Material Description: Gray Sandy Silt W/Gravel

Date Received: 5/30/13 USCS Classification: ML

AASHTO Classification: A-4(0)

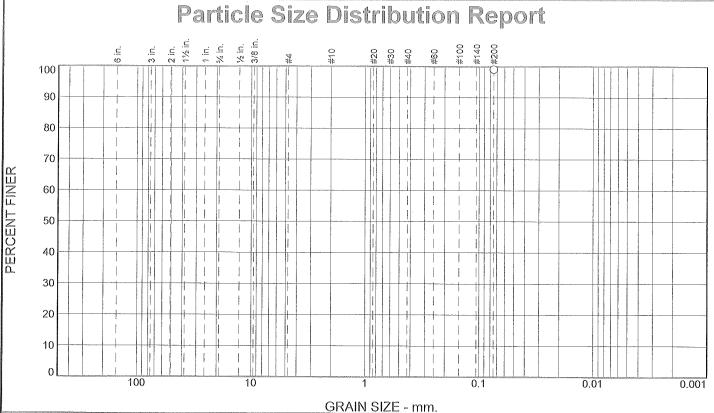
Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/7/13

Checked By: JAM

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 380.80


Tare Wt. = 190.20 Minus #200 from wash = 57.8%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
642.00	190.20	1"	0.00	0.00	100.0
		1/2"	1479.20	1419.60	86.8
		#4	1366.50	1357.00	84.7
		#10	1524.90	1514.30	82.4
		#20	1078.50	1067.20	79.9
		#40	959.60	944.40	76.5
		#60	899.80	878.10	71.7
		#100	871.00	843.20	65.5
		#200	1052.60	1019.60	58.2

Cobbles	Gravel					nd	Fines			
	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	6.4	8.9	15.3	2.3	5.9	18.3	26.5			58.2

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
					0.0896	0.8879	5.3683	15.8043	20.3353

Fineness Modulus 1.54

					G	RAIN SIZE - m	ım.			
	% +3	n	% Gravel		% Sand			% Fines		
L	/0 TJ	Coarse Fine		Fine C	Coarse Medium Fine		Fine	Silt	Clay	
	×							99.1		
		TEST B	ESULTS			-1900001	80-4	P		
			7	1			<u>iviateriai</u>	<u>Description</u>		
	Opening	Percent	Spec.*	Pass?		Gray Clay				
	Siza	Einar	(Parcant)	(V=Eail)	.					

	TEST RESULTS							
Opening	Percent	Spec.*	Pass?					
Size	Finer	(Percent)	(X≃Fail)					
#200	99.1							

	<u> Material D</u>	<u>escription</u>	
Gray Clay			
Atto		s (ASTM D 4318) PI= 15	
PL= 23	LL= 38	ME 12	
11000 (5 0 105)	<u>Classif</u>		
USCS (D 2487)=	: CL or OL A	ASHTO (M 145)=	
	<u>Coeffi</u>	<u>cients</u>	
D ₉₀ =	D ₈₅ =	D ₆₀ =	
D ₅₀ = D ₁₀ =	D ₃₀ = C _u =	D ₁₅ = C _c =	
. •	v Rem	-	
	Kem	arks	
			ľ
Date Received:	5/30/13	Date Tested: 6/7/13	
Tested By:	JF/TP		
Checked By:	JAM		
Title:			_

(no specification provided)

Source of Sample: Boring E330-B-013 Sample Number: HMA#7514-25/S-18 Depth: 70'-71'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

6/17/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 **Location:** Boring E330-B-013

Depth: 70'-71'

Sample Number: HMA#7514-25/S-18

Material Description: Gray Clay

Date Received: 5/30/13

PL: 23

PI: 15

USCS Classification: CL or OL #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/7/13

Checked By: JAM

Elleva Tesa Day

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 163.10

Tare Wt. = 162.00

Minus #200 from wash = 99.1%

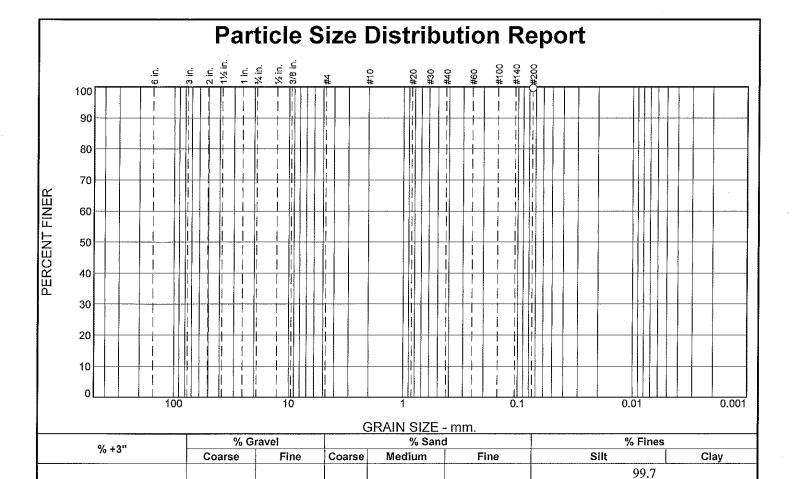
Dry

Sample and Tare Tare (grams) (grams) Sieve Opening Size Weight Retained (grams) Sieve Weight (grams)

Percent Finer

283.20

162.00


#200

99.1

rage (et liberarial Company or exercise

Cobbles	Gravel				Sa		Fines			
	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
										99.1

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

	TEST RI	ESULTS		Material Description
pening	Percent	Spec.*	Pass?	Gray Silt
Size	Finer	(Percent)	(X=Fail)	
#200	99.7			
				Atterberg Limits (ASTM D 4318) PL= LL= Pl=
				USCS (D 2487)= ML AASHTO (M 145)= A-4(0
and the second s				$\begin{array}{cccc} & & & & & & \\ D_{90}= & & D_{85}= & & D_{60}= \\ D_{50}= & & D_{30}= & & D_{15}= \\ D_{10}= & & C_u= & & C_c= \\ \end{array}$
				Remarks
				Date Received: 5/30/13 Date Tested: 6/7/13 Tested By: JF/TP
				Checked By: JAM
				Title:

Depth: 85'-85.4'

Client: Golder Associates

Project No: 12-450

Project: Sound Transit East Link

Date Sampled:

Figure

Source of Sample: Boring E330-B-013 Sample Number: HMA#7514-26/S-21

Hayre McElroy & Associates, LLC

Redmond, WA

11/13/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450

Location: Boring E330-B-013

Depth: 85'-85.4'

Material Description: Gray Silt

Date Received: 5/30/13 USCS Classification: ML

#200 Wash Method: ASTM D1140

Tested By: JF/TP

Checked By: JAM

Sample Number: HMA#7514-26/S-21

AASHTO Classification: A-4(0)

Test Date: 6/7/13

Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 158.00

Tare Wt. = 157.50

Minus #200 from wash = 99.7%

Dry

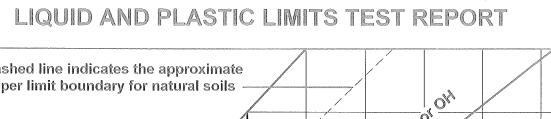
Sample and Tare (grams)

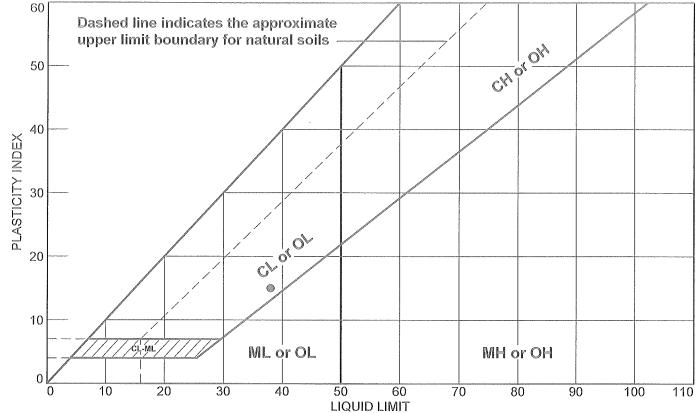
Tare (grams) Sieve Opening Size Weight Retained (grams) Sieve Weight (grams)

Percent Finer

325.60

157.50


#200


99.7

Fractional Components

Cabbles	Gravel				Sand Fines					
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
										99.7

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

	SOIL DATA									
	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS		
•	Boring E330-B-013	HMA#7514-	70'-71'	28.3	23	38	15	CL or OL		
		25/S-18								
	Boring E330-B-013	HMA#7514-	85'-85.4'	28.3	NP	NP	NP	ML		
		26/S-21								

Hayre	McElroy	8.	Associates,	LLC
-------	----------------	----	-------------	-----

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No.: 12-450

Figure

Tested By: JF/TP

Checked By: JAM

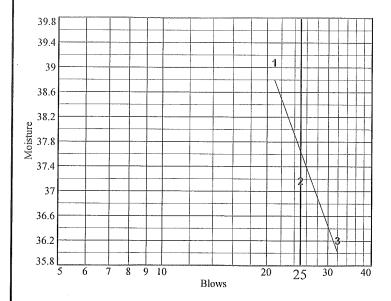
LIQUID AND PLASTIC LIMIT TEST DATA

6/20/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-013

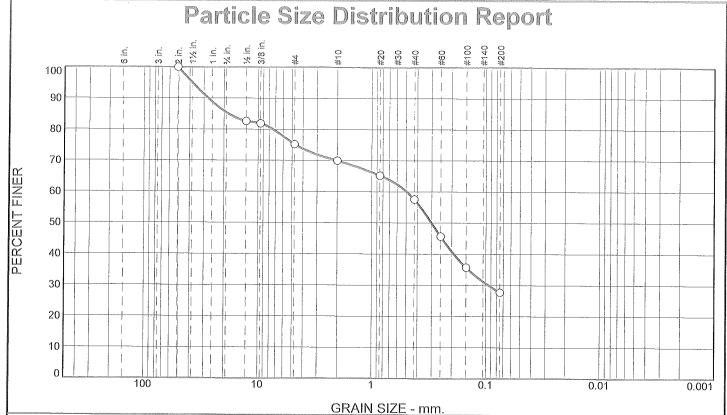

Depth: 70'-71'

Material Description: Gray Clay

USCS: CL or OL Tested by: JF/TP Sample Number: HMA#7514-25/S-18

Checked by: JAM

Run No.	1	2	3	4	5	6
et+Tare	25.7	29.1	29.4			
ry+Tare	22.3	24.9	25.2			
Tare	13.6	13.6	13.6			
# Blows	21	25	32			
Vloisture	39.1	37.2	36.2			



Liquid Limit=	38
Plastic Limit= .	23
Plasticity Index=	15
Natural Moisture= .	28.3
Liquidity Index=	0.4

			Pasic Lime	aien	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Run No.	1	2	3	4		
Wet+Tare	22.5	21.1	22			****
Dry+Tare	20.4	19.2	20	****		P P MAR MUSICAL TOTAL TO
Tare	11.1	11.1	11.2			
Moisture	22.6	23.5	22.7			

Wet+Tare	Dry+Tare	Tare	Moisture
317.5	283.2	162	28.3

Hayre McElroy & Associates, LLC

% ÷3"	% Gr	avel		% Sand		% Fines		
76 +3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	14.6	10.2	5.2	12.4	29.9	27.7		

	esults (ASTM C		D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
2"	100.0		
	1/2" 82.6		
3/8"	81.9		
#4	75.2		
#10	70.0		
#20	65.2		
#40 57.6			
#60	45.6		
#100	35.7		
#200	27.7		
1			

Dark Brown	Material Description Silty Sand W/Gravel
PL=	Atterberg Limits (ASTM D 4318) LL= PI=
USCS (D 248	7)= SM Classification (M 145)= A-2-4(0)
D ₉₀ = 27.551 D ₅₀ = 0.3007 D ₁₀ =	Coefficients D ₈₅ = 18.3224 D ₃₀ = 0.0947 C _u = D ₆₀ = 0.4944 D ₁₅ = C _c =
	Remarks
Date Receive	ed: 5/30/13
Checked I	

* (no specification provided)

Source of Sample: Boring E330-B-014 Sample Number: HMA#7514-27/S-3

Depth: 5'-6.5'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

6/17/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 **Location:** Boring E330-B-014

Depth: 5'-6.5'

Sample Number: HMA#7514-27/S-3

Material Description: Dark Brown Silty Sand W/Gravel

Date Received: 5/30/13 USCS Classification: SM

AASHTO Classification: A-2-4(0)

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: JF/TP Checked By: JAM

Test Date: 6/10/13

ioventania seri

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 341.40

Tare Wt. = 230.90

Minus #200 from wash = 26.4%

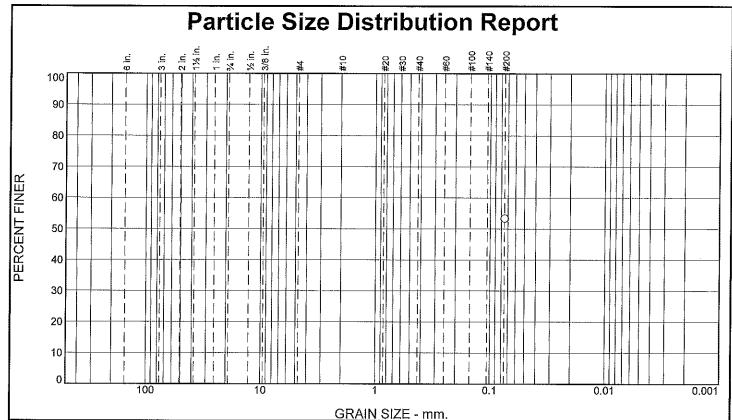

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
381.00	230.90	2"	0.00	0.00	100.0
		1/2"	1445.70	1419.60	82,6
		3/8"	1484.90	1483.80	81.9
		#4	1367.10	1357.10	75.2
		#10	1522.40	1514.50	70.0
		#20	1074.50	1067.30	65.2
		#40	956.30	944.90	57.6
		#60	896.30	878.40	45.6
		#100	858.40	843.50	35.7
		#200	1031.90	1019.90	27.7

Figure Rough L. German emperation &

Cobbles		Gravel		Sand					Fines	
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	14.6	10.2	24.8	5.2	12.4	29.9	47.5			27.7

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.0947	0.3007	0.4944	7.3951	18.3224	27.5513	37.8898

Fineness
Modulus
2.77

	% +3"		% Gra	vel		% Sand		% Fin	es
			Coarse	rse Fine Coarse		Medium	Fine	Silt	Clay
								53.4	
		TEST F	RESULTS				Materia	Description	
	Opening	Parcent	Snec *	Page	2	Olisto Cast			

	TEST R	ESULTS		Material Description
Opening Size	Percent Finer	Spec.* (Percent)	Pass? (X=Fail)	Olive Gray Silt
#200	53,4	(Percent)	(X-I dil)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
				Date Received: 5/30/13 Date Tested: 6/10/13 Tested By: JF/TP Checked By: JAM Title:

(no specification provided)

Source of Sample: Boring E330-B-014 Sample Number: HMA#7514-28/S-4

Depth: 7.5'-9'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

11/13/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-014

Depth: 7.5'-9'

Material Description: Olive Gray Silt

Date Received: 5/30/13 USCS Classification: ML

#200 Wash Method: ASTM D1140

Tested By: JF/TP Checked By: JAM Test Date: 6/10/13

Sample Number: HMA#7514-28/S-4

Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 280.40

Tare Wt. = 194.20

Minus #200 from wash = 53.4%

Dry

Sample and Tare

Tare (grams)

Sieve Opening Size

Weight Retained (grams)

Sieve Weight (grams)

Percent Finer 53.4

(grams) 379.20

194.20

#200

Fractional Components

Cobbles	Gravel			Sand				Fines		
	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
										53.4

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

Hayre McElroy & Associates, LLC _____

Medium

Fine

Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X≅Fail
3/4"	100.0		
1/2"	96.7		
3/8"	95.6		
#4	92.4		
#10	88.7		
#20	84.8		
#40	77.0		
#60	62.0		
#100	47.7		
#200	35.5		

Coarse

0.0

0.0

Fine

7.6

Coarse

3.7

11.7	41.5	35.5	
Gray Silty		ial Description	
PLa	Atterberg Li LL=	i <u>mits (ASTM D 4318)</u> Pl=	
USCS (D 2	<u>Cla</u> 2487)= SM	assification AASHTO (M 145)= A-4(0)	
D ₉₀ = 2.75 D ₅₀ = 0.16 D ₁₀ =	91	0.8819	
		Remarks	
	ived: 5/30/13 d By: <u>JF/TP</u>	Date Tested: 6/10/13	
	d By: JAM Title:		

Silt

Clay

* (no specification provided)

Source of Sample: Boring E330-B-014 Sample Number: HMA#7514-29/S-8

Depth: 20'-20.4'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

6/17/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-014

Depth: 20'-20.4'

Sample Number: HMA#7514-29/S-8

Material Description: Gray Silty Sand

Date Received: 5/30/13 USCS Classification: SM

AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/10/13

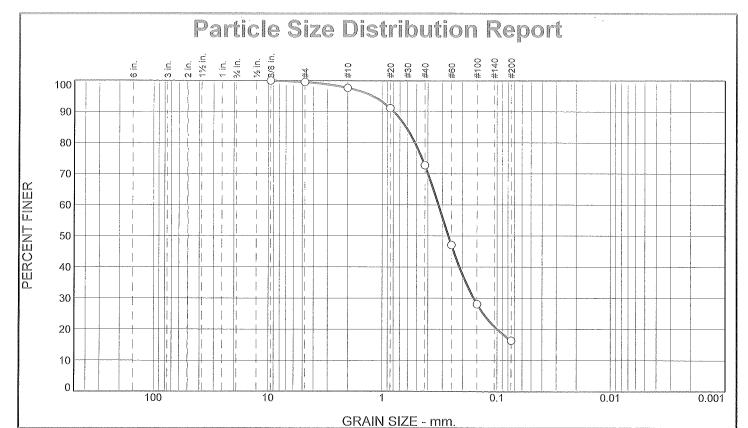
Checked By: JAM

Shave Table (b)

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 363.90

Tare Wt. = 234.70

Minus #200 from wash = 34.7%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
432.70	234.70	3/4"	0.00	0.00	100.0
		1/2"	1426.20	1419.60	96.7
		3/8"	1485.80	1483.70	95.6
		#4	1363.20	1356.90	92.4
		#10	1521.80	1514.40	88.7
		#20	1074.80	1067.10	84.8
		#40	960.00	944.60	77.0
		#60	907.80	878.10	62.0
		#100	871.40	843.10	47.7
		#200	1043.80	1019.60	35.5

Fireteilleigteil Commerciales

Cobbles		Gravel			Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total	
0.0	0.0	7.6	7.6	3.7	11.7	41.5	56.9			35.5	

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.1646	0.2341	0.5009	0.8819	2.7591	8.1095

F	ineness	
_ N	lodulus	
	1.38	

% ÷3"		% Gra	vel		% Sand		% Fines	
70 ° 3		Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0 0.0 0.5 1.9		1.9	24.9	56.4	16.3		
Test Results (ASTM C136 & ASTM D1140)					0 011		rial Description	

Test R	tesults (ASTM C	:136 & ASTM	D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3/8"	100.0		
#4	99.5		
#10	97.6		
	91.1		
	72.7		
#200	16.3		
	Opening Size 3/8" #4	Opening Percent Size Finer 3/8" 100.0 #4 99.5 #10 97.6 #20 91.1 #40 72.7 #60 47.1 #100 28.1	Size Finer (Percent) 3/8" 100.0 #4 99.5 #10 97.6 #20 91.1 #40 72.7 #60 47.1 #100 28.1

	Material Description
Gray Silty Sand	
Atte	rberg Limits (ASTM D 4318)
PL=	LL= PI=
USCS (D 2487)=	Classification SM AASHTO (M 145)= A-2-4(0)
D ₉₀ = 0.7910 D ₅₀ = 0.2656 D ₁₀ =	Coefficients D ₈₅ = 0.6186 D ₆₀ = 0.3242 D ₃₀ = 0.1604 D ₁₅ = C _c =
	Remarks
Date Received:	5/30/13 Date Tested: 6/10/13
Tested By:	JF/TP
Checked By:	JAM
Title:	

(no specification provided)

Source of Sample: Boring E330-B-014 Sample Number: HMA#7514-30/S-11 Depth: 35'-35.8'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

6/17/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-014

Depth: 35'-35.8'

Sample Number: HMA#7514-30/S-11

Material Description: Gray Silty Sand

Date Received: 5/30/13 USCS Classification: SM

AASHTO Classification: A-2-4(0)

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/10/13

Checked By: JAM

Stavenia de Dalei

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 355.70

Tare Wt. = 115.30

Minus #200 from wash = 15.4%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
399.30	115.30	3/8"	0.00	0.00	100.0
		#4	1358.30	1357.00	99.5
		#10	1519.70	1514.30	97.6
		#20	1085.70	1067.20	91.1
		#40	996.70	944.50	72.7
		#60	950.90	878.10	47.1
		#100	897.00	843.00	28.1
		#200	1053.10	1019.70	16.3

a continue la componiente

Copples		Gravel		Sand				Fines		
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.5	0.5	1.9	24.9	56.4	83.2			16.3

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
		0.0998	0.1604	0.2656	0.3242	0.5178	0.6186	0.7910	1.2024

Fineness Modulus 1.39

Medium

Fine

Test R	esults (ASTM C	,	D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X≔Fail)
3/8"	100.0		
#4	98.9		
#10	96.8		
#20	92.9		
#40	80.8		
#60	59.7		
#100	44.2		
#200	34.4		
	!		
The state of the s			
<u> </u>			

Coarse

0.0

0.0

Fine

1.1

Coarse

2.1

16.0	46.4	34.4
Gray Silty		ial Description
PL=	Atterberg Li LL=	imits (ASTM D 4318) PI=
USCS (D 2	2487)= SM	assification AASHTO (M 145)= A-2-4(0)
D ₉₀ = 0.64 D ₅₀ = 0.18 D ₁₀ =		0.4921
		Remarks
Date Rece	ived: 5/30/13	Date Tested: 6/10/13
Teste	d By: JF/TP	
Checke	d By: JAM	
,	Title:	

Silt

Clay

* (no specification provided)

Source of Sample: Boring E330-B-014 Sample Number: HMA#7514-31/S-14 Depth: 50'-50.25'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

6/17/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-014

Depth: 50'-50.25'

Sample Number: HMA#7514-31/S-14

Material Description: Gray Silty Sand

Date Received: 5/30/13 USCS Classification: SM

AASHTO Classification: A-2-4(0)

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/10/13

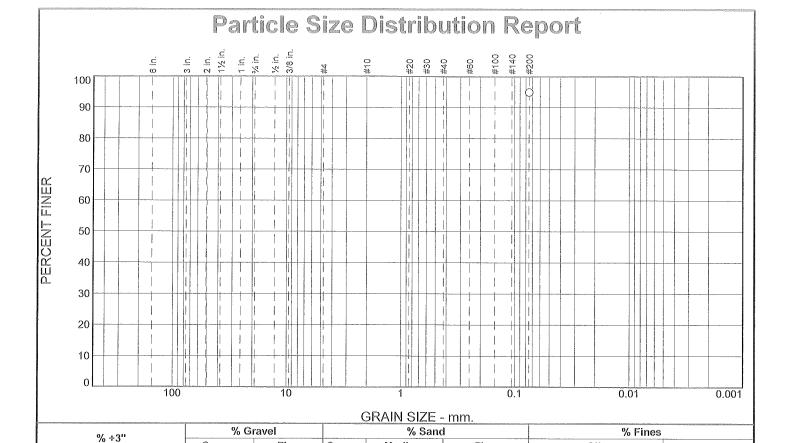
Checked By: JAM

Status hast back

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 198.30

Tare Wt. = 87.30

Minus #200 from wash = 33.6%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
254.40	87.30	3/8"	0.00	0.00	100.0
		#4	1358.60	1356.80	98.9
		#10	1517.60	1514.10	96.8
		#20	1073.50	1066.90	92.9
		#40	964.50	944.40	80.8
		#60	913.40	878.00	59.7
		#100	868.70	842.90	44.2
		#200	1036.00	1019.50	34.4

Residious I Commonicate

Cobbles		Gravel				nd	Fines			
CODDIES	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	1.1	1.1	2.1	16.0	46.4	64.5			34.4

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.1882	0.2522	0.4143	0.4921	0.6433	1.1953

Fineness Modulus 1.08

Coarse

Hayre McElroy & Associates, LLC

Redmond, WA

Fine

Coarse

	TEST RI	ESULTS		Material Description
Opening	Percent	Spec.*	Pass?	Gray Clay
Size	Finer	(Percent)	(X=Fail)	
#200	94.9			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
				Date Received: 5/30/13 Date Tested: 6/10/13 Tested By: JF/TP Checked By: JAM
				Title:
* (no spec	cification provide	ed)		
urce of Sa	mple: Boring ber: HMA#7	E330-B-014	Depth:	75'-76.5' Date Sampled:

Client: Golder Associates

Project No: 12-450

Project: Sound Transit East Link

Medium

Fine

Silt

94.9

Figure

Clay

6/17/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-014

Depth: 75'-76.5'

Sample Number: HMA#7514-32/S-19

Material Description: Gray Clay

Date Received: 5/30/13

PL: 22

LL: 49

PI: 27

USCS Classification: CL or OL #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/10/13

Checked By: JAM

Mayarifati Dak

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 140.90

Tare Wt. = 136.10

Minus #200 from wash = 94.9%

Dry

230.70

Sample and Tare Tare (grams) (grams)

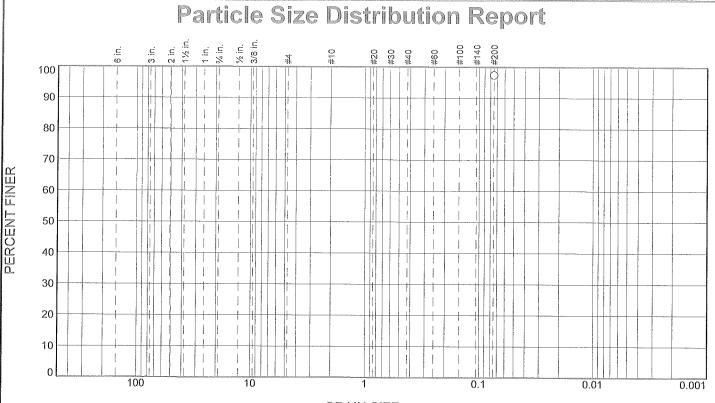
Sieve are Opening ams) Size

136.10

ve Weight ning Retained ze (grams)

#200

ght Sieve ned Weight ns) (grams)


Percent Finer

94.9

Tales in Monesta South English in

Cobbles	Gravel			Sand				Fines		
Cobbles	Coarse	Coarse Fine Total			Medium	Fine	Total	Silt	Clay	Total
										94.9

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

			G	<u>RAIN SIZE -</u>	· mm.			
% +3"	% Gravel			% Sand		% Fines		
70 . 5	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
						97.5		

	TEST RI	ESULTS	
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
#200	97.5		
* .	10		00-464

Gray Silt	<u>Material</u>	Description	
PL= 29	LL= 49 <u>Class</u>	ification	= 20
USCS (D 2487)=	ML or OL	AASHTO (M 145)=
D ₉₀ = D ₅₀ = D ₁₀ =	<u>Coef</u> D ₈₅ = D ₃₀ = C _u =	f <u>icients</u> D ₆₀ : D ₁₅ : C _c =	= =
	Rei	marks	
Date Received: Tested By:		Date Tested	: 6/10/2013
Checked By:	JAM		
Title:			

* (no specification provided)

Source of Sample: Boring E330-B-014 Sample Number: HMA#7514-33/S-23

Depth: 95'-96.5'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

6/17/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-014

Depth: 95'-96.5'

Sample Number: HMA#7514-33/S-23

Material Description: Gray Silt

Date Received: 5/30/2013

LL: 49

PI: 20

USCS Classification: ML or OL #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/10/2013

Checked By: JAM

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 32.80

Tare Wt. = 31.10 Minus #200 from wash = 97.5%

Dry

Sample and Tare (grams)

Tare (grams)

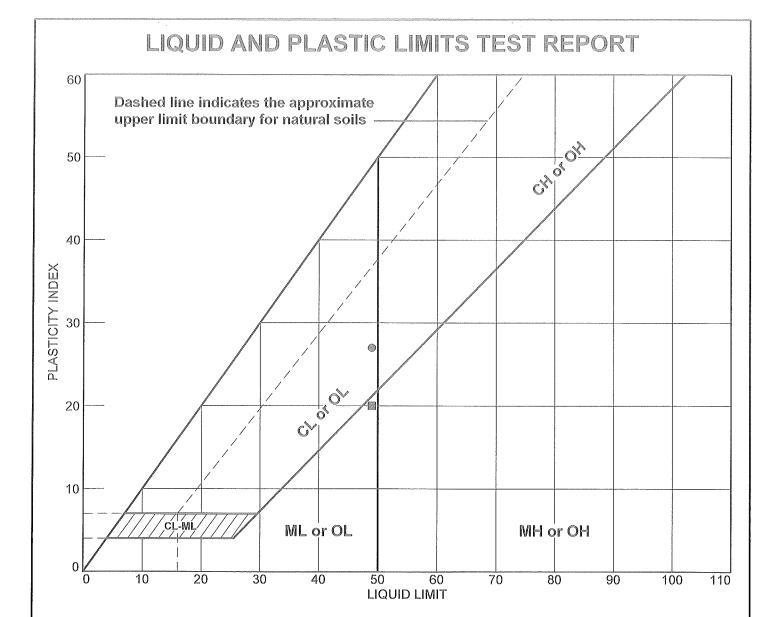
Sieve Opening Size

PL: 29

Weight Retained (grams)

Sieve Weight (grams)

Percent Finer 97.5


97.90

31.10

#200

Cobbles	Gravel			Sand				Fines		
	Coarse Fine Total		Coarse	Medium	Fine	Total	Silt	Clay	Total	
										97.5

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

	SOIL DATA											
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs				
•	Boring E330-	HMA#7514-	75'-76.5'	29.3	22	49	27	CL or OL				
	B-014	32/S-19										
	Boring E330-	HMA#7514-	95'-96.5'	28.1	29	49	20	ML or OL				
	B-014	33/S-23					:					

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No.: 12-450

Figure

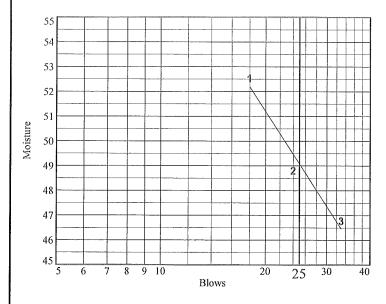
Tested By: JF/TP

Checked By: JAM

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-014


Depth: 75'-76.5'

Material Description: Gray Clay

USCS: CL or OL Tested by: JF/TP Sample Number: HMA#7514-32/S-19

Chec	100	22.00	1 /	N /8
	neu.	IJV.	.1 /	IVI

			Liquid Elmies	rier Land		
Run No.	1	2	3	4	5	6
Wet+Tare	31.6	26.2	31.8			
Dry+Tare	25.4	22.1	26			
Tare	13.6	13.7	13.6			
# Blows	18	24	33			
Moisture	52.5	48.8	46.8			

Liquid Limit=	49
Plastic Limit=	22
Plasticity Index=	27
Natural Moisture=	29.3
Liquidity Index=	0.3

27779			: Destetlimitte	alean and a same	
Run No.	1	2	3	4	
Wet+Tare	18.4	18.8	19		
Dry+Tare	17.1	17.5	17.6		
Tare	11.2	11.2	11.2		
Moisture	22.0	20.6	21.9		

Natural Meisture Data

Wet+Tare	Dry+Tare	Tare	Moisture
258.4	230.7	136.1	29.3

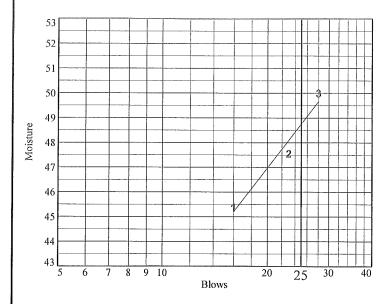
LIQUID AND PLASTIC LIMIT TEST DATA

6/17/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-014

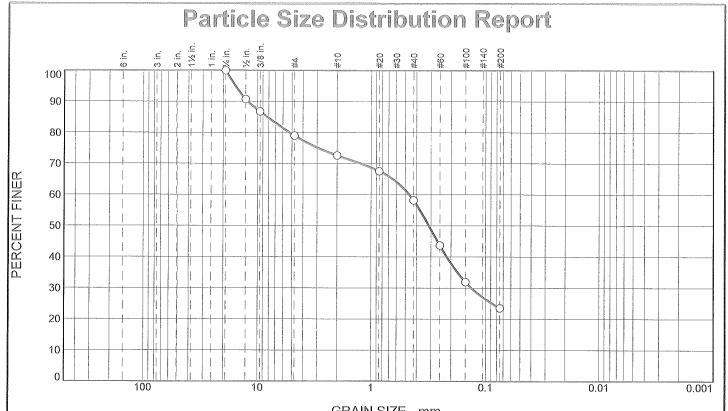

Depth: 95'-96.5'

Material Description: Gray Silt

USCS: ML or OL Tested by: JF/TP Sample Number: HMA#7514-33/S-23

Checked by: JAM

		Establish (in the con-	ilia -		
1	2	3	4	5	6
32.4	25.7	30.1			
26.5	21.8	24.6			
13.5	13.6	13.6			
16	23	28			
45,4	47.6	50.0			
	1 32.4 26.5 13.5 16 45.4	1 2 32.4 25.7 26.5 21.8 13.5 13.6 16 23 45.4 47.6	1 2 3 32.4 25.7 30.1 26.5 21.8 24.6 13.5 13.6 13.6 16 23 28 45.4 47.6 50.0	1 2 3 4 32.4 25.7 30.1 26.5 21.8 24.6 13.5 13.6 13.6 16 23 28 45.4 47.6 50.0	1 2 3 4 5 32.4 25.7 30.1



Liquid Limit=	49
Plastic Limit=	29
Plasticity Index≡	20
Natural Moisture=	28.1
Liquidity Index=	0.0
, ,	

			Plastic Limit 9	a Pa	
Run No.	1	2	3	4	
Wet+Tare	19.6	23.5	24.4		
Dry+Tare	17.7	21.2	22.0		
Tare	11.2	13.6	13.7		
Moisture	29.2	30.3	28.9		

Wet+Tare	Drv+Tare	Tare	Moisture

Hayre McElroy & Associates, LLC

GRAIN SIZE - MIM.								
% +3"	% Gravel		% Sand			% Fines		
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	0.0	21.0	6.4	14.4	34.7	23.5		

Test Re	esults (ASTM (136 & ASTM	D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3/4"	100.0		
1/2"	90.7		
3/8"	86.8		
#4	79.0		
#10	72.6		
#20	67.6		
#40	58.2		
#60	43.7		
#100	31.9		
#200	23.5		

Material Description	
Brown Silty Sand W/Gravel	
Atterberg Limits (ASTM D 4318)	
PL= LL= PI=	
Classification	
USCS (D 2487)= SM AASHTO (M 145)= A-2-4(0)	
<u>Coefficients</u>	
D ₉₀ = 12.1566 D ₈₅ = 8.1995 D ₆₀ = 0.4628 D ₅₀ = 0.3117 D ₃₀ = 0.1331 D ₁₅ =	
$D_{50}^{=} = 0.3117$ $D_{30}^{=} = 0.1331$ $D_{15}^{=} = 0.1331$ $C_{c}^{=} = 0.1331$	
Remarks	
Date Received: 5/30/13 Date Tested: 6/10/13	
Tested By: JF/TP	
Checked By: JAM	
Title:	

(no specification provided)

Source of Sample: Boring E330-B-014B Sample Number: HMA#7514-34/S-2

Depth: 2.5'-4'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

6/17/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450

Location: Boring E330-B-014B

Depth: 2.5'-4'

Sample Number: HMA#7514-34/S-2

Material Description: Brown Silty Sand W/Gravel

Date Received: 5/30/13 USCS Classification: SM

AASHTO Classification: A-2-4(0)

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/10/13

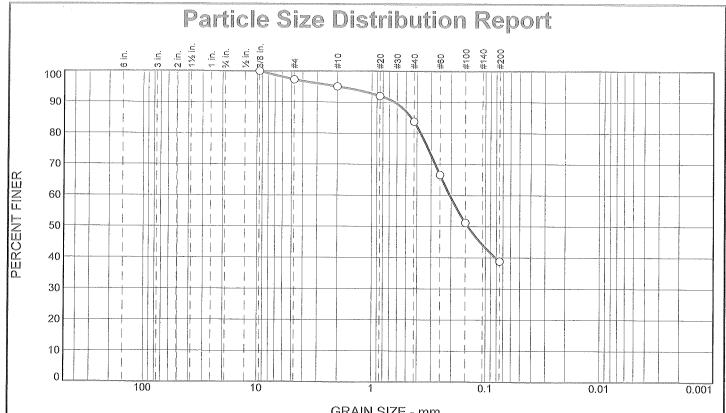
Checked By: JAM

Steve for one

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 449.90

Tare Wt. = 117.50

Minus #200 from wash = 22.8%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
547.90	117.50	3/4"	0.00	0.00	100.0
		1/2"	1459.10	1419.20	90.7
		3/8"	1500.40	1483.40	86.8
		#4	1390.30	1356.70	79.0
		#10	1541.60	1514.10	72.6
		#20	1088.40	1066.80	67.6
		#40	984.70	944.40	58.2
		#60	940.40	877.90	43.7
		#100	893.30	842.80	31.9
		#200	1055.60	1019.30	23.5

The letter with Element and

Cobbles	Cobbles Gravel			Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	21.0	21.0	6.4	14.4	34.7	55.5			23.5

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.1331	0.3117	0.4628	5.2609	8.1995	12.1566	15.5824

Fineness Modulus 2.46

GIVAIN SIZE - IIIII.										
% +3"	% Gravel		% Sand			% Fines				
	oarse	Fine	Coarse	Medium	Fine	Silt	Clay			
0.0	0.0	2.7	2.2	11.3	45.0	38.8				

	esults (ASTM C	· · · · · · · · · · · · · · · · · · ·	D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3/8"	100.0	***************************************	
#4	97.3		
#10	95.1		
#20	92.0		
#40	83.8		
#60	66.6		
#100	51.2		
#200	38.8		

Manager and the second							
	<u>Material</u>	Descript	tion .				
Gray Brown Silty	Sand						
, ,							
Atte	rberg Limi	its (ASTI	/I D 4318)				
PL=	LL:		Pla				
	Class	sification	1				
USCS (D 2487)=	SM	AASHTO	(M 145)= A-4(0)				
, ,			(*** * ***)				
Doos 0.6276	<u>Coe</u> D ₈₅ ≡ 0.4	fficients	D ₆₀ = 0.2048				
$D_{90} = 0.6276$ $D_{50} = 0.1423$	D ₃₀ =	1702	D ₆₀ = 0.2046 D ₄₅ =				
D ₁₀ =	D ₃₀ = C _u =		D ₁₅ = C _c =				
Remarks							
		marko					
Date Received:	5/30/13	Date '	Tested: 6/10/13				
Tested By:			1031041 0/10/13				
~ -							
Checked By:	JAM						
Title:							

* (no specification provided)

Source of Sample: Boring E330-B-014B Sample Number: HMA#7514-35/S-7

Depth: 15'-15.6'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

6/17/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450

Location: Boring E330-B-014B

Depth: 15'-15.6'

Sample Number: HMA#7514-35/S-7

Material Description: Gray Brown Silty Sand

Date Received: 5/30/13 USCS Classification: SM

AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/10/13

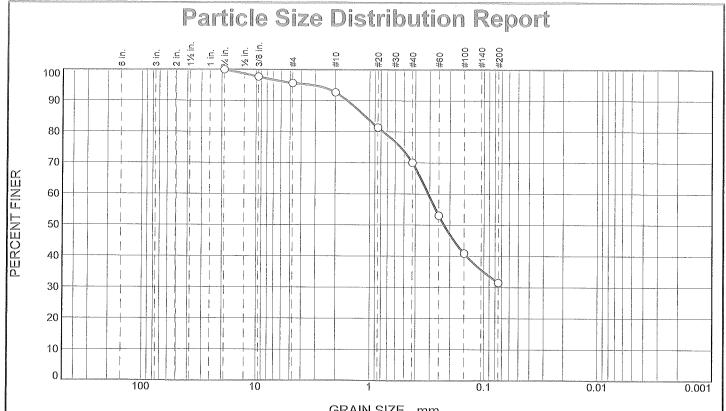
Checked By: JAM

Stove Leaters

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 244.60

Tare Wt. = 114.80

Minus #200 from wash = 38.0%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
324.20	114.80	3/8"	0.00	0.00	100.0
		#4	1362.40	1356.70	97.3
		#10	1518.80	1514.20	95.1
		#20	1073.40	1067.00	92.0
		#40	961.70	944.40	83.8
		#60	914.00	878.10	66.6
		#100	875.40	843.20	51.2
		#200	1045.50	1019.50	38.8

Epstellengell@onneonenis

Cobbles	Gravel			Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	2.7	2.7	2.2	11.3	45.0	58.5			38.8

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.1423	0.2048	0.3706	0.4485	0.6276	1.9376

Fineness Modulus 1.00

			G	KAIN SIZE -	· [[]]]].			
% +3"	% Gravel		% Sand			% Fines		
70 . 0	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	0.0	4.3	3.0	22.7	38.5	31.5		

Opening	Percent	Spec.*	Pass?
-			İ
Size	Finer	(Percent)	(X=Fail)
3/4"	100.0		
3/8"	97.7		
#4	95.7		
#10	92.7		
#20	81.4		
#40	70.0		
#60	53.1		
#100	40.9		
#200	31.5		
İ			

Gray Silty Sand	Material Desc	ription					
yy							
Atter	<u>berg Limits (AS</u> LL=	STM D 4318) PI=					
USCS (D 2487)=	Classificat SM AASH	<u>ion</u> ITO (M 1 45) = A-2-4(0)					
D ₉₀ = 1.5658 D ₅₀ = 0.2251 D ₁₀ =	Coefficien D ₈₅ = 1.0992 D ₃₀ = C _u =	D ₆₀ = 0.3087 D ₁₅ = C _c =					
Remarks							
Date Received: 5/		te Tested: 6/10/13					
Checked By: JA	AM						
Title: _							

(no specification provided)

Source of Sample: Boring E330-B-014B Sample Number: HMA#7514-36/S-10

Depth: 30'-30.25'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

6/17/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450

Location: Boring E330-B-014B

Depth: 30'-30.25'

Sample Number: HMA#7514-36/S-10

Material Description: Gray Silty Sand

Date Received: 5/30/13

USCS Classification: SM

AASHTO Classification: A-2-4(0)

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

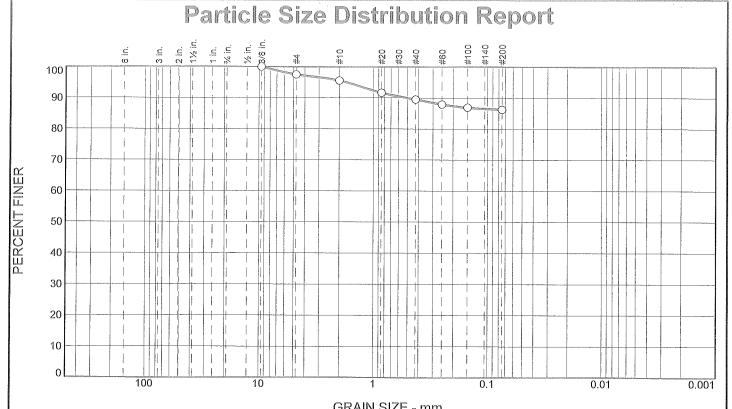
Tested By: JF/TP

Test Date: 6/10/13

Checked By: JAM

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 212.30

Tare Wt. = 114.20


Minus #200 from wash = 37.6%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
271.40	114.20	3/4"	0.00	0.00	100.0
		3/8"	1487.20	1483.60	97.7
		#4	1360.20	1357.00	95.7
		#10	1519.00	1514.30	92.7
		#20	962.20	944.40	81.4
		#40	962.20	944.40	70.0
		#60	904.60	877.90	53.1
		#100	862.20	843.10	40.9
		#200	1034.40	1019.60	31.5

Cobbles	Gravel			Sand				Fines		
CODDIES	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	4.3	4.3	3.0	22.7	38.5	64.2			31.5

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.2251	0.3087	0.7643	1.0992	1.5658	3.1740

Fineness Modulus 1.50

GRAIN SIZE - IIIII.												
% +3"	% Gravel		% Sand			% Fines						
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay					
0.0	0.0	2.5	1.9	6.1	3.2	86.3						

Test R	esults (ASTM C	136 & ASTM	D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3/8"	100.0		
#4	97.5		
#10	95.6		
#20	91.7		
#40	89.5		
#60	87.9		
#100	86.9		
#200	86.3		
- x			

Gray Silt	Materia	al Description	
Atter	berg Lir LL=	nits (ASTM D 4318 Pl=	3)
USCS (D 2487)=		ssification AASHTO (M 145)=	A-4(0)
D ₉₀ = 0.5058 D ₅₀ = D ₁₀ =	Co D ₈₅ = D ₃₀ = C _u =	efficients D ₆₀ = D ₁₅ = C _c =	
	F	Remarks	
Date Received: 5		Date Tested:	6/11/13
Tested By: <u>J</u>	F/TP		
Checked By: J	AM		
Title: _	***************************************		

* (no specification provided)

Source of Sample: Boring E330-B-014B Sample Number: HMA#7514-37/S-17

Depth: 65'-65.3'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

6/17/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450

Location: Boring E330-B-014B

Depth: 65'-65.3'

Material Description: Gray Silt

Date Received: 5/30/13 USCS Classification: ML

Grain Size Test Method: ASTM C136

#200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/11/13

Sample Number: HMA#7514-37/S-17

AASHTO Classification: A-4(0)

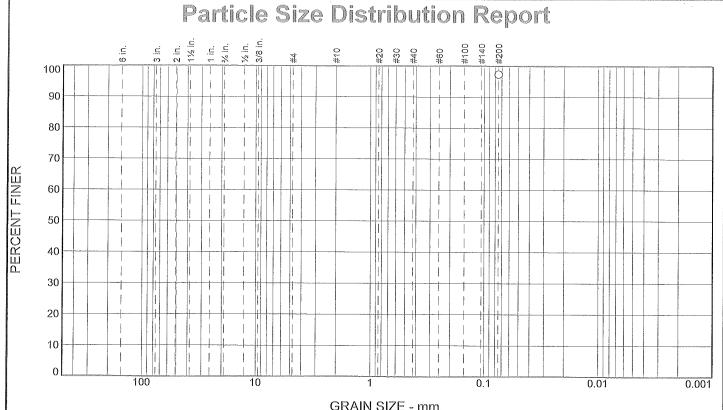
Checked By: JAM

Silavedia: (Albinia

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 146.70

Tare Wt. = 118.30

Minus #200 from wash = 85.8%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
318.40	118.30	3/8"	0.00	0.00	100.0
		#4	1362.00	1357.00	97.5
		#10	1518.20	1514.30	95.6
		#20	1074.80	1067.00	91.7
		#40	948.90	944.60	89.5
		#60	881.30	878.10	87.9
		#100	845.10	843.10	86.9
		#200	1020.90	1019.60	86.3

Extellentil@omegable

Cobbles				Sa	nd	Fines				
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	2.5	2.5	1.9	6.1	3.2	11.2			86.3

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
82/44/49004/2-1-10-1-10-1-10-1-10-1-10-1-10-1-10-1-								0.5058	1.7338

Fineness Modulus 0.47

% ÷3"	% Gravel			% Sand		% Fines		
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
						97.4		

Size Finer (Percent) (X=Fail				
Size Finer (Percent) (X=Fail		TEST RE	SULTS	
#200 97.4	Opening	Percent	Spec.*	Pass?
	Size	Finer	(Percent)	(X=Fail)
	#200	97.4		
K / C	*			

Gray Silt	Material	Description	
Atteri PL=	berg Limi LL=	ts (ASTM D 431 PI=	
USCS (D 2487)=		sification AASHTO (M 145)	600 600
D ₉₀ = D ₅₀ = D ₁₀ =	Coef D ₈₅ = D ₃₀ = C _u =	<u>fficients</u> D ₆₀ = D15= C _c =	:
	Re	marks	
Date Received: 5/	/30/13	Date Tested	: 6/11/13
Tested By: Ji	F/TP		
Checked By: J	AM		
Title: _	CO		

(no specification provided)

Source of Sample: Boring E330-B-014B Sample Number: HMA#7514-38/S-20

Depth: 80'-80.5'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

6/17/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450

Location: Boring E330-B-014B

Depth: 80'-80.5'

Sample Number: HMA#7514-38/S-20

Material Description: Gray Silt

Date Received: 5/30/13 USCS Classification: ML

#200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/11/13

Checked By: JAM

Sileve, Kestellinin

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 32.90

Tare Wt. = 31.20

Minus #200 from wash = 97.4%

Dry

Sample and Tare (grams)

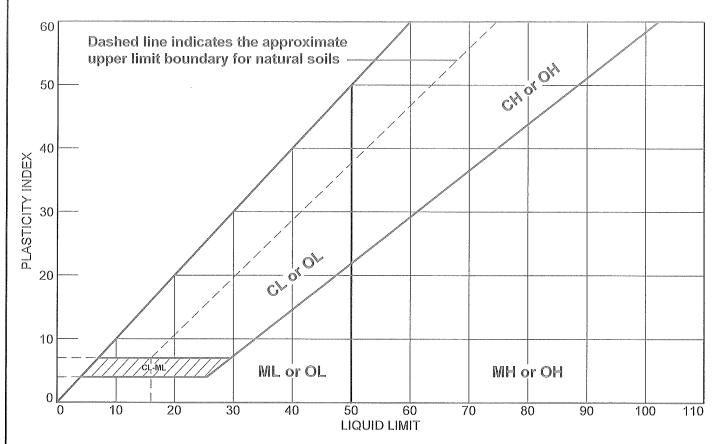
Tare (grams) Sieve Opening Size

Weight Retained (grams)

Sieve Weight (grams)

Percent Finer

95.90 31.20 #200


97.4

SEcretification (Secretaria)

Cobbles	Gravel			Sand				Fines		
	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
										97.4

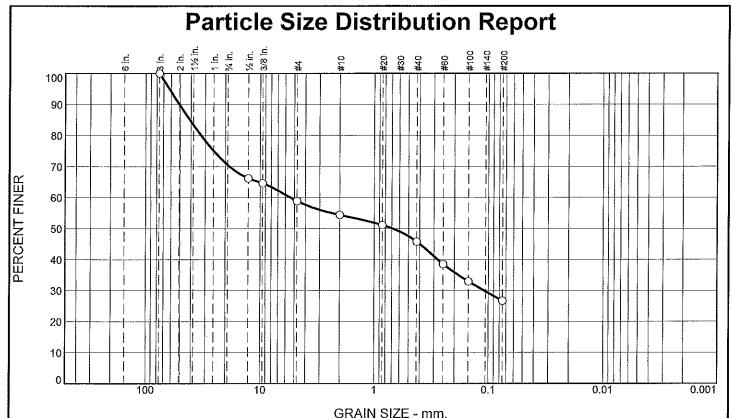
D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

				SOIL DA	NTA			
	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS
0	Boring E330-B-	HMA#7514-	2.5'-4'	12.8	NP	NP	NP	SM
	014B	34/S-2						
	Boring E330-B-	HMA#7514-	80'-80.5'	26.9	NP	NP	NP	ML
	014B	38/S-20						
							-	
			1					

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link


Redmond, WA

Project No.: 12-450

Figure

Tested By: JF/TP

Checked By: JAM

9/ 1211	% G:	avel	% Sand			% Fines		
70 TJ	% +3" Coarse Fine Coarse		Medium	Fine	Silt	Clay		
0.0	29.5	11.6	4.6	8.6	19.1	26.6		

Opening	Percent	ent Spec.* Pass			
Size	Finer	(Percent)	(X=Fail)		
3"	100.0				
1/2"	66.2				
3/8"	64.6				
#4	58.9				
#10	54.3				
#20	51.1				
#40	45.7				
#60	38.5				
#100	32,9				
#200	26.6				
7					
1					
* .					

	<u>Material</u>	Descript	<u>lion</u>					
Olive Grav Silty	Olive Gray Silty Gravel with Sand							
Atte	rberg Limi	ts (ASTN	/I D 4318)					
PL=	LL=	 (Pl=	ĺ				
	Class	lfication						
USCS (D 2487)=		ification	(M 145)=	A-2-4(0)				
5555 (B 2461)			(10)	112 (0)				
D = 50.7671		ficients	D 5	4417				
D ₉₀ = 50.7671 D ₅₀ = 0.6962	$D_{85} = 41.$ $D_{30} = 0.1$.0097 096	D ₆₀ = 5.4 D ₁₅ =	141/				
D ₁₀ =	C ₁₁ =	070	C ^c =					
.0	и В.,		•					
	Kei	marks						
Date Received:	11/19/13	Date '	Tested: 1	2/6/13				
Tested By: <u>′</u>	TEP							
Checked By: .	JAM							
Title:								

* (no specification provided)

Source of Sample: Boring E330-B-015 Sample Number: HMA#7567-22/S-1

Depth: 2.5'-4.0'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

12/10/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-015

Depth: 2.5'-4.0' Sample Number: HMA#7567-22/S-1

Material Description: Olive Gray Silty Gravel with Sand

Date Received: 11/19/13

USCS Classification: GM AASHTO Classification: A-2-4(0)

Grain Size Test Method: ASTM C136 **#200 Wash Method:** ASTM D1140

Tested By: TEP Test Date: 12/6/13

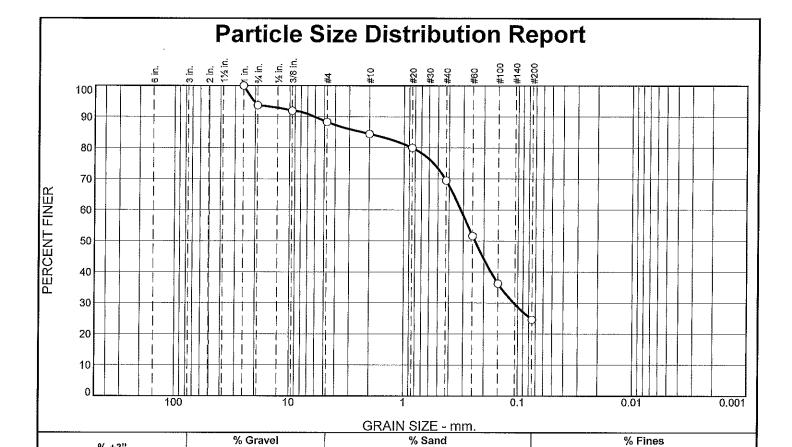
Checked By: JAM

Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 454.90

Tare Wt. = 214.10

Minus #200 from wash = 27.9%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
548.10	214.10	3"	0.00	0.00	100.0
		1/2"	1532.20	1419.20	66.2
		3/8"	1488.40	1483.10	64.6
		#4	1375.30	1356.20	58.9
		#10	1528.60	1513.50	54.3
		#20	1077.10	1066.20	51.1
		#40	961.40	943.60	45.7
		#60	901.90	877.70	38.5
		#100	861.50	842.80	32.9
		#200	1039.80	1018.90	26.6

Fractional Components

Cobbles		Gravel		Sand					Fines	
Coppies	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	29.5	11.6	41.1	4.6	8.6	19.1	32.3			26.6

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.1096	0.6962	5.4417	32.6264	41.0097	50.7671	62.3163

Fineness Modulus 3.92

Medium

15.0

Fine

44.9

Opening	Percent	Spec.*	Pass?	
Size	Finer	(Percent)	(X≍Fail)	
1"	100.0			
3/4"	93.6			
3/8"	91.9			
#4	88.3			
#10	84.5			
#20	80.0			
#40	69.5			
#60	51.6			
#100	36.2			
#200	24.6			
ļ			!	
-				

Coarse

6.4

Fine

5.3

Coarse

3.8

<u>Material Description</u> Olive Gray Silty Sand
Atterberg Limits (ASTM D 4318) PL= LL= PI=
USCS (D 2487)= SM
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Remarks
Date Received: 11/19/13 Date Tested: 12/6/13
Tested By: TEP
Checked By: JAM
Title:

Silt

24.6

Clay

(no specification provided)

% +3"

0.0

Source of Sample: Boring E330-B-015 Sample Number: HMA#7567-23/S-8

Depth: 25'-25.5'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

12/10/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-015

Depth: 25'-25.5'

Material Description: Olive Gray Silty Sand

Date Received: 11/19/13 USCS Classification: SM

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: TEP

AASHTO Classification: A-2-4(0)

Sample Number: HMA#7567-23/S-8

Test Date: 12/6/13

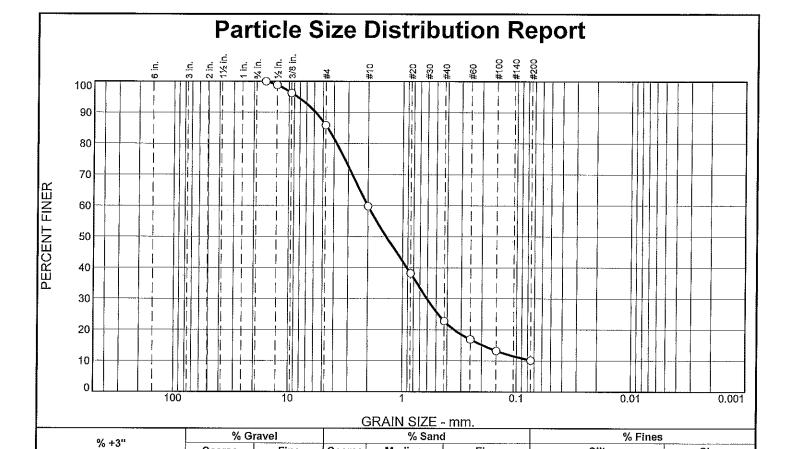
Checked By: JAM

Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 322.70

Tare Wt. = 123.20

Minus #200 from wash = 24.0%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
385.60	123.20	1"	0.00	0.00	100.0
		3/4"	1521.50	1504.80	93.6
		3/8"	1487.70	1483.20	91.9
		#4	1365.70	1356.20	88.3
		#10	1523.60	1513.50	84.5
		#20	1077.80	1066.00	80.0
		#40	970.90	943.40	69.5
		#60	924.60	877.60	51.6
		#100	882.80	842.60	36.2
		#200	1049.40	1018.90	24.6

Fractional Components

Cobbles		Gravel		Sand				Fines		
Connies	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	6.4	5.3	11.7	3.8	15.0	44.9	63.7			24.6

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.1091	0.2390	0.3163	0.8550	2,3216	6.0927	20.5580

Fineness
Modulus
1.88

Medium

Fine

Test Re	sults (ASTM (C136 & ASTM	D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
5/8"	100.0		
1/2"	98.8		
3/8"	96.3		
#4	85.9		
#10	59.8		
#20	38.2		
#40	22.8		
#60	16.9		
#100	13.2		
#200	10.1		
]	
The state of the s			
*			

Coarse

0.0

Fine

14.1

Coarse

26.1

37.0	12.7		10.1
Gray Poor	Materi ly Graded Sand	i al Descrip with Silt	tion
PL=	Atterberg Li LL=	mits (ASTI	M D 4318) PI=
USCS (D :		ssification AASHTO	<u>1</u> (M 145)= A-1-b
D ₉₀ = 5.83 D ₅₀ = 1.39 D ₁₀ =	Co 366 D ₈₅ = 220 D ₃₀ = C _u =	Defficients 4.5761 0.6066	D ₆₀ = 2.0134 D ₁₅ = 0.1958 C _c =
	I	Remarks	
- *****	ived: 11/19/13 d By: <u>TEP</u>	Date	Tested: 12/6/13
Checke	d By: JAM		
	Title:		

Silt

Clay

* (no specification provided)

0.0

Source of Sample: Boring E330-B-015 Sample Number: HMA#7567-24/S-13 Depth: 50'-50.5'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

12/10/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-015

Depth: 50'-50.5'

Oampie Humbe

Sample Number: HMA#7567-24/S-13

Material Description: Gray Poorly Graded Sand with Silt

Date Received: 11/19/13
USCS Classification: SP-SM

AASHTO Classification: A-1-b

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: TEP

Test Date: 12/6/13

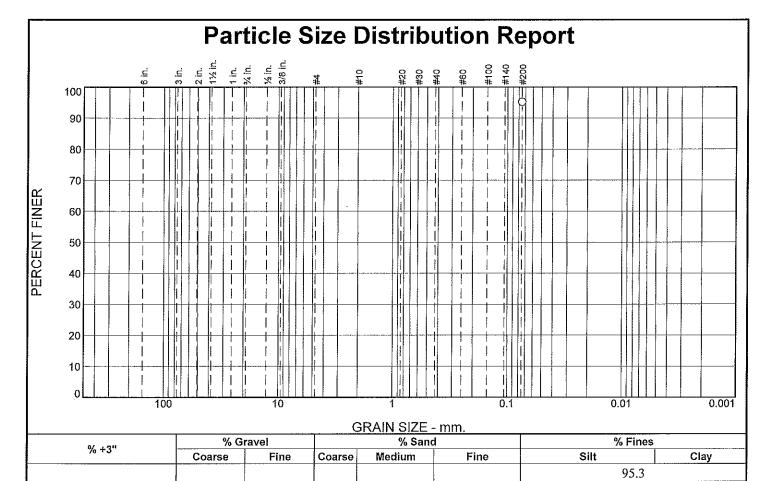
Checked By: JAM

Sleve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 394,50

Tare Wt. = 214.40

Minus #200 from wash = 10.2%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
414.90	214.40	5/8"	0.00	0.00	100.0
		1/2"	1421.60	1419.20	98.8
		3/8"	1488.30	1483.20	96.3
		#4	1376.90	1356.10	85.9
		#10	1565.90	1513.60	59.8
		#20	1109.40	1066.00	38.2
		#40	974.40	943.60	22.8
		#60	889.40	877.60	16.9
		#100	850.10	842.70	13.2
		#200	1025.10	1018.90	10.1

Fractional Components

Cobbles	Gravel			Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0,0	14.1	14.1	26.1	37.0	12.7	75.8			10.1

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.1958	0.3469	0.6066	1.3920	2.0134	3.7997	4.5761	5.8366	8.4456

Fineness Modulus 3.46

Test Re	esults (ASTM (C136 & ASTM	D1140)	Material Description
Opening Size	Percent Finer	Spec.* (Percent)	Pass? (X≃Fail)	Gray Clay
#200	95.3	(i o o o ii)		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
				Date Received: 11/19/13 Date Tested: 12/9/13 Tested By: TEP Checked By: JAM Title:

Source of Sample: Boring E330-B-015 Sample Number: HMA#7567-25/S-17

Depth: 70'-71.5'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA Project No: 12-450

12/10/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-015

Depth: 70'-71.5'

Material Description: Gray Clay

Date Received: 11/19/13

19/13

LL: 67

PI: 44

USCS Classification: CH

#200 Wash Method: ASTM D1140

Tested By: TEP

Test Date: 12/9/13

Sample Number: HMA#7567-25/S-17

Checked By: JAM

Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 218.80

PL: 23

Tare Wt. = 213.20

Minus #200 from wash = 95.3%

Dry

Sample and Tare (grams)

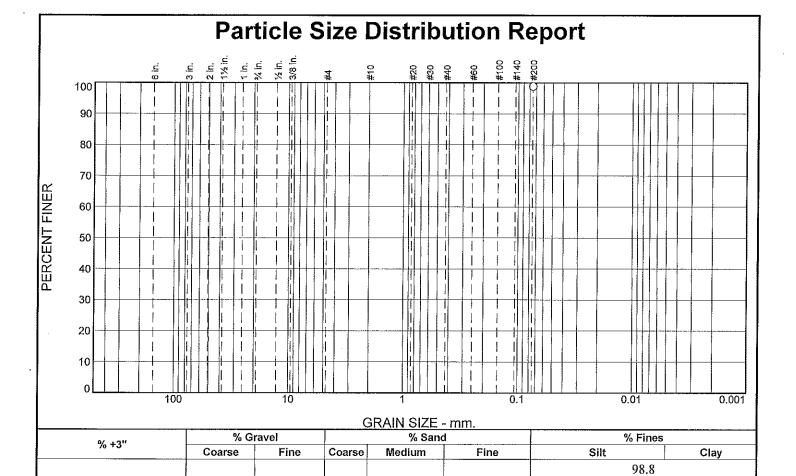
331.50

Tare (grams)

213.20

Sieve Opening Size

#200


Weight Retained (grams) Sieve Weight (grams)

Percent Finer 95.3

Fractional Components

Cobbles	Gravel			Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
										95.3

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

	TEST RI	SULTS	
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X≃Fail)
#200	98.8		
* ,			

	<u>Material</u>	Descripti	<u>ion</u>	
Gray Clay				
Atte	rberg Lim	its (ASTM	I D 4318)	
PL= 20	LL= 5	7	PI= 37	
	Class	sification		
USCS (D 2487)=		AASHTO	(M 145)=	
	Coo	fficients	,	
D ₉₀ =	D ₈₅ =	<u>mcients</u>	D ₆₀ =	
D ₅₀ =	D ₃₀ = C ₁₁ =		D ₁₅ = C ₀ =	
D ₁₀ =	Cu≖		Cc≡	
	Re	emarks		
Date Received:	11/19/13	Date T	'ested: 12/9/13	
Tested By:			x <i>m</i> // x <i>O</i>	
Checked By:	JAM			_
Title:				

* (no specification provided)

Source of Sample: Boring E330-B-015 Sample Number: HMA#7567-26/S-21 Depth: 90'-91.5'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

12/10/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-015

Depth: 90'-91.5'

Material Description: Gray Clay

PL: 20

LL: 57

PI: 37

Date Received: 11/19/13 USCS Classification: CH

#200 Wash Method: ASTM D1140

Tested By: TEP

Test Date: 12/9/13

Sample Number: HMA#7567-26/S-21

Checked By: JAM

Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 166.10

Tare Wt. = 164.90

Minus #200 from wash = 98.8%

Dry

Sample and Tare (grams)

266.00

Tare (grams)

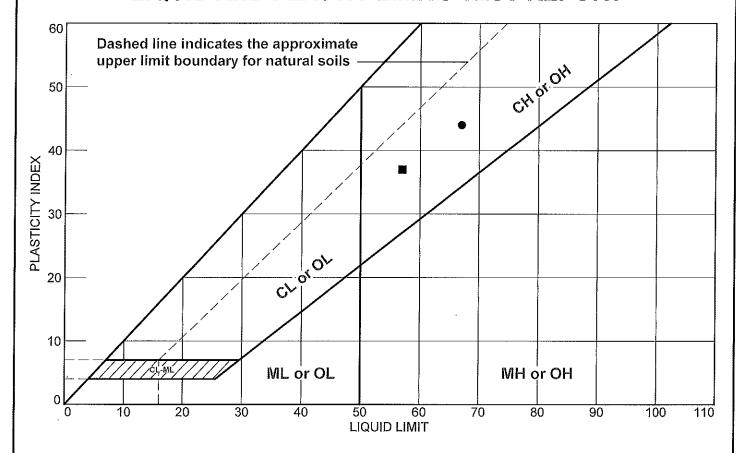
164.90

Sieve Opening Size

#200

Weight Retained (grams) Sieve Weight (grams)

Percent Finer 98.8


Fractional Components

Cohbles	Gravel			Sand				Fines		
Copples	Coarse	Fine	Total	Coarse		Fine	Total	Silt	Clay	Total
										98.8

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

Hayre McElroy & Associates, LLC _____

LIQUID AND PLASTIC LIMITS TEST REPORT

			SOIL DA	ATA			
SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS
Boring E330-B-015	HMA#7567-	70'-71.5'	28.8	23	67	44	CH
	25/S-17						
■ Boring E330-B-015	HMA#7567-	90'-91.5'	32.0	20	57	37	CH
	26/S-21						
						-	
				:			
						an and a second	

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No.: 12-450

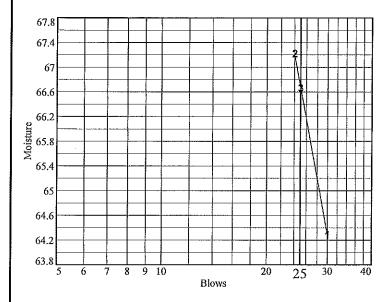
12/10/2013

LIQUID AND PLASTIC LIMIT TEST DATA

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-015


Depth: 70'-71.5'

Material Description: Gray Clay

USCS: CH Tested by: SR **Sample Number:** HMA#7567-25/S-17

Checked by: JAM

			(Eiguid) Eimited	ata		on.
Run No.	1	2	3	4	5	6
Wet+Tare	31.9	31.0	30.7			
Dry+Tare	23.8	23.0	22.9			
Tare	11.2	11.1	11.2			
# Blows	30	24	25			
Moisture	64.3	67.2	66.7			

Liquid Limit=_	67
Plastic Limit=	0.0
Plasticity Index= _	44
Natural Moisture=	28.8
Liquidity Index=_	0.1

77 - 37	SECTION OF THE SECTIO		Plastic Limit D	ata	
Run No.	1	2	3	4	
Wet+Tare	20.5	20.6	20.6		
Dry+Tare	19.2	19.3	19.3		
Tare	13.6	13.6	13.7		
Moisture	23.2	22.8	23.2		

		IVEIL	ansammentsmatesma
Wet+Tare	Dry+Tare	Tare	Moisture
365.6	331.5	213.2	28.8

Hayre McElroy & Associates, LLC _____

LIQUID AND PLASTIC LIMIT TEST DATA

12/10/2013

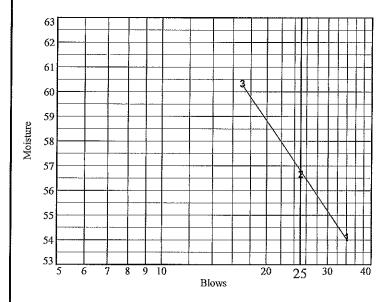
Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-015

Depth: 90'-91.5'

Material Description: Gray Clay

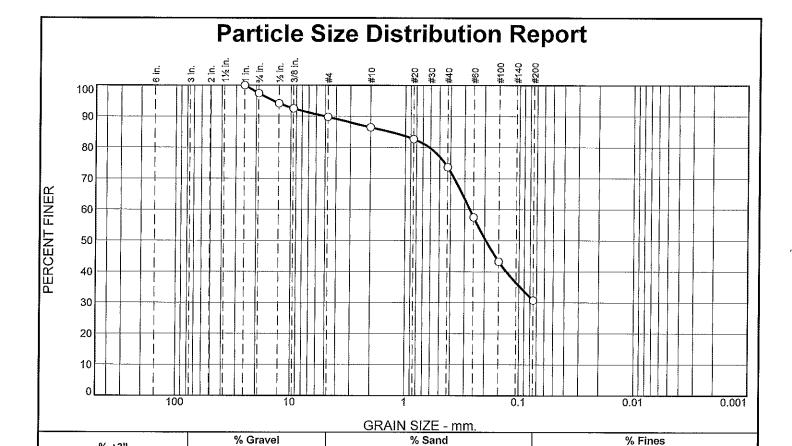

USCS: CH

Tested by: SR/TP

Sample Number: HMA#7567-26/S-21

Cha	cko	d h		IAM
une	cke	uυ	ν	JAW

Run No.	1	2	3	4	5	6
Vet+Tare	35.01	32.85	34.25			
Dry+Tare	26.6	25.0	25.5			
Tare	11.06	11.15	11.0			
# Blows	34	25	17			
Moisture	54.1	56.7	60.3			



Plastic Limit= 20	
Plastic Limit= 20	
Plasticity Index=37	
Natural Moisture= 32.0	
Liquidity Index= 0.3	

			Plastic Limit D	ata	
Run No.	1	2	3	4	
Wet+Tare	18.1	18.3	19.0		
Dry+Tare	17.0	17.1	17.6		
Tare	11.2	11,2	11.2		
Moisture	19.0	20.3	21.9		

Natural Moisture Data

Wet+Tare	Dry+Tare	Tare	Moisture
298.4	266.0	164.9	32.0

Medium

12.7

Fine

42.9

Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1"	100.0		
3/4"	97.4		
1/2"	94.2		
3/8"	92.5		
#4	89.8	-	
#10	86.4		
#20	82.7		-
#40	73.7		
#60	57.5		
#100	43.2		
#200	30.8		

Coarse

2.6

	<u>Material</u>	Description	<u>n</u>	
Olive Gray Sil		•	_	
Δ	tterberg Limi	ite (ASTM F	1/318)	
PL≔ <u>~</u>	LL=	ILO (AOTHI L	24310 <i>j</i> Pl=	
116C6 (D 2407		sification	1 45)= A-2-4(0	, I
03C3 (D 2407)- 5141	MI) OTHERA	145)= A-2-4(0	"
_	Coef	ficients		j
D ₉₀ = 5.0320 D ₅₀ = 0.1951	D ₈₅ = 1.3		$D_{60} = 0.2701$	
D ₅₀ = 0.1931 D ₁₀ =	D ₃₀ = C≡		D ₁₅ = C _c =	l
- 10	-u		-6	1
	Re	marks		
				[
Date Received	d: 11/19/13	Date Te	sted: 12/9/13	ļ
Tested By	y: TEP			
Checked By				——
Title	e:			1

Silt

30.8

Clay

(no specification provided)

% +3"

0.0

Source of Sample: Boring E330-B-016 Sample Number: HMA#7567-27/S-1

Depth: 2.5'-4.0'

Coarse

3.4

Fine

7.6

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

12/10/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-016

Depth: 2.5'-4.0'

Material Description: Olive Gray Silty Sand

Date Received: 11/19/13 USCS Classification: SM

Grain Size Test Method: ASTM C136

#200 Wash Method: ASTM D1140

Tested By: TEP

Test Date: 12/9/13

Sample Number: HMA#7567-27/S-1

AASHTO Classification: A-2-4(0)

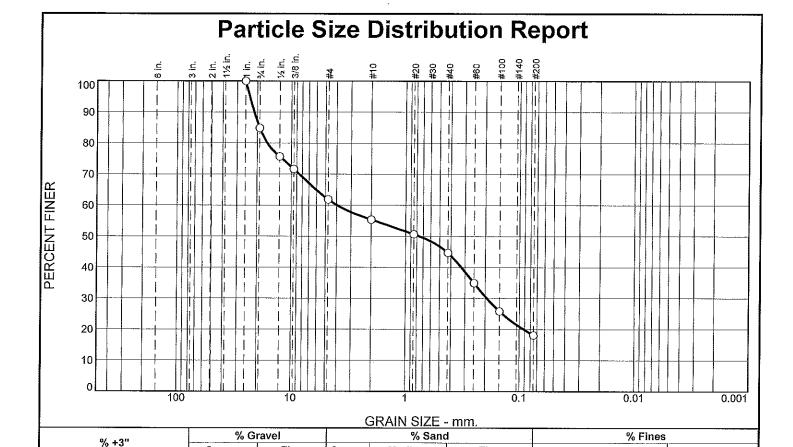
Checked By: JAM

Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 416.10

Tare Wt. = 118.00

Minus #200 from wash = 29.1%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
538.20	118.00	1"	0.00	0.00	100.0
		3/4"	1515.90	1505.00	97.4
		1/2"	1432.80	1419.30	94.2
		3/8"	1490.30	1483.30	92.5
		#4	1367.80	1356,30	89.8
		#10	1527.60	1513.50	86.4
		#20	1081.70	1065.90	82.7
		#40	981.50	943.60	73.7
		#60	945.50	877.60	57.5
		#100	902.70	842.70	43.2
		#200	1071.10	1018.80	30.8

Fractional Components

Cobbles		Gravel			Sa	nd			Fines	
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	2.6	7.6	10.2	3.4	12.7	42.9	59.0			30.8

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
		117		0.1951	0.2701	0.6173	1.3594	5.0320	14.2191

Fineness Modulus 1.62

Medium

10.6

Fine

26.6

Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X≔Fail
1"	100.0		
3/4"	84.8		
1/2"	75.7		
3/8"	71.6		
#4	61.8		
#10	55.3	-	
#20	50.6		
#40	44.7	İ	
#60	34.9		
#100	25.9		
#200	18.1		l
1			
			}
	•		
ļ			

Coarse

15.2

0.0

Fine

23.0

Coarse

6.5

Ol' O		Description	
Olive Gray :	Silty Sand with G	ravel	
PL=	Atterberg Limit LL=	ts (ASTM D 4318 Pi=	3)
USCS (D 24		<u>ification</u> AASHTO (M 145)=	: A-1-b
D ₉₀ = 21.286 D ₅₀ = 0.7614 D ₁₀ =	Coeff 50 D ₈₅ = 19. 4 D ₃₀ = 0.19 C _u =	Ficients 1279 D ₆₀ = 930 D ₁₅ = C _c =	3.9847
	Rer	narks	
Date Receiv Tested		Date Tested:	12/10/13
Checked			
Ti	tle:		

Silt

18.1

Clay

(no specification provided)

Source of Sample: Boring E330-B-016 Sample Number: HMA#7567-28/S-6 **Depth:** 15'-15.5'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

12/10/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-016

Depth: 15'-15.5'

Sample Number: HMA#7567-28/S-6

Material Description: Olive Gray Silty Sand with Gravel

Date Received: 11/19/13 USCS Classification: SM

AASHTO Classification: A-1-b

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: TEP

Test Date: 12/10/13

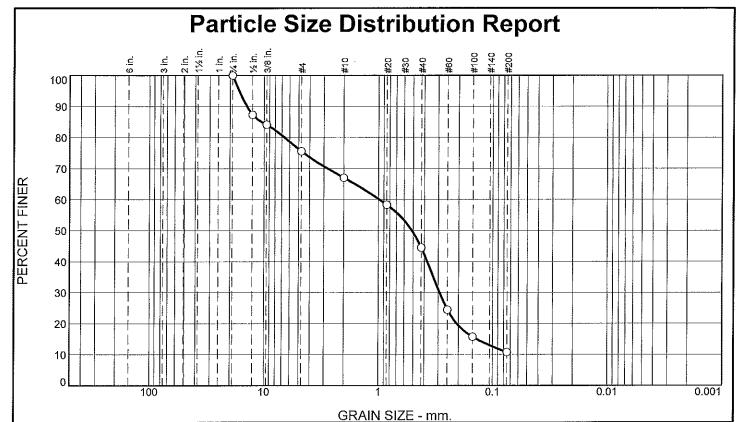
Checked By: JAM

Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 351.20

Tare Wt. = 115.90

Minus #200 from wash = 17.2%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
400.10	115.90	1"	0.00	0.00	100.0
		3/4"	1547.90	1504.80	84.8
		1/2 ⁿ	1445.20	1419.10	75.7
		3/8"	1494.50	1483.10	71.6
		#4	1384.10	1356.20	61.8
		#10	1531.80	1513.40	55.3
		#20	1079.40	1066.00	50.6
		#40	960.50	943.50	44.7
		#60	905.40	877.70	34.9
		#100	868.40	842.70	25.9
		#200	1041.00	1018.90	18.1

Fractional Components

Cobbles		Gravel			Sa	nd			Fines	
Connies	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	15.2	23.0	38.2	6.5	10.6	26.6	43.7			18.1

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
		0.0915	0.1930	0.7614	3.9847	16,3440		21.2860	23.3155

Fineness	
Modulus	
3.60	

9/ - 211	% Gravel			% Sand		% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	24.4	8.6	22.5	33.7	10.8	
Test Results (AST	M C136 & AS	TM D1140)			Mataria	A Description	

Test R	tesults (ASTM C	136 & ASTM	D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3/4"	100.0		
1/2"	87.3		
3/8"	84.1		
#4	75.6		
#10	67.0		
#20	58.3		
#40	44.5		
#60	24.5		
#100	15.7		
#200	10.8		

Material Description
Matchal Boothphols
Olive Gray Poorly Graded Sand with Silt and Gravel
Onvo Oray 1 0011y Gradou Band Willi Bit and Gravor
Attarhara Limita (ASTM D 4249)
Atterberg Limits (ASTM D 4318) PL= LL= PI=
<u>Classification</u>
USCS (D 2487)= SP-SM AASHTO (M 145)= A-1-b
Coefficients
$D_{90} = 14.2223$ $D_{85} = 10.6005$ $D_{60} = 0.9877$
$D_{50} = 0.5149$ $D_{30} = 0.2930$ $D_{15} = 0.1384$
D_{10} = C_{u} = C_{c} =
Remarks
Date Received: 11/19/13 Date Tested: 12/10/13
Tested By: TEP
Checked By: JAM
Title:
1 XUV-

Source of Sample: Boring E330-B-016 Sample Number: HMA#7567-29/S-14

Depth: 55'-55.5'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

⁽no specification provided)

12/10/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-016

Depth: 55'-55.5'

Sample Number: HMA#7567-29/S-14

Material Description: Olive Gray Poorly Graded Sand with Silt and Gravel

Date Received: 11/19/13 USCS Classification: SP-SM

AASHTO Classification: A-1-b

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: TEP

Test Date: 12/10/13

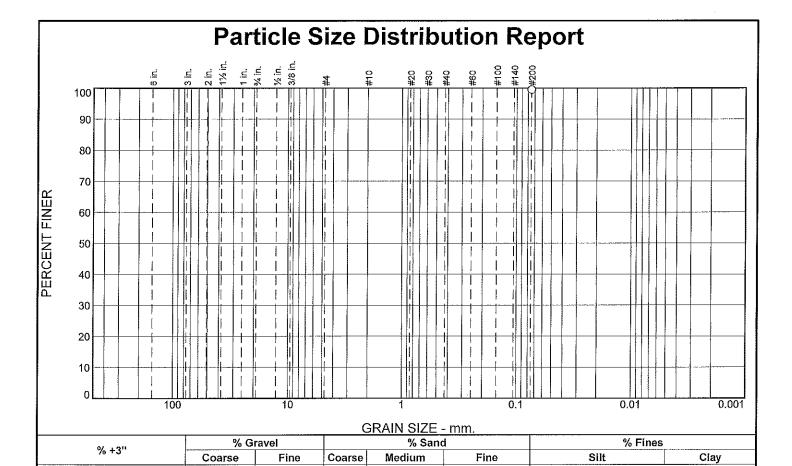
Checked By: JAM

Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 401.60

Tare Wt. = 198.00

Minus #200 from wash = 10.1%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
424.40	198.00	3/4"	0.00	0.00	100.0
		1/2"	1447.90	1419.20	87.3
		3/8"	1490.50	1483.20	84.1
		#4	1375.60	1356.30	75.6
		#10	1532.90	1513.50	67.0
		#20	1085.90	1066.10	58.3
		#40	974.80	943.60	44.5
		#60	922.80	877.50	24.5
		#100	862.40	842.60	15.7
		#200	1030.00	1018.80	10.8

Fractional Components

Calabia	Gravel			Sand				Fines		
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	24.4	24.4	8.6	22.5	33.7	64.8			10.8

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.1384	0.2079	0.2930	0.5149	0.9877	6,6487	10,6005	14.2223	16.6246

Fineness						
Modulus						
3.10						

Test Re	esults (ASTM (C136 & ASTM	D1140)	Material Description
Opening Size	Percent Finer	Spec.* (Percent)	Pass? (X≔Fail)	Gray Silt
#200	99.5	(Fercent)	(X-1 dil)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
				Date Received: 11/19/13 Date Tested: 12/10/13 Tested By: TEP Checked By: JAM Title:

Client: Golder Associates

Project No: 12-450

Project: Sound Transit East Link

Depth: 75'-76'

Source of Sample: Boring E330-B-016 Sample Number: HMA#7567-30/S-18

Hayre McElroy & Associates, LLC

Redmond, WA

99.5

Date Sampled:

12/11/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-016

Depth: 75'-76'

Material Description: Gray Silt

Date Received: 11/19/13

PL: 27

LL: 35

PI: 8

USCS Classification: ML

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: TEP

Test Date: 12/10/13

Sample Number: HMA#7567-30/S-18

Checked By: JAM

Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 32.00

Tare Wt. = 31.50

Minus #200 from wash = 99.5%

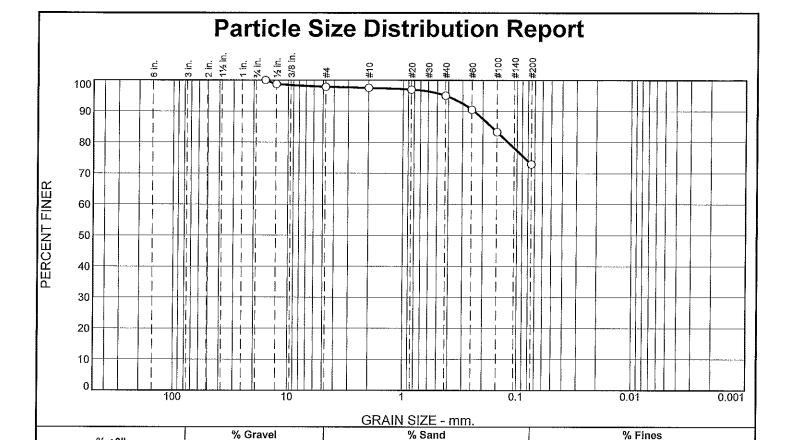
Dry

Sample and Tare Tare (grams) (grams) Sieve Opening Size Weight Retained (grams) Sieve Weight (grams)

Percent Finer

130.00

31.50


#200

99.5

Fractional Components

Cobbles	Gravel			Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
										99.5

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

Medium

2.5

Fine

22.1

Test Re	sults (ASTM (C136 & ASTM	D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
5/8"	100.0		
1/2"	98.7		
#4	97.8		
#10	97.5		
#20	97.0		
#40	95.0		
#60	90.5		
#100	83.3		
#200	72.9		
		İ	
ļ			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

Coarse

0.0

Gray Silt with Sa		<u>Description</u>	
Atter	berg Limit LL=	s (ASTM D 4: P	
USCS (D 2487)=		<u>fication</u> AASHTO (M 14	5)= A-4(0)
D ₉₀ = 0.2401 D ₅₀ = D ₁₀ =	Coeff D ₈₅ = 0.16 D ₃₀ = C _u =	<u>icients</u> 581 D ₆₀ D10 C _C :)= 5= =
	Ren	narks	
Date Received: 1		Date Teste	d: 12/10/13
Tested By: 1			
Checked By: J	AM		
Title: _			

Silt

72.9

* (no specification provided)

% +3"

0.0

Source of Sample: Boring E330-B-016 Sample Number: HMA#7567-31/S-21

Depth: 90'-91'

Coarse

0.3

Fine

2.2

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

Figure

Clay

Sample Number: HMA#7567-31/S-21

AASHTO Classification: A-4(0)

12/11/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-016

Depth: 90'-91'

Material Description: Gray Silt with Sand

Date Received: 11/19/13

USCS Classification: ML

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: TEP

TEP Test Date: 12/10/13

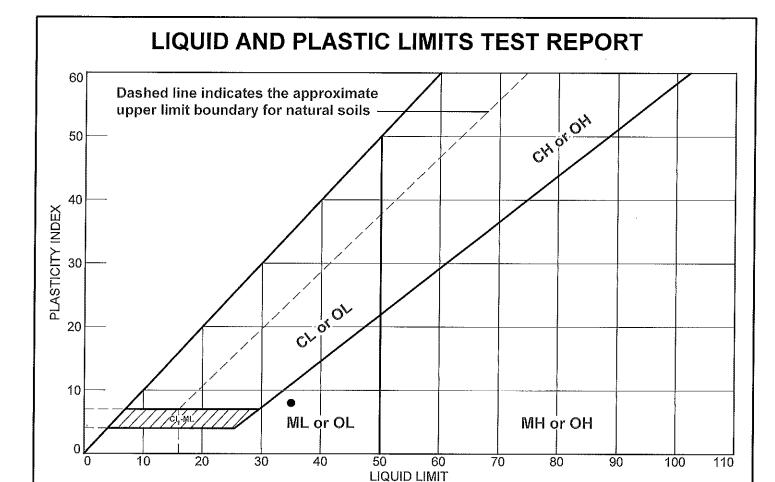
Checked By: JAM

Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 212.60

Tare Wt. = 113.80

Minus #200 from wash = 72.3%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
470.30	113.80	5/8"	0.00	0.00	100.0
		1/2"	1423.80	1419.20	98.7
		#4	1359.30	1356.20	97.8
		#10	1514.60	1513.40	97.5
		#20	1068.00	1066.10	97.0
		#40	950.50	943.60	95.0
		#60	893.90	877.70	90.5
		#100	868.50	842.80	83.3
		#200	1056.70	1019.80	72.9

Fractional Components

Ī	Cabbles	Gravel			Sand				Fines		
	Cobbles	Coarse	Fìne	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
	0.0	0.0	2.2	2.2	0.3	2.5	22.1	24.9			72.9

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
						0.1206	0.1681	0.2401	0.4223

Fineness Modulus 0.37

			SOIL DA	\TA			
SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs
Boring E330-B-016	HMA#7567- 30/S-18	75'-76'	23.7	27	35	8	ML

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No.: 12-450

Figure

Tested By: TEP

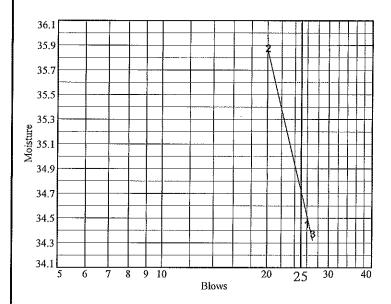
Checked By: JAM

12/11/2013

LIQUID AND PLASTIC LIMIT TEST DATA

Client: Golder Associates
Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-016

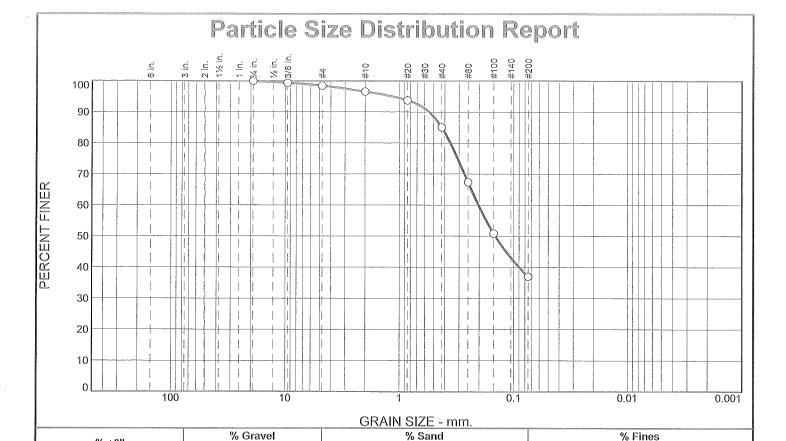

Depth: 75'-76'

Material Description: Gray Silt

USCS: ML Tested by: TEP **Sample Number:** HMA#7567-30/S-18

Checked by: JAM

			Liquid Limit Data							
Run No.	1	2	3	4	5	6				
Wet+Tare	27.2	29.0	26.5			1111				
Dry+Tare	23.1	24.3	23.2							
Tare	11.2	11.2	13.6							
# Blows	26	20	27							
Moisture	34.5	35.9	34.4							


Liquid Limit=_	35
Plastic Limit= _	27
Plasticity Index=_	8
Natural Moisture= _	23.7
Liquidity Index= _	-0.4

			Plastic Limit D	ata =	
Run No.	1	2	3	4	
Wet+Tare	17.3	17.2	16.6	1 11 2 3 11 3 11 3 11 3	
Dry+Tare	16.0	16.0	15.4		
Tare	11.2	11.1	11.2		
Moisture	27.1	24.5	28.6		

Natural Moisture Data

Wet+Tare	Dry+Tare	Tare	Moisture
153,3	130.0	31.5	23.7

_ Hayre McElroy & Associates, LLC _____

% +3)	Coarse	Fine	Coarse	Medium	Fine	Silt
0.0		0.0	1.5	1.9	11.5	48.1	
Test R	esults (ASTI	VI C136 & AS	STM D1140)			Materi	ial Description
Opening	Percent	Spec.	* Pas	s?	Gray Silty	-	
Size	Finer	(Percei	nt) (X=F	ail)			
3/4"	100.0		***************************************				
3/8"	99.4					<u> Atterberg Li</u>	imits (ASTM D
#4	98.5				PL=	Access access	
#10 #20	96.6 93.8					Cla	ssification
#40	85.1				USCS (D	2487)= SM	AASHTO (M
#60	67.3					Co	oefficients
#100	50.8				$D_{90} = 0.54$ $D_{50} = 0.14$	182 D ₈₅ =	0.4236 E
#200	37.0				$D_{50} = 0.14$	153 D ₃₀ =	0.4236 E
					D ₁₀ =	Cu≝	C
							Remarks

Gray Silty Sand	Material Desc	ription
<u>Atte</u> PL≡	rberg Limits (A LL= Classificat	Pl
USCS (D 2487)=		HTO (M 145)= A-4(0)
D ₉₀ = 0.5482 D ₅₀ = 0.1453 D ₁₀ =	Coefficier D ₈₅ = 0.4236 D ₃₀ = C _u = Remarks	D ₆₀ = 0.2029 D ₁₅ = C _c =
Date Received: Tested By:		ate Tested: 6/11/13
Checked By: Title:	JAM	

(no specification provided)

% +3"

Source of Sample: Boring E330-B-17 Sample Number: HMA#7514-39/S-2

Depth: 12.5'-13'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

Figure

Clay

37.0

6/17/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-17

Depth: 12.5'-13'

Sample Number: HMA#7514-39/S-2

Material Description: Gray Silty Sand

Date Received: 5/30/13 USCS Classification: SM

AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM C136 **#200 Wash Method:** ASTM D1140

Tested By: JF/TP

Test Date: 6/11/13

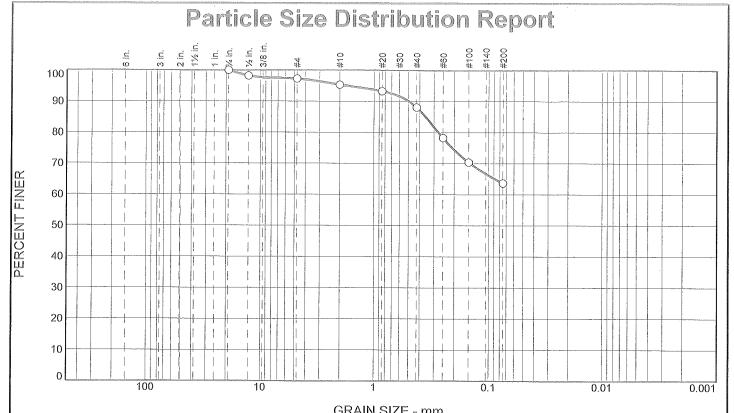
Checked By: JAM

Slavellosene

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 277.30

Tare Wt. = 113.20

Minus #200 from wash = 35.9%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
369.30	113.20	3/4"	0.00	0.00	100.0
		3/8"	1485.10	1483.60	99.4
		#4	1359.20	1356.80	98.5
		#10	1519.20	1514.30	96.6
		#20	1074.20	1067.00	93.8
		#40	966.70	944.50	85.1
		#60	923.70	878.20	67.3
		#100	885.30	843.10	50.8
		#200	1055.00	1019.50	37.0

Secretarian de Composiciones

Cobbles	Gravel			Sand					Fines	
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	1.5	1.5	1.9	11.5	48.1	61.5			37.0

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.1453	0.2029	0.3569	0.4236	0.5482	1.1396

Fineness Modulus 0.94

				IVALLA OICE	111111.			
o/, #3"	% +3" % Gravel		% Sand			% Fines		
70.0	Coarse	Fine	Coarse	Coarse Medium Fine		Silt	Clay	
0.0	0.0	2.7	1.9	7.3	24.5	63.6		
		U						

	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3/4"	100.0		
1/2"	98.2		
#4	97.3		
#10	95.4		
#20	93.3		
#40	88.1		
#60	78.2		
#100	70.4		
#200	63.6		

Gray Sandy Silt	Material Description	
PL=	erberg Limits (ASTM D 4318 LL= PI=).
USCS (D 2487)=	Classification ML AASHTO (M 145)=	A-4(0)
D ₉₀ = 0.4963 D ₅₀ = D ₁₀ =	$\begin{array}{c c} & \textbf{Coefficients} \\ \textbf{D_{85}} = 0.3542 & \textbf{D_{60}} = \\ \textbf{D_{30}} = & \textbf{D_{15}} = \\ \textbf{C_{u}} = & \textbf{C_{c}} = \\ \end{array}$	
	Remarks	
Date Received: Tested By:		6/11/13
Checked By:	JAM	
Title:		

(no specification provided)

Source of Sample: Boring E330-B-17 Sample Number: HMA#7514-40/S-4

Depth: 20'-20.4'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

6/17/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-17

Depth: 20'-20.4'

Sample Number: HMA#7514-40/S-4

Material Description: Gray Sandy Silt

Date Received: 5/30/13 USCS Classification: ML

AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/11/13

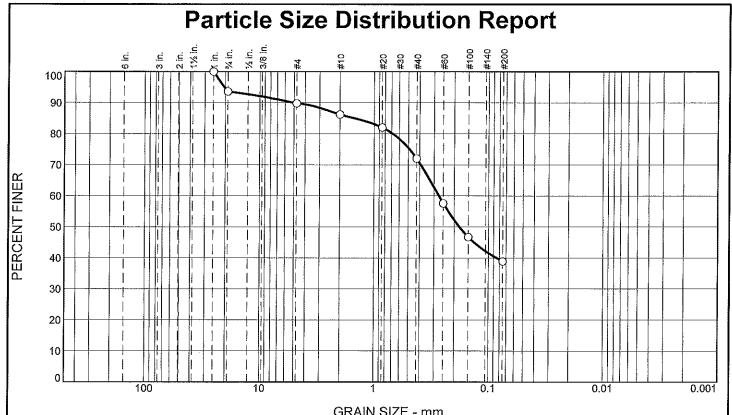
Checked By: JAM

Stovalled Date

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 676.00

Tare Wt. = 595.70

Minus #200 from wash = 61.9%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
806.70	595.70	3/4"	0.00	0.00	100.0
		1/2"	1423.20	1419.50	98.2
		#4	1359.00	1357.00	97.3
		#10	1518.50	1514.40	95.4
		#20	1071.60	1067.20	93.3
		#40	955.80	944.80	88.1
		#60	899.00	878.30	78.2
		#100	860.00	843.40	70.4
		#200	1033.90	1019.70	63.6

SEVERILLA VICE TO VICE

Cobbles		Gravel		Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	2.7	2.7	1.9	7.3	24.5	33.7			63.6

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
						0.2740	0.3542	0.4963	1.7128

Fineness Modulus 0.71

% +3"	% Gı	ravel		% Sanc	i	% Fines		
76 T3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	6.4	3.9	3.5	14.2	33,2	38.8		

Test Results (ASTM C136 & ASTM D1140)								
Opening	Percent	Spec.*	Pass?					
Size	Finer	(Percent)	(X≃Fail)					
1"	100.0							
3/4"	93.6							
#4	89.7							
#10	86.2							
#20	82.0							
#40	72.0							
#60	57.6							
#100	46.7							
#200	38.8							
-								
-								
İ								

	Material Desc	ription
Gray Silty Sand		
Atte	rberg Limits (AS	STM D 4318)
PL≕	LL=	PI=
USCS (D 2487)=	Classificat SM AASH	<u>ion</u> TO (M 145)= A-4(0)
D ₉₀ = 5.1177 D ₅₀ = 0.1804 D ₁₀ =	Coefficien D ₈₅ = 1.5104 D ₃₀ = C _u =	D ₆₀ = 0.2733 D ₁₅ = C _c =
	Remarks	
Date Received: 5		te Tested: 6/11/13
Checked By: J	IAM	
Title:		

Source of Sample: Boring E330-B-017 Sample Number: HMA#7514-41/S-9

Depth: 45'-45.4'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

^{* (}no specification provided)

11/13/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-017

Depth: 45'-45,4'

1

Sample Number: HMA#7514-41/S-9

Material Description: Gray Silty Sand

Date Received: 5/30/13 USCS Classification: SM

AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/11/13

Checked By: JAM

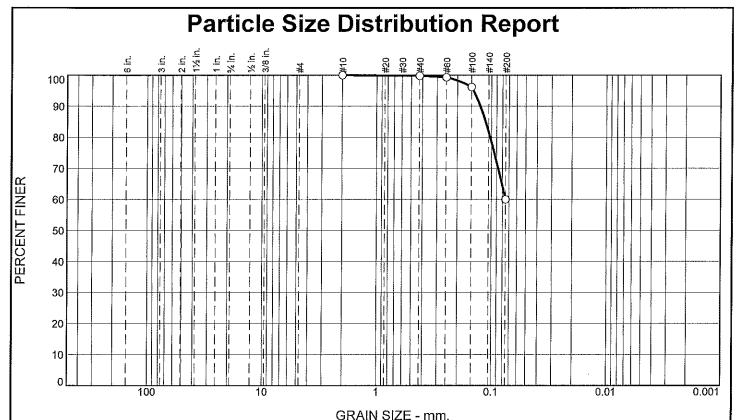
Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 755.70

Tare Wt. = 621.40

Minus #200 from wash = 38.7%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
840.60	621.40	1"	0.00	0.00	100.0
		3/4"	1433.60	1419.50	93.6
		#4	1365.30	1356.90	89.7
		#10	1522.20	1514.40	86.2
		#20	1076.20	1067.00	82.0
		#40	966.30	944.40	72.0
		#60	909.80	878.20	57.6
		#100	867.00	843.10	46.7
		#200	1036.80	1019.60	38.8


Fractional Components

Cobbles	Gravel Sand					Fines	•			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	6.4	3.9	10.3	3.5	14.2	33.2	50.9			38.8

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.1804	0.2733	0.6874	1.5104	5.1177	20.4828

Fineness Modulus	
1.66	

Hayre McElroy & Associates, LLC

% +3"	% Gr	avel	% Sand			% Fines	
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.0	0.0	0.2	39.8	60.0	

	Test R	tesults (ASTM C	136 & ASTM	D1140)
	Opening	Percent	Spec.*	Pass?
	Size	Finer	(Percent)	(X=Fail)
Ī	#10	100.0		
	#40	99.8		
	#60	99.3		
	#100	96.2		
	#200	60.0		
-				
L				

0,2	37.0	00.0
	<u>Material</u>	l Description
Gray Silt		
PL=	Atterberg Lim	nits (ASTM D 4318) Pí=
, L-		• •
USCS (D 2		<u>sification</u> AASHTO (M 145)= A-4(0)
D ₉₀ = 0.12 D ₅₀ = D ₁₀ =		efficients 1129 D ₆₀ = 0.0750 D ₁₅ = C _c =
	Re	emarks
Date Rece	ived: 5/30/13	Date Tested: 6/11/13
	i By: JF/TP	2410 1 0010W1 0/11(15
Checked	l By: JAM	
•	Γitle:	

(no specification provided)

Source of Sample: Boring E330-B-017 Sample Number: HMA#7514-42/S-14 Depth: 70'-71'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

11/13/2013

GRAIN SIZE DISTRIBUTION TEST DATA

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-017

Depth: 70'-71'

Material Description: Gray Silt

Date Received: 5/30/13 USCS Classification: ML

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: JF/TP

Sample Number: HMA#7514-42/S-14

AASHTO Classification: A-4(0)

Test Date: 6/11/13

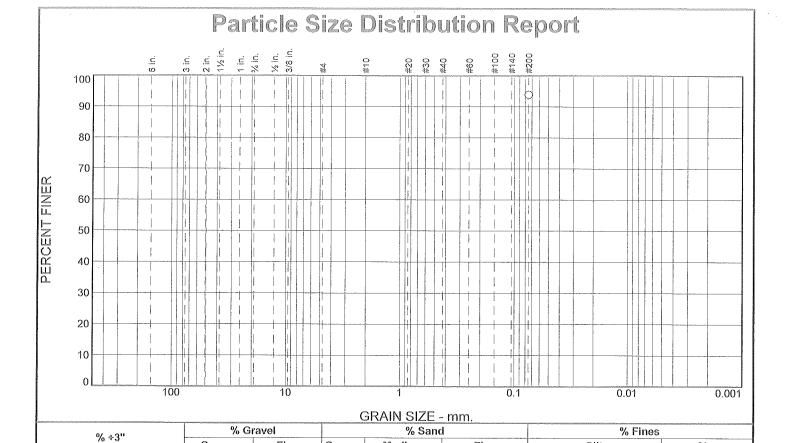
Checked By: JAM

Sieve Test Data

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 382.00

Tare Wt. = 213.10

Minus #200 from wash = 47.6%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
535.70	213.10	#10	0.00	0.00	100.0
		#40	945.10	944.50	99.8
		#60	879.60	878.00	99.3
		#100	853.20	843,10	96.2
		#200	1136.30	1019.50	60.0

Fractional Components

Cobbles	Gravel			Sand				Fines		
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	0.2	39.8	40.0			60.0

	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
1						0.0750	0.1031	0.1129	0.1254	0.1437

Fineness Modulus 0.05

Medium

Fine

Silt

Clay

				93.9
	TEST R	ESULTS		Material Description
Opening Size #200	Percent Finer 93.9	Spec.* (Percent)	Pass' (X=Fai	Gray Clay
#200	93.9			PL= 25 Atterberg Limits (ASTM D 4318) PL= 16
				Classification USCS (D 2487)= CL or OL AASHTO (M 145)=
į				$\begin{array}{c cccc} & & & & & & & & \\ D_{90} = & & D_{85} = & & D_{60} = \\ D_{50} = & & D_{30} = & & D_{15} = \\ D_{10} = & & C_u = & & C_c = \\ \end{array}$
				Remarks
1			ndata	Date Received: 5/30/13 Date Tested: 6/11/ Tested By: JF/TP
				Checked By: JAM Title:

Coarse

Source of Sample: Boring E330-B-17 Sample Number: HMA#7514-43/S-17

Depth: 85'-85.8'

Date Sampled:

Hayre McElroy & Associates, LLC

Coarse

Fine

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

GRAIN SIZE DISTRIBUTION TEST DATA

6/17/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-17

Depth: 85'-85.8'

Material Description: Gray Clay

Date Received: 5/30/13

PL: 25

LL: 41

PI: 16

USCS Classification: CL or OL #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/11/13

Sample Number: HMA#7514-43/S-17

Checked By: JAM

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 35.50

Tare Wt. = 31.20

Minus #200 from wash = 93.9%

Dry

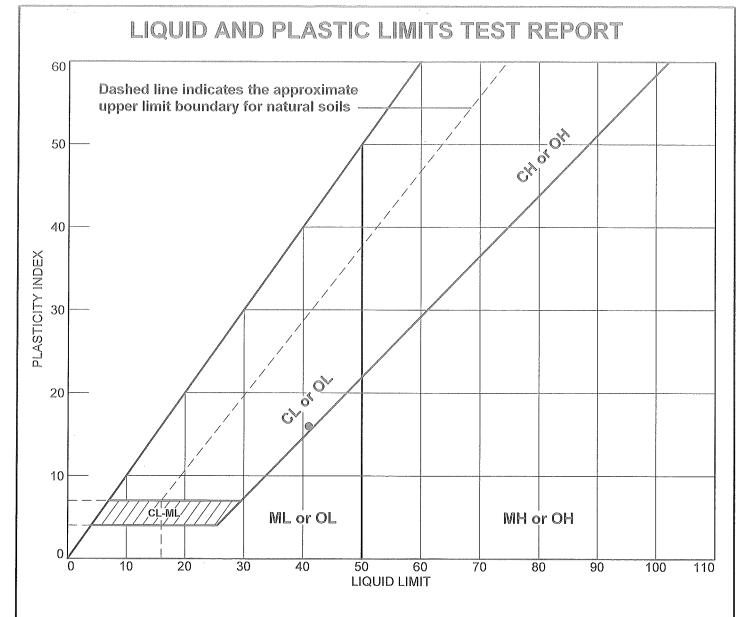
Sample and Tare (grams)

Tare (grams)

Sieve Opening Size

Weight Retained (grams)

Sieve Weight (grams)


Percent Finer

101.90 31.20 #200

93.9

Cobbles	Gravel			Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
									-	93.9

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	1								

				SOIL DATA	1			
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS
•	Boring E330-	HMA#7514-	85'-85.8'	22.6	25	41	16	CL or OL
	B-17	43/S-17						

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No.: 12-450

Figure

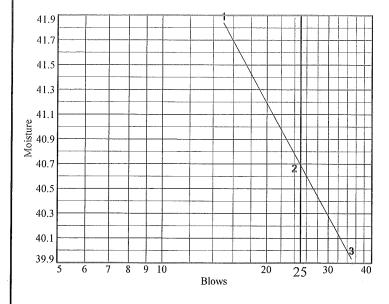
Tested By: JF/TP

Checked By: JAM

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-17

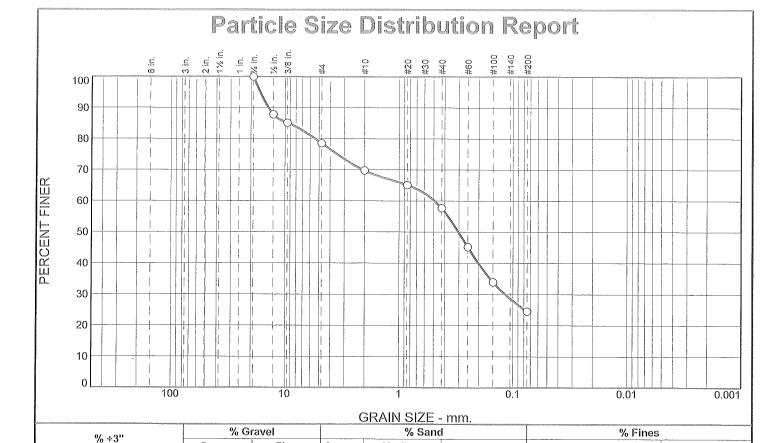

Depth: 85'-85.8'

Material Description: Gray Clay

USCS: CL or OL Tested by: JF/TP Sample Number: HMA#7514-43/S-17

Checked by: JAM

			– Liepie Limited			
Run No.	1	2	3	4	5	6
Wet+Tare	34.8	34.8	35.9			
Dry+Tare	28.6	28.7	29.5			
Tare	13.8	13.7	13.5			
# Blows	15	24	35			
Moisture	41.9	40.7	40.0			



Liquid Limit= _	41
Plastic Limit=	25
Plasticity Index=	16
Natural Moisture=	22.6
Liquidity Index= _	-0.1

100 (100 (100 (100 (100 (100 (100 (100			Plastic Limit D	aka di sambana da ka	
Run No.	1	2	3	4	
Wet+Tare	18.4	18.1	19.2		
Dry+Tare	17	16.7	17.6		
Tare	11.3	11.3	11.2		TOTAL CONTRACTOR OF THE PARTY O
Moisture	24.6	25.9	25.0		

Newspell Westskure Dese

Wet+Tare	Dry+Tare	Tare	Moisture
117.9	101.9	31.2	22.6

Medium

Fine

f			
Test R	esults (ASTM C	136 & ASTM I	D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X≡Fail)
3/4"	100.0		
1/2"	87.8		
3/8"	85.1		
#4	78.6		
#10	69.7		
#20	65.1		
#40	57.7		
#60	45.2		
#100	34.0		
#200	24.5		
*			**************************************

Coarse

0.0

0.0

Fine

21.4

Coarse

8.9

12.0	33.2	24.5					
Olive Brov	<u>Mater</u> wn Silty Sand W	ial Description V/Gravel					
PL=	Atterberg L LL=	imits (ASTM D 4318) PI=					
USCS (D 2		assification AASHTO (M 145)= A-2-4(0)					
D ₉₀ = 14.0 D ₅₀ = 0.30 D ₁₀ =	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
		Remarks					
	ived: 5/30/13	Date Tested: 6/11/13					
	d By: JF/TP						
	d By: JAM Title:						

Silt

Clay

(no specification provided)

Source of Sample: Boring E330-B-18 Sample Number: HMA#7514-44/S-3

Depth: 5'-6.5'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

GRAIN SIZE DISTRIBUTION TEST DATA

6/17/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-18

Depth: 5'-6.5'

Material Description: Olive Brown Silty Sand W/Gravel

Date Received: 5/30/13 **USCS Classification: SM**

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: JF/TP

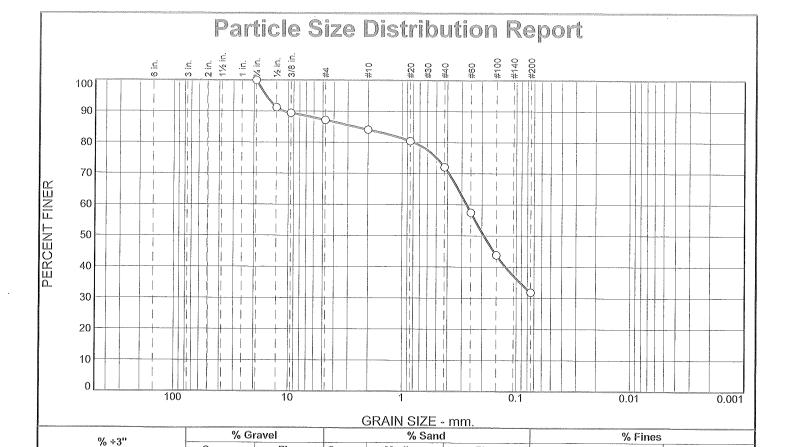
Test Date: 6/11/13

Sample Number: HMA#7514-44/S-3

AASHTO Classification: A-2-4(0)

Checked By: JAM

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 360.90 Tare Wt. = 118.30


Minus #200 from wash = 23.5%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
435.50	118.30	3/4"	0.00	0.00	100.0
		1/2"	1458.10	1419.50	87.8
		3/8"	1492.20	1483.60	85.1
		#4	1377.70	1356.90	78.6
		#10	1542.40	1514.40	69.7
		#20	1081.80	1067.10	65.1
		#40	968.20	944.60	57.7
		#60	917.80	878.20	45.2
		#100	878.70	843.10	34.0
		#200	1049.60	1019.70	24.5

Cobbles	Gravel				Sa	nd	Fines			
	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	21.4	21.4	8.9	12.0	33.2	54.1			24.5

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.1171	0.3027	0.4894	5.4055	9.3479	14.0286	16.5450

Fineness
Modulus
2.52

Medium

12.0

Fine

40.3

Test Re	esults (ASTM C	136 & ASTM	D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X≕Fail)
3/4"	100.0		
1/2"	91.2		
3/8"	89.4		
#4	87.2		
#10	84.1		
#20	80.4		
#40	72.1		
#60	57.5		
#100	43.8		
#200	31.8		
* .	cification provide		

Coarse

0.0

0.0

Fine

12.8

Coarse

3.1

	The second secon	
Gray Brown Silt	Material Description / Sand	
Atte	rberg Limits (ASTM D 4318) LL= PI=	
USCS (D 2487)=	Classification SM AASHTO (M 145)= A-2-4	ł(0)
D ₉₀ = 10.9918 D ₅₀ = 0.1924 D ₁₀ =	Coefficients D ₈₅ = 2.5968 D ₃₀ = C _u = D ₆₀ = 0.2720 D ₁₅ = C _c =	
	Remarks	
Bake Basel and		
Date Received: Tested By:		3
Checked By:		
Title:	•	

Silt

31.8

Clay

(no specification provided)

Source of Sample: Boring E330-B-18 Sample Number: HMA#7514-45/S-6

Depth: 12.5'-13.8'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

GRAIN SIZE DISTRIBUTION TEST DATA

6/17/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-18

Depth: 12.5'-13.8'

Sample Number: HMA#7514-45/S-6

Material Description: Gray Brown Silty Sand

Date Received: 5/30/13 USCS Classification: SM

AASHTO Classification: A-2-4(0)

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/12/13

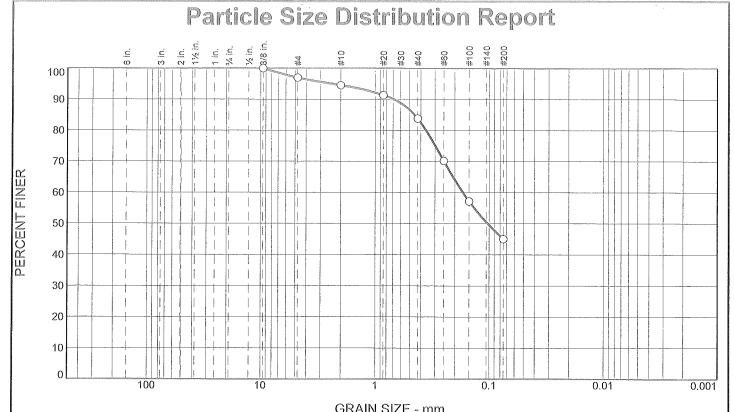
Checked By: JAM

Stoye Toak barr

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 438.70

Tare Wt. = 120.30

Minus #200 from wash = 31.3%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
583.80	120.30	3/4"	0.00	0.00	100.0
		1/2"	1459.90	1419.30	91.2
		3/8"	1491.80	1483.50	89.4
		#4	1367.40	1356.80	87.2
		#10	1528.30	1514.00	84.1
		#20	1084.00	1067.10	80.4
		#40	983.30	944.60	72.1
		#60	945.90	878.20	57.5
		#100	906.60	843.20	43.8
		#200	1075.00	1019.60	31.8

Figuritation of Esperate Control of Control

Cobbles	Gravel			Sand				Fines		
CODDIES	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	12.8	12.8	3.1	12.0	40.3	55.4			31.8

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.1924	0.2720	0.7946	2.5968	10.9918	15.5986

Fineness Modulus 1.72

	OTO AIN OIGE - IIIII.								
% +3"	% Gravel		% Sand			% Fines			
78 13	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay		
0.0	0.0	3.0	2.5	10.7	38.8	45.0			
10.000000000					The second secon		AND THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF TH		

Test Re	esults (ASTM C	γ	D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3/8"	100.0		
#4	97.0		
#10	94.5		
#20	91.4		
#40	83.8		
#60	70.2		
#100	57.2		
#200	45.0		

	Material D)escriptio	o <u>n</u>	
Gray Silty Sand		•		
Atte	rberg Limit	s (ASTM	D 4318)	
PL=		<u> </u>	Ple	
	Classi	SingAin.		
USCS (D 2487)=		fication	VI 145)= A-4(0)
0000 (0 2401)		•	M 149) - V-4(0)
D 0.000		<u>icients</u>	D 01606	ł
D ₉₀ = 0.6863 D ₅₀ = 0.1026	D ₈₅ = 0.45	522	D ₆₀ = 0.1696	
D ₁₀ = 0.1020	D ₃₀ = C ₁₁ =		D ₁₅ = C _c =	
10	•		· ·	
	Rem	narks		
Date Received:	5/30/13	Date To	ested: 6/12/1	.3
Tested By:	JF/TP			
Checked By:	JAM			
Title:				

(no specification provided)

Source of Sample: Boring E330-B-18 Sample Number: HMA#7514-46/S-12

Depth: 40'-40.3'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

GRAIN SIZE DISTRIBUTION TEST DATA

6/17/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-18

Depth: 40'-40.3'

Sample Number: HMA#7514-46/S-12

Material Description: Gray Silty Sand

Date Received: 5/30/13 USCS Classification: SM

AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/12/13

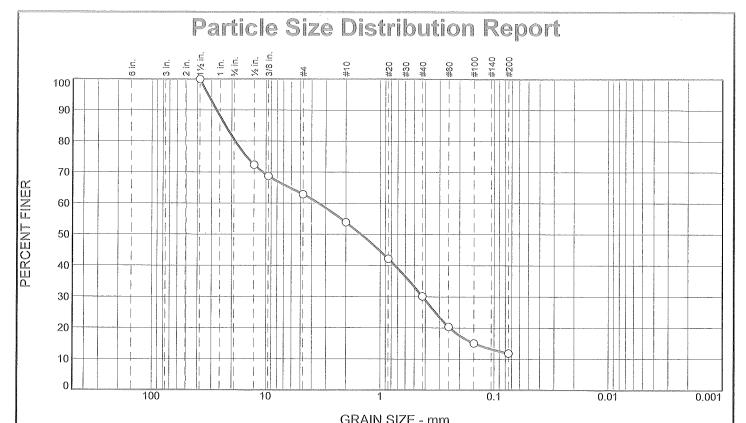
Checked By: JAM

HSTOWN (CONTRACTOR

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 302.50

Tare Wt. = 199.00

Minus #200 from wash = 44.1%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
384.00	199.00	3/8"	0.00	0.00	100.0
		#4	1362.60	1357.00	97.0
		#10	1518.90	1514.40	94.5
		#20	1072.90	1067.00	91.4
		#40	958.50	944.60	83.8
		#60	903.50	878.20	70.2
		#100	867.10	843.10	57.2
		#200	1042.10	1019,60	45.0

Eschelionelli campanancia

Cobbles	Gravel			Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	3.0	3.0	2.5	10.7	38.8	52.0	·		45.0

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.1026	0.1696	0.3585	0.4522	0.6863	2.3889

Fineness	
Modulus	
0.94	
	ė

				IV VIII VIELE	111111.		
% +3"	% Gr	% Gravel		% Sand		% Fines	
70 T 3	Coarse	Fine	Coarse	Medium	Fine		Clay
0.0	19.4	17.7	9.0	23.8	18.3	11.8	
Test Results (ASTM C136 & AS	TM D1140)			Motorial	Description	

Test R	D1140)		
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1 1/2"	100.0		
1/2"	72.4		
3/8"	68.8		
#4	62.9		
#10	53.9		
#20	42.2		
#40	30.1		
#60	20.3		
#100	15.1		
#200	11.8		

	Material Description
Gray Poorly Graded	d Sand W/Silt & Gravel
Atterb PL= USCS (D 2487)= S	oerg Limits (ASTM D 4318) LL= PI= Classification SP-SM AASHTO (M 145)= A-1-b Coefficients
D ₉₀ = 27.1412 D ₅₀ = 1.4694	D ₈₅ = 22.6610 D ₆₀ = 3.4824 D ₁₅ = 0.1484 C _u = C _c =
D ₁₀ =	$C_{u}^{\circ} = C_{c}^{\circ}$
	Remarks
Date Received: 5/3	5 0.15 Santa 1 0 0 0 0 0 1 0 7 1 27 1 5
Tested By: JF	7/TP
Checked By: JA	AM
Title:	

(no specification provided)

Source of Sample: Boring E330-B-18 Sample Number: HMA#7514-47/S-17

Depth: 65'-65.5'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

GRAIN SIZE DISTRIBUTION TEST DATA

6/17/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-18

Depth: 65'-65.5'

Sample Number: HMA#7514-47/S-17

Material Description: Gray Poorly Graded Sand W/Silt & Gravel

Date Received: 5/30/13

USCS Classification: SP-SM

AASHTO Classification: A-1-b

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/12/13

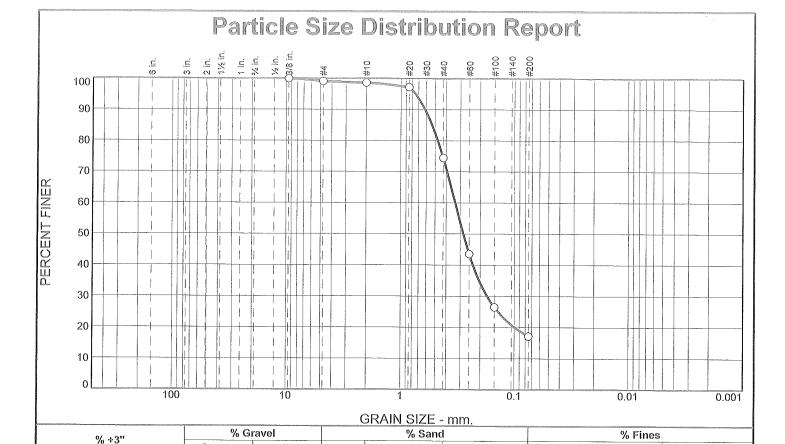
Checked By: JAM

Steva Feel and

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 258.60

Tare Wt. = 114.10

Minus #200 from wash = 11.5%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
277.30	114.10	1 1/2"	0.00	0.00	100.0
		1/2"	1464.60	1419.50	72.4
		3/8"	1489.60	1483.70	68.8
		#4	1366.50	1356.90	62.9
		#10	1529.10	1514.40	53.9
		#20	1086.10	1067.10	42.2
		#40	964.20	944.50	30.1
		#60	894.10	878.10	20.3
		#100	851.70	843.10	15.1
		#200	1024.80	1019.50	11.8

Transform Compounding

Cobbles		Gravel	***************************************		Sa	nd	Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	19.4	17.7	37.1	9.0	23.8	18.3	51.1			11.8

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅	
	0.1484	0.2442	0.4218	1.4694	3.4824	18.6054	22.6610	27.1412	32.2202	

Fineness	
Modulus	
4.10	

Medium

Fine

		C136 & ASTM	
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3/8"	100.0		
#4	99.1		
#10	98.7		
#20	97.2		
#40	74.4		
#60	43.5		
#100	26.5		
#200	17.1		
		1	

Coarse

0.0

0.0

Fine

0.9

Coarse

0.4

24.3	57.3	17.1
Gray Brow	Materi vn Silty Sand	ial Description
PLs	Atterberg Li LL=	imits (ASTM D 4318) PI=
USCS (D 2	<u>Cla</u> 2487)= SM	assification AASHTO (M 145)= A-2-4(0)
D ₉₀ = 0.61 D ₅₀ = 0.28 D ₁₀ =	49 Dor=	oefficients 0.5334 D ₆₀ = 0.3327 0.1738 D ₁₅ = c _c =
		Remarks
	ived: 5/30/13	Date Tested: 6/12/13
	d By: JAM	
	Title:	
300000000000000000000000000000000000000		472.77

Silt

Clay

(no specification provided)

Source of Sample: Boring E330-B-18 Sample Number: HMA#7514-48/S-21

Depth: 85'-85.5'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

Project No: 12-450

GRAIN SIZE DISTRIBUTION TEST DATA

6/17/2013

Client: Golder Associates

Project: Sound Transit East Link

Project Number: 12-450 Location: Boring E330-B-18

Depth: 85'-85.5'

Sample Number: HMA#7514-48/S-21

Material Description: Gray Brown Silty Sand

Date Received: 5/30/13 USCS Classification: SM

AASHTO Classification: A-2-4(0)

Grain Size Test Method: ASTM C136 #200 Wash Method: ASTM D1140

Tested By: JF/TP

Test Date: 6/12/13

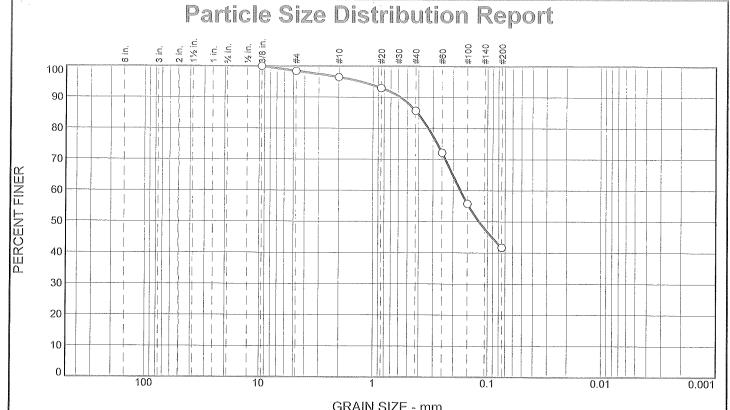
Checked By: JAM

Steve Toal Disa

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 304.10

Tare Wt. = 217.30

Minus #200 from wash ≈ 16.9%


Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
321.80	217.30	3/8"	0.00	0.00	100.0
		#4	1357.70	1356.80	99.1
		#10	1514.80	1514.30	98.7
		#20	1068.50	1067.00	97.2
		#40	968.20	944.40	74.4
		#60	910.40	878.10	43.5
		#100	860.90	843.10	26.5
		#200	1029.30	1019.50	17.1

Historian il Componint

Cobbles		Gravel			Sa	nd	Fines			
	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.9	0.9	0.4	24.3	57.3	82.0			17.1

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
		0.0989	0.1738	0.2818	0.3327	0.4748	0.5334	0.6149	0.7470

Fineness Modulus 1.35

% ÷3"	% Gr	avel		% Sand		% Fines		
70 , 9	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	0.0	1.6	1.9	10.8	44.0	41.7	1	

	esults (ASTM C		D1140)		
Opening	Percent	Spec.*	Pass?		
Size	Finer	(Percent)	(X=Fail)		
3/8"	100.0				
#4	98.4				
#10	96.5				
#20	93.0				
#40	85.7				
#60	72.2				
#100	55.8				
#200	41.7				

	<u>Materia</u>	l Descripti	ion
Olive Brown Sil	ty Sand		
0.44		/A OTB	I D 4040)
PL= Atte	r <u>perg Lin</u> LL=	<u>its (ASTM</u>	<u> D 4318)</u> P =
	Clas	eification	
USCS (D 2487)=		sification AASHTO	(M 145)= A-4(0)
	Coe	efficients	
D ₉₀ = 0.5771 D ₅₀ = 0.1186	$D_{85} = 0.$		$D_{60} = 0.1726$
D ₅₀ = 0.1186 D ₁₀ =	D ₃₀ =		D ₁₅ = C _c =
~ 10	Ca .	emarks	⊕C
	rx.	emarks	
Date Received:	5/30/13	Date T	'ested: 6/12/13
Tested By:	JF/TP		
Checked By:	JAM		
Title:			

* (no specification provided)

Source of Sample: Boring E330-B-019 Sample Number: HMA#7514-49/S-3 Depth: 5'-6.5'

Date Sampled:

Hayre McElroy & Associates, LLC

Client: Golder Associates

Project: Sound Transit East Link

Redmond, WA

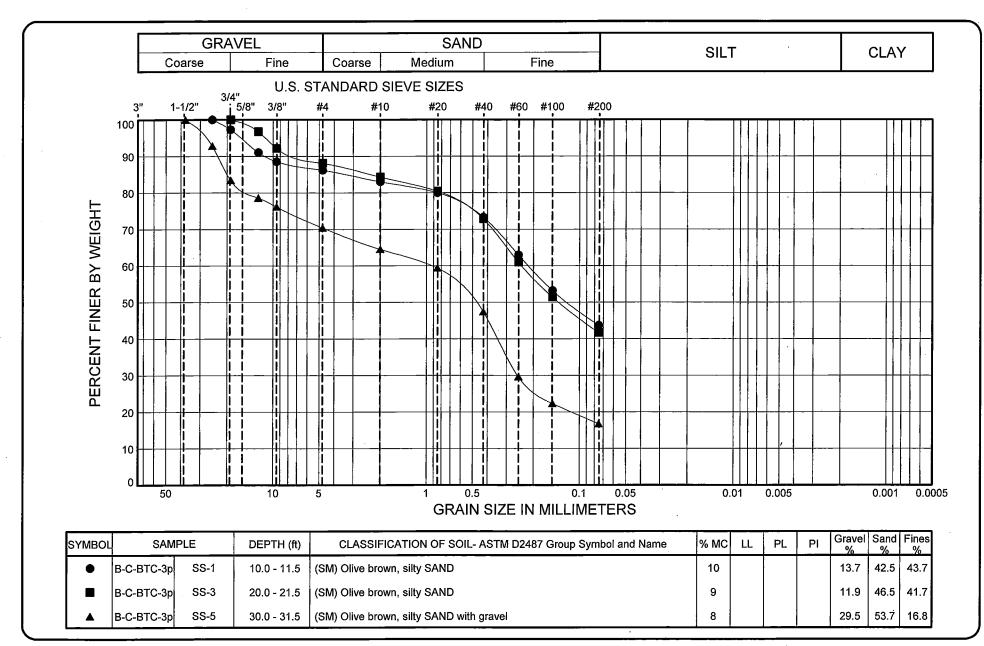
Project No: 12-450

	(t)	%)		TERBE LIMITS	EL		ro.		TTY ((%)	TION¹	
SAMPLE IDENTIFICATION	MOISTURE CONTENT (%) % GRAVEL % SAND		% FINES	Hď	RESISTIVITY (\O - cm)	ORGANIC CONTENT (%)	ASTM CLASSIFICATION ¹	SAMPLE DESCRIPTION ¹				
B-C-BTC-3p, SS-1	10.0- 11.5	10			13.7	42.5	43.7				SM	Olive brown, silty SAND
B-C-BTC-3p, SS-3	20.0- 21.5	9			11.9	46.5	41.7	-			SM	Olive brown, silty SAND
B-C-BTC-3p, SS-5	30.0- 31.5	8	-		29.5	53.7	16.8			·	SM	Olive brown, silty SAND with gravel
			_									
				_								
												,

^{1.} Soil classification and descriptions based on ASTM D 2487 or D 2488, as appropriate

Note: This table summarizes information presented elsewhere in the report and should be used in conjunction with the report text, other graphs and tables, and the exploration logs.

SUMMARY OF MATERIAL PROPERTIES


SOUND TRANSIT EASTLINK, PHASE 3 KING COUNTY, WASHINGTON

BORING NAME

B-C-BTC-3p

PROJECT NO.

2009-142

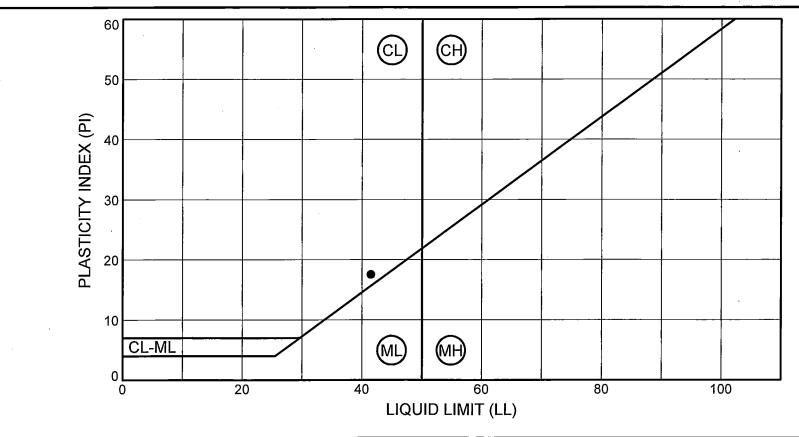
PARTICLE-SIZE ANALYSIS OF SOILS METHOD ASTM D422

PROJECT NO.: 2009-142 BORING NAME: B-C-BTC-3p

(1)		æ (%)	(%)		TERBE LIMITS		3.				TY ((%) (%)	TION ¹	
SAMPLE IDENTIFICATION	Depth (ft)	MOISTURE CONTENT (%)	LL	PL	PI	% GRAVEL	% SAND	% FINES	Hd	RESISTIVITY (\Omega - cm)	ORGANIC CONTENT (%)	ASTM CLASSIFICATION ¹	SAMPLE DESCRIPTION ¹	
B-C-BTC-4p, SS-3	20.0- 21.5	9				5.1	48.4	46.4				SM	Olive brown, silty SAND	
B-C-BTC-4p, SS-5	30.0- 31.5	7				19.9	56.8	23.3				SM	Dark gray, silty SAND with gravel	
B-C-BTC-4p, SS-8	45.0- 46.5	11				17.2	73.0	9.8				SW- SM	Dark olive brown, well graded SAND with silt and gravel	
B-C-BTC-4p, SS-10	55.0- 56.5	5				32.3	55.4	12.3				SM	Olive brown, silty SAND with gravel	
B-C-BTC-4p, SS-11	60.0- 61.5	7				39.6	50.9	9.5				SW- SM	Gray, well graded SAND with silt and gravel	
B-C-BTC-4p, SS-12	65.0- 66.5	27						40.3				SM	Dark gray, silty SAND	
B-C-BTC-4p, SS-15	80.0- 81.5	27						56.6				ML	Dark gray, sandy SILT	
B-C-BTC-4p, SS-18	95.0- 96.5	25						93.4				ML	Olive gray, SILT	
B-C-BTC-4p, SS-20	105.0- 106.5	31	41	24	17							CL	Gray, lean CLAY	

^{1.} Soil classification and descriptions based on ASTM D 2487 or D 2488, as appropriate

Note: This table summarizes information presented elsewhere in the report and should be used in conjunction with the report text, other graphs and tables, and the exploration logs.

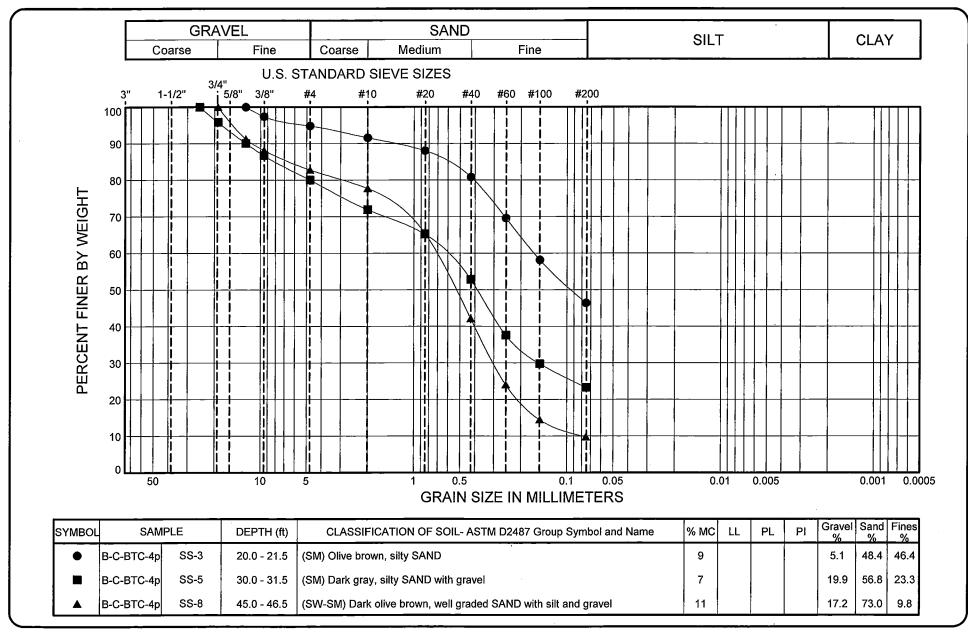

SUMMARY OF MATERIAL PROPERTIES

SOUND TRANSIT EASTLINK, PHASE 3 KING COUNTY, WASHINGTON

B-C-BTC-4p

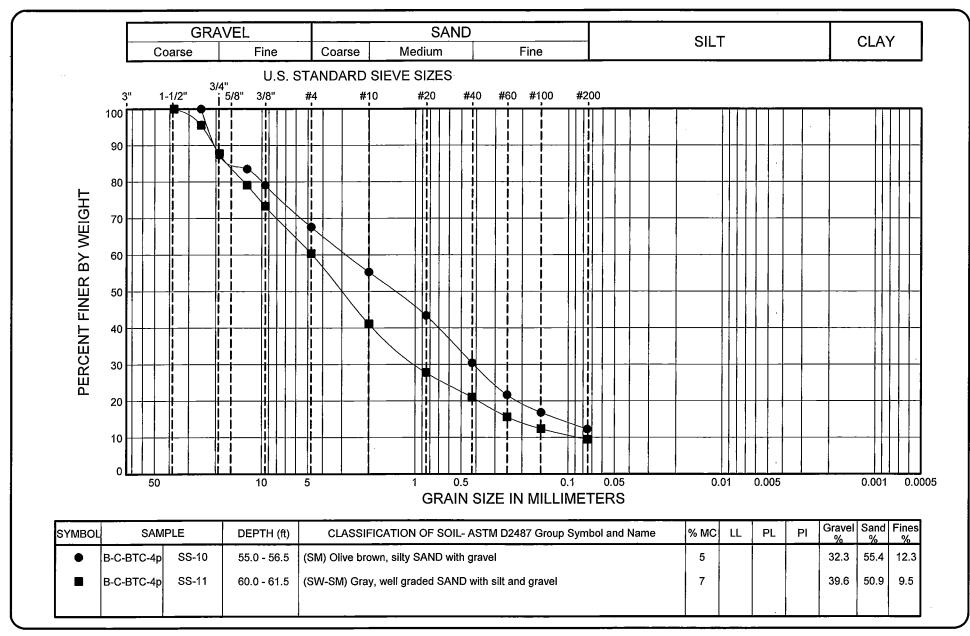
PROJECT NO.

2009-142


SYMBOL	SAM	IPLE	DEPTH (ft)	CLASSIFICATION	% MC	LL	PL	PI	% Fines
• E	-C-BTC-4	o SS-20	105.0 - 106.5	(CL) Gray, lean CLAY	31	41	24	17	
				·				•	
				·				_	

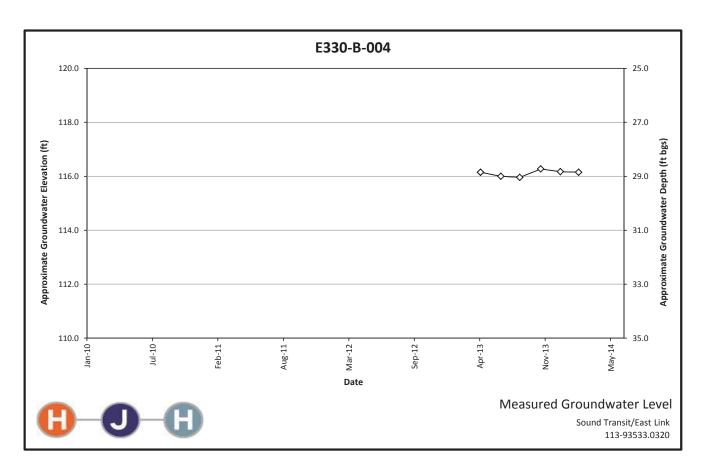
LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS **METHOD ASTM D4318**

PROJECT NO.: 2009-142 BORING NAME:


B-C-BTC-4p

PARTICLE-SIZE ANALYSIS OF SOILS METHOD ASTM D422

PROJECT NO.: 2009-142 BORING NAME: B-C-BTC-4p

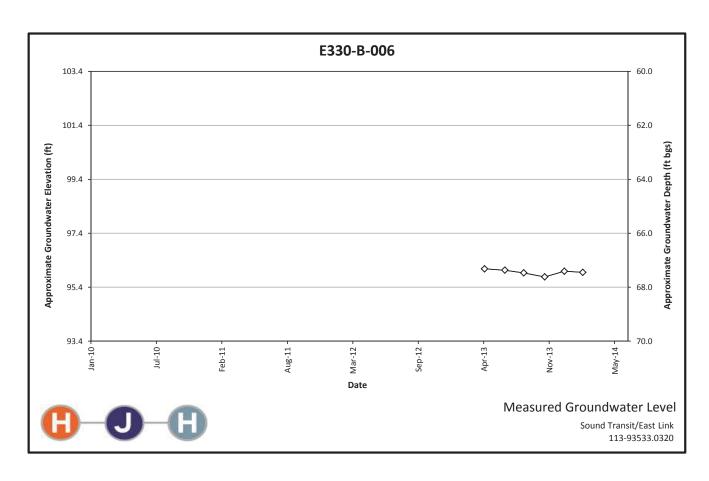

PARTICLE-SIZE ANALYSIS OF SOILS METHOD ASTM D422

PROJECT NO.: 2009-142 BORING NAME: B-C-BTC-4p

APPENDIX A.3

Groundwater Measurements

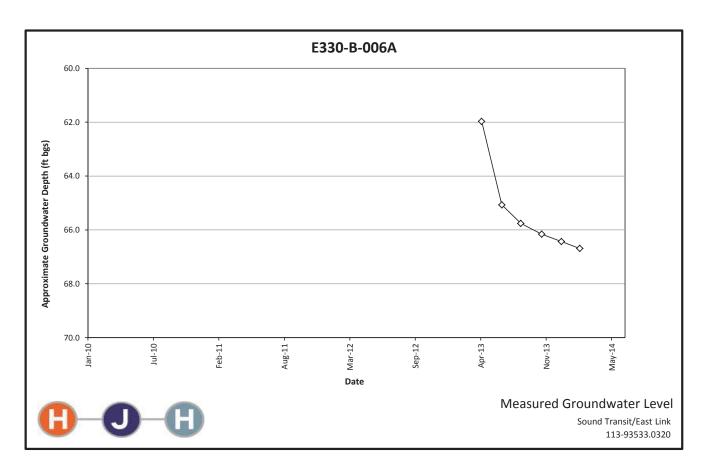
145.01


- 1. BGS = Below Ground Surface
- $2. \ This graph is part of a geotechnical report. \ Data should only be used in combination with all data presented in the geotechnical report$

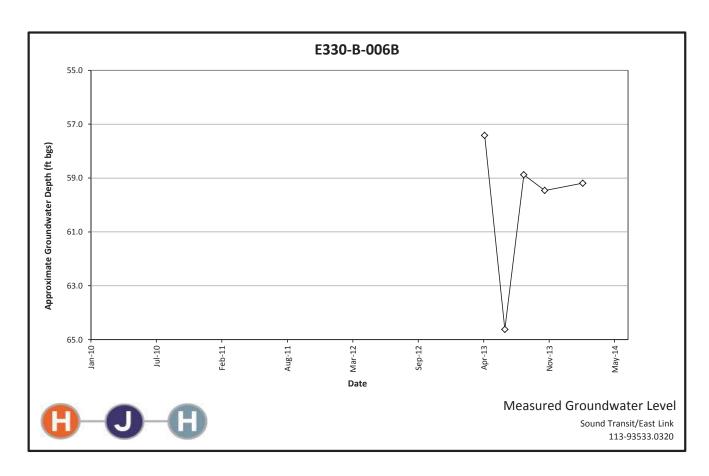
Borehole	E330-B-004
----------	------------

Date	Groundwater Elev (ft)	Groundwater Depth (ft)
4/17/2013 14:00	116.2	28.9
4/17/2013 14:05	116.2	28.9
6/18/2013 11:58	116.0	29.0
8/15/2013 11:10	116.0	29.1
10/18/2013 11:20	116.3	28.7
12/17/2013 6:00	116.2	28.8
2/11/2014 6:12	116.2	28.9

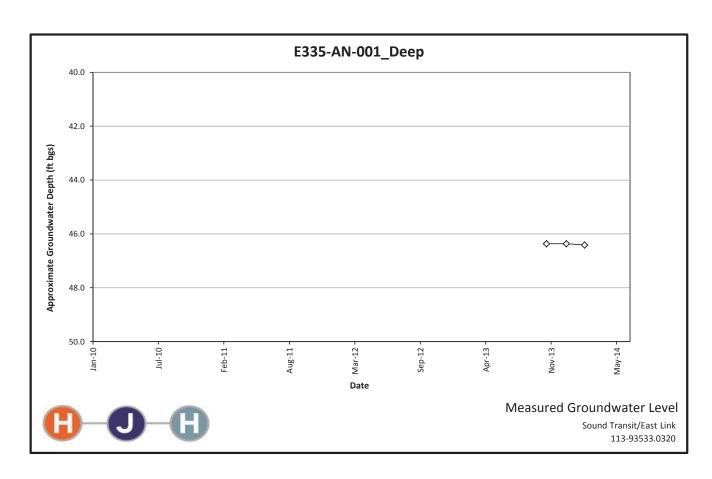
Ground Surface Elevation (ft) =


163.41

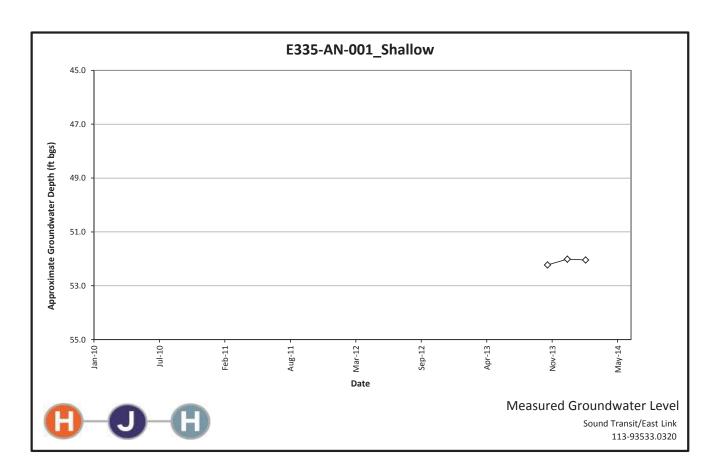
- 1. BGS = Below Ground Surface
- $2. \ This graph is part of a geotechnical report. \ Data should only be used in combination with all data presented in the geotechnical report$


	Borehole	E330-B-006
--	----------	------------

Date	Groundwater Elev (ft)	Groundwater Depth (ft)
4/17/2013 15:22	96.1	67.3
6/18/2013 11:36	96.0	67.4
8/15/2013 10:53	95.9	67.5
10/18/2013 10:33	95.8	67.6
12/17/2013 8:03	96.0	67.4
2/11/2014 8:11	96.0	67.5

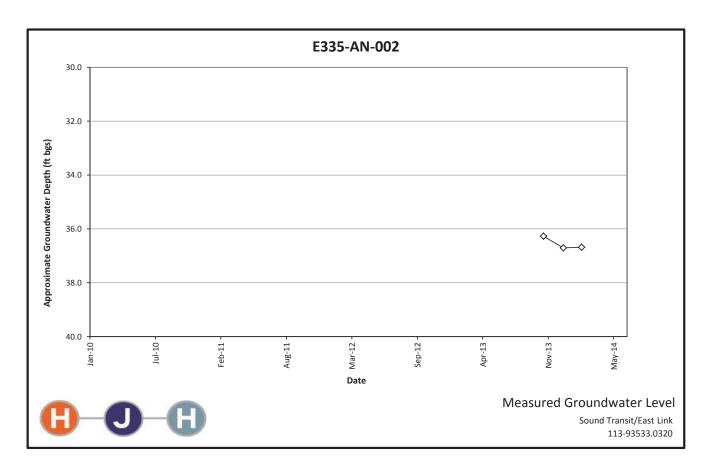

- 1. BGS = Below Ground Surface
- 2. This graph is part of a geotechnical report. Data should only be used in combination with all data presented in the geotechnical report

Borehole	E330-B-006A
<u></u>	
Date	Groundwater Depth (ft bgs)
4/17/2013	62.0
6/18/2013	65.1
8/15/2013	65.8
10/18/2013	66.2
12/17/2013	66.4
2/11/2014	66.7

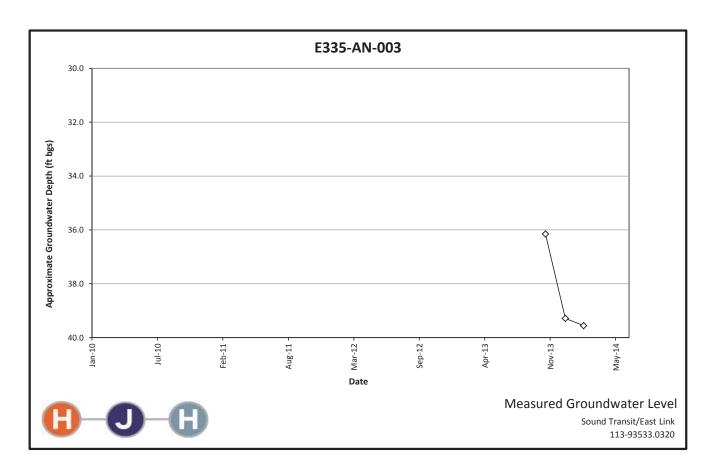

- 1. BGS = Below Ground Surface
- $2. \ This graph is part of a geotechnical report. \ Data should only be used in combination with all data presented in the geotechnical report$

Borehole	E330-B-006B
Date	Groundwater Depth (ft bgs)
4/17/2013	57.4
6/18/2013	64.6
8/15/2013	58.9
10/18/2013	59.5
2/11/2014	59.2

- 1. BGS = Below Ground Surface
- 2. This graph is part of a geotechnical report. Data should only be used in combination with all data presented in the geotechnical report
- 3. Vibrating wire piezometer (VWP) installed in borehole angled at 50 degrees
- 4. VWP installed at 77 ft bgs (100 ft along borehole length)


Borehole	E335-AN-001_deep
Date	Groundwater Depth (ft bgs)
10/17/2013	46.4
12/17/2013	46.4
2/11/2014	46.4

- 1. BGS = Below Ground Surface
- $2. \ This graph is part of a geotechnical report. \ Data should only be used in combination with all data presented in the geotechnical report$
- 3. Vibrating wire piezometer (VWP) installed in borehole angled at 50 degrees
- 4. VWP installed at 51.3 ft bgs (67 ft along borehole length)
- 5. VWP reading show negative pressure on the transducer, which may indicate groundwater below the transducer

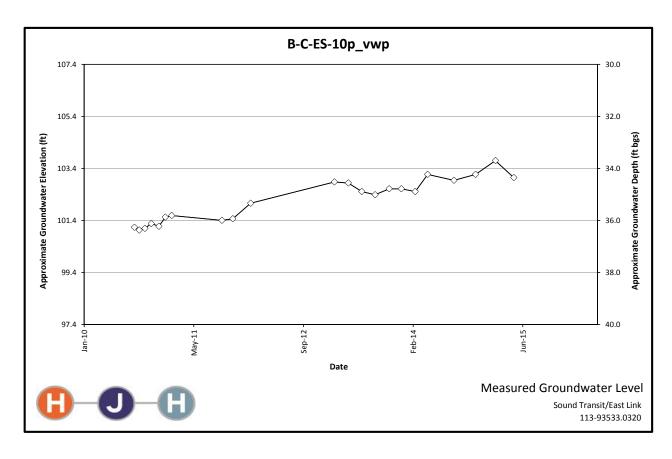

Borehole	E335-AN-001_SHALLOW

Date	Groundwater Depth (ft bgs)
10/17/2013	52.2
12/17/2013	52.0
2/11/2014	52.0

- 1. BGS = Below Ground Surface
- $2. \ This graph is part of a geotechnical report. \ Data should only be used in combination with all data presented in the geotechnical report$
- 3. Vibrating wire piezometer (VWP) installed in borehole angled at 60 degrees
- 4. VWP installed at 41 ft bgs (47 ft along borehole length)

Borehole	E335-AN-002
Date	Groundwater Depth (ft bgs)
10/17/2013	36.3
12/17/2013	36.7
2/11/2014	36.7

Notes:

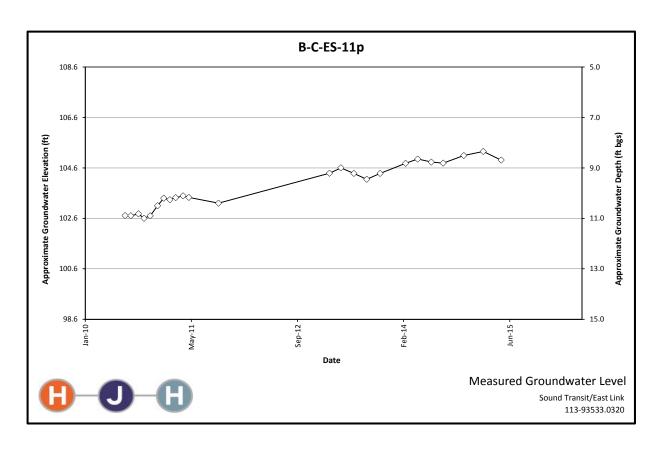

- 1. BGS = Below Ground Surface
- $2. \ This graph is part of a geotechnical report. \ Data should only be used in combination with all data presented in the geotechnical report$
- 3. Vibrating wire piezometer (VWP) Installed at 45 ft bgs.

39.6

Borehole	E335-AN-003
Date	Groundwater Depth (ft bgs)
10/17/2013	36.2
12/17/2013	39.3

2/11/2014

137.4



- 1. BGS = Below Ground Surface
- 2. This graph is part of a geotechnical report. Data should only be used in combination with all data presented in the geotechnical report
- 3. Vibrating wire piezometer (VWP) installed at 80 ft bgs $\,$

Borehole	B-C-ES-10P vwp

Date	Groundwater Elev (ft)	Groundwater Depth (ft)
8/18/2010	101.1	36.3
9/9/2010	101.0	36.4
10/5/2010	101.1	36.3
11/3/2010	101.3	36.1
12/8/2010	101.2	36.2
1/6/2011	101.5	35.9
2/4/2011	101.6	35.8
9/21/2011	101.4	36.0
11/10/2011	101.5	35.9
1/30/2012	102.1	35.3
2/15/2013	102.9	34.5
4/19/2013 17:45	102.8	34.6
6/19/2013 16:10	102.5	34.9
8/19/2013 15:47	102.4	35.0
10/22/2013 13:37	102.6	34.8
12/17/2013 14:50	102.6	34.8
2/18/2014 13:05	102.5	34.9
4/16/2014 12:20	103.2	34.2
8/14/2014 14:02	102.9	34.5
11/20/2014 13:36	103.2	34.2
2/19/2015 13:23	103.7	33.7
5/14/2015 10:48	103.0	34.4

113.64

- 1. BGS = Below Ground Surface
- 2. This graph is part of a geotechnical report. Data should only be used in combination with all data presented in the geotechnical report

Borehole	B-C-ES-11p	
Date	Groundwater Elev (ft)	Groundwater Depth (ft)
7/8/2010	102.8	10.9
8/4/2010	102.7	10.9
9/9/2010	102.8	10.8
10/5/2010	102.6	11.0
11/3/2010	102.7	10.9
12/8/2010	103.1	10.5
1/6/2011	103.4	10.2
2/4/2011	103.4	10.3
3/3/2011	103.5	10.2
4/7/2011	103.5	10.1
5/4/2011	103.5	10.2
9/21/2011	103.2	10.4
2/25/2013	104.4	9.2
4/19/2013 17:58	104.6	9.0
6/19/2013 15:57	104.4	9.2
8/19/2013 15:34	104.2	9.5
10/21/2013 15:30	104.4	9.2
2/18/2014 12:45	104.8	8.8
4/16/2014 12:40	105.0	8.7
6/19/2014 12:44	104.9	8.8
8/14/2014 13:53	104.8	8.8
11/19/2014 14:44	105.1	8.5
2/19/2015 13:16	105.3	8.3
5/14/2015 10:37	105.0	8.7

APPENDIX A.4

In-Situ Testing

Appendix D – Vertical Seismic Profile Survey

MEMORANDUM

Sound Transit East Link | South Bellevue to OTC

VERTICAL SEISMIC PROFILE SURVEY

Date: March 21, 2014

To: H-J-H Final Design Partners

From: Peter Fahringer, Senior Geophysicist, Golder Associates Inc.

CC: Dave Findley, Golder Associates

Re: Results of the Vertical Seismic Profile Survey for the East Link Sound Transit Project

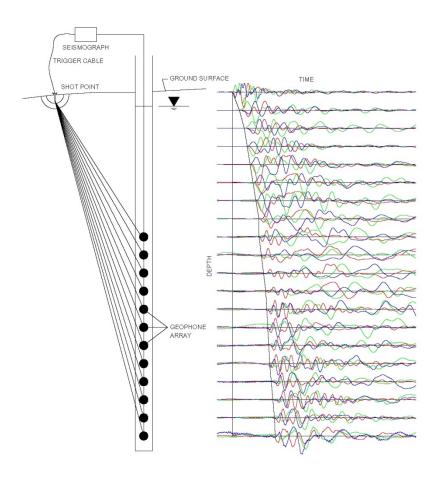
This memorandum provides the results of vertical seismic profile (VSP) testing at borehole location E330-B-05 in downtown Bellevue, Washington performed by Golder Associates Inc. (Golder) on March 20, 2013.

Project Objective

The objective of the investigation was to determine shear and compressional wave velocities of soils and bedrock at the borehole location, E330-B-005, for the East Link expansion of Sound Transit's operations. To meet this objective, a seismic data acquisition system with a tri-axial borehole geophone and surface seismic source were used to obtain vertical seismic profile data.

Site Description

Borehole location E330-B-005 is situated in the asphalt of the northbound lane of 110th Ave NE, directly west of Bellevue City Hall. The boring had a measured depth of 22.5 meters (74 feet), is cased with polyvinyl chloride (PVC) and sealed at the surface with grout, a locking PVC cap, and flush-mount surface monument. The site receives a moderate to high volume of vehicular and pedestrian traffic. Interference due to cultural noise was kept to a minimum during periods of data acquisition by avoiding data collection when traffic was moving in the immediate vicinity of the borehole.


Method

Vertical seismic profiling is a single borehole geophysical method. Seismic energy is generated at the ground surface by an active seismic source and recorded by a geophone located a known depth below ground surface. The time required for energy to reach the geophone along a path of known distance, between the source and receiver, provides a measurement of average compressional seismic velocity of the medium between the source and receiver. Data obtained from different geophone depths is used to calculate a detailed seismic velocity profile of the subsurface in the immediate vicinity of the test borehole.

The seismic source used is a wooden beam that is laid horizontally on the ground in close vicinity of the borehole. The beam is coupled to the ground by parking a vehicle on the beam. The beam is struck with a 16 pound sledge hammer on alternate ends of the beam to induce polarized shear waves. A three component borehole geophone is lowered in the borehole and clamped against the borehole wall or casing.

The high resolution results of a VSP survey are often used for earthquake engineering site classification, as per the International Building Code (ICC 2012) and ASCE/SEI 7-10 (ASCE 2010).

Example 1: Layout and resulting time traces from a VSP survey.

The recorded data are subsequently analyzed by splitting the three recorded components (vertical, longitudinal, and transverse) into depth-wave trains. P- and S-wave arrivals are then picked and are best fit to a model to derive layer thicknesses and compression and shear wave velocities in the vicinity of the borehole.

Values for Poisson's ratio (v), shear modulus (G), Young's modulus (E) and Bulk Modulus (K) are calculated from compression wave and shear wave velocities as:

Poisson's Ratio:
$$\nu = \frac{0.5(\frac{V_P}{V_S})^2 - 1}{(\frac{V_P}{V_S})^2 - 1}$$

Shear Modulus:
$$G = \frac{E}{2(1+\nu)} = V_s^2 \rho$$

Young's Modulus:
$$E = \frac{V_p^2 \rho (1 + v)(1 - 2v)}{(1 - v)} = 2G(1 + v)$$

Bulk Modulus:
$$K = \frac{E}{3(1-2\nu)} = V_p^2 \rho - \frac{4}{3}G$$

Where ρ is the bulk density (in Kg/m3), Vp is the compression wave velocity (m/s) and Vs is the shear wave velocity (m/s). Additionally, we have used recently-published correlations of shear wave velocity (Vs) to standard penetration tests (SPT) (Marto et al. 2013) to estimate N count using the formula:

$$N = e^{\frac{\ln(Vs/_{77.13})}{0.377}}$$

Field Procedure

For data acquisition, Golder utilized a Geostuff BG2 3-axis (triaxial) borehole geophone, Geometrics Geode multichannel seismograph with an accelerometer electronic trigger, a field laptop computer and Geometrics SeisModule software. A 16 pound sledge hammer struck against a wood plank was used as a manual energy source. Data was processed using Geometrics SeisImager software.

The borehole geophone was suspended down hole at a maximum depth of 22 meters (72.2 feet) below ground surface (bgs). For each depth where data was recorded, three seismic records were acquired separately (two shear waves of opposing polarity and a compressional [p-] wave). Each record was comprised of multiple stacks in order to minimize the influence of background seismic noise. Data collection commenced at 22.5 meters (74 feet) bgs, continued at 1 meter intervals, and ended at 1 meter bgs. Seismic energy was generated using a sledge hammer in contact with the top and ends of a horizontal wooden plank 10 feet in length. The plank was secured to the ground surface under the rear axle of a 4x4 truck.

Results

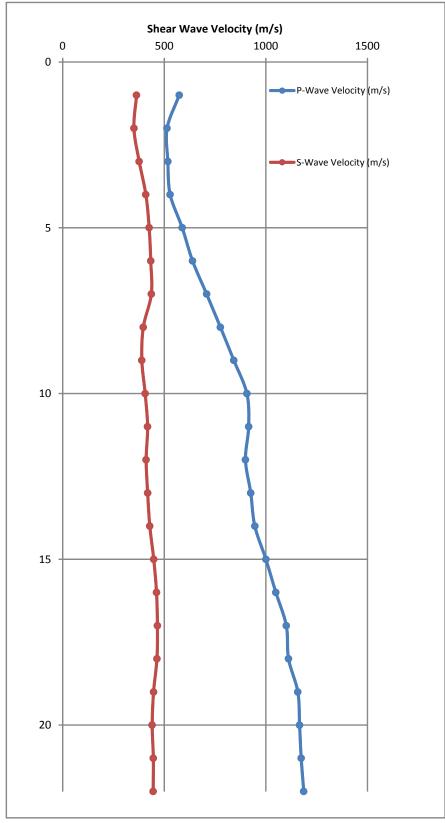
Table 1 summarizes the results of the VSP investigation at E330-B-005 and Figure 1 provides a chart of velocity verses depth bgs. Seismic velocities at the site range between 514 and 1,187 meters per second (m/s) for compressional (P) waves and 350 and 462 m/s for shear (S) waves. These velocities are within the expected range for seismic velocities in the glacial till and outwash deposits observed during drilling.

Table 1: VSP Observed Velocities and Calculated Dynamic Engineering Properties

Depth meters	P-Wave Velocity (m/sec)	S-Wave Velocity m/sec	Estimated Bulk Density (kg/m3)	Shear Modulus (MPa)	Young's Modulus (MPa)	Bulk Modulus (MPa)	Estimated N (blows) **
1	573	363	2200	291	677	336	61
2	514	350	2200	270	575	220	55
3	517	376	2200	312	585	173	67
4	529	409	2200	368	556	124	84
5	588	425	2200	398	758	231	93
6	639	433	2200	413	888	348	97
7	708	436	2200	418	1000	546	99
8	776	396	2200	346	915	865	77
9	842	389	2200	334	910	1116	73
10	907	406	2200	362	996	1325	82
11	915	418	2200	384	1050	1331	88
12	900	411	2200	371	1015	1286	84
13	926	418	2000	349	959	1247	88
14	946	429	2000	367	1007	1299	95
15	1000	448	2000	401	1103	1465	106
16	1049	462	2000	426	1176	1634	115
17	1101	466	2000	435	1209	1843	118
18	1111	464	2000	430	1199	1897	117
19	1157	447	2000	400	1129	2146	106
20	1166	440	2000	388	1098	2202	102
21	1174	446	2000	398	1126	2225	105
22	1187	445	2000	396	1124	2287	105
		1	1		1		

Notes: ** from Marto, et al., 2013.

Raw waveforms from the P-wave and S-wave records as well as picks of the first arrival of the wavefronts are displayed in Figures 2 and 3. These picks were used to generate the values calculated in Table 1.

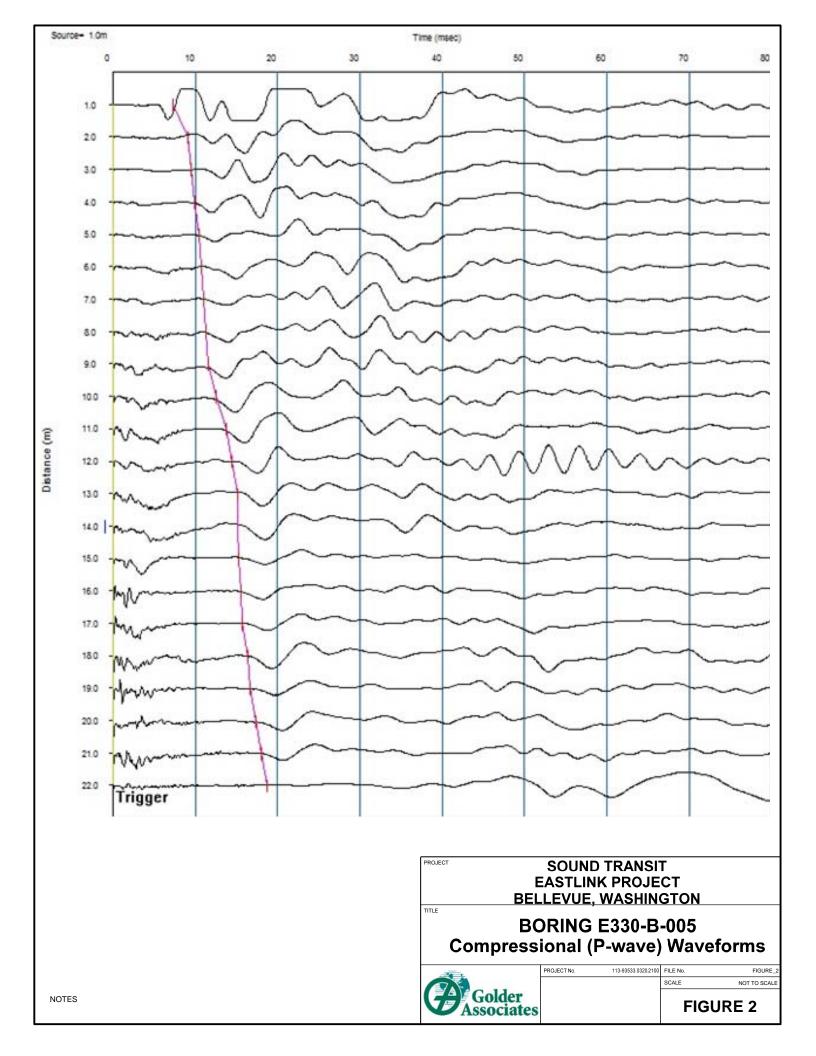

References

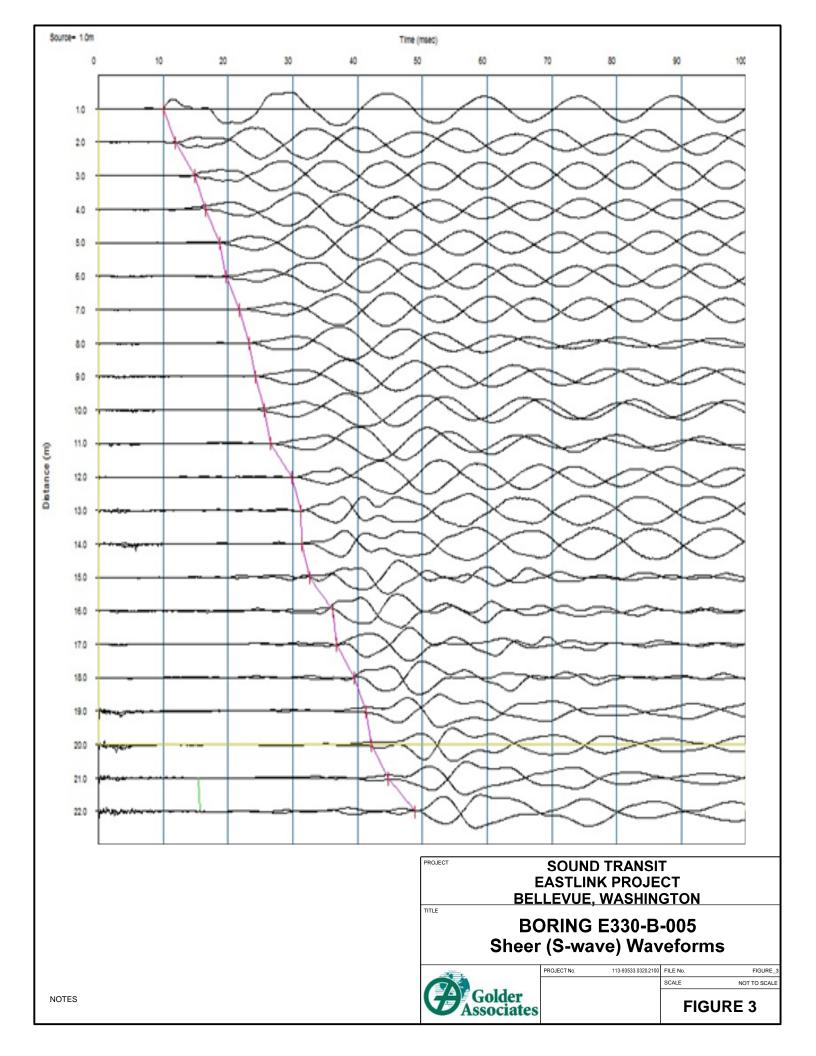
American Society of Civil Engineers (ASCE). 2010. ASCE/SEI 7-10, Minimum Design Loads for Buildings and Other Structures, Chapter 20, pp 203-205.

International Code Consortium (ICC). 2012. International Building Code (IBC), Section 1613.

Marto, Aminaton, Soon, Tan Choy, Kasim, Fauziah, Suhatril, Meldi. 2013. A Correlation of Shear Wave Velocity and Standard Penetration Resistance, *Electronic Journal of Geotechnical Engineering*, v18: pp. 463-471.

Figures


SOUND TRANSIT
EASTLINK PROJECT
BELLEVUE, WASHINGTON


TITLE

BORING E330-B-005 SEISMIC VELOCITY PROFILE

DJECT No.	113-93533.0320.2100	FILE No.	FIGURE_1
		SCALE	NOT TO SCALE

Appendix I Pressuremeter Data Tables

Table 1 – Pressuremeter Test depth and Material Description

Date	Boring	Test	Depth (ft)	Material
02/28/2013	E330 – PMT – 03	Sound01	10.0	Till
02/28/2013	E330 – PMT – 03	Sound02	8.5	Till
02/28/2013	E330 – PMT – 03	Sound03	24.5	Till
02/28/2013	E330 – PMT – 03	Sound04	24.5	Till
02/28/2013	E330 - PMT - 03	Sound05	23.0	Till
03/01/2013	E330 - PMT - 03	Sound06	33.0	Till
03/07/2013	E330 – PMT – 03	Sound10	64.3	Clayey Silt
03/07/2013	E330 – PMT – 03	Sound11	73.0	Clayey Silt
03/07/2013	E330 – PMT – 03	Sound12	71.5	Clayey Silt
03/04/2013	E330 - PMT - 01	Sound07	31.0	Till
03/05/2013	E330 - PMT - 01	Sound08	59.1	Till
03/05/2013	E330 - PMT - 01	Sound09	57.5	Till
03/08/2013	E330 - PMT - 01	Sound13	80.0	Clayey Silt
03/26/2013	E330 - PMT - 02	Sound14	25.0	Till
03/26/2013	E330 – PMT – 02	Sound15	23.5	Till
03/27/2013	E330 – PMT – 02	Sound16	55.0	Till
03/27/2013	E330 – PMT – 02	Sound17	53.5	Till
03/27/2013	E330 - PMT - 02	Sound18	65.0	Till
03/28/2013	E330 - PMT - 02	Sound19	85.0	Sandy Silt
03/28/2013	E330 - PMT - 02	Sound20	83.5	Sandy Silt

Table 2 – Unload-Reload Shear Modulus

Test	Shear Modulus						
Test	(psi)						
Sound01	12,900	24,100	41,900	-			
Sound02	1,980	3,620	14,500	-			
Sound03	-	-	-	-			
Sound04	13,800	30,200	45,300	-			
Sound05	690	-	-	-			
Sound06	870	-	-	-			
Sound07	41,000	71,600	93,600	-			
Sound08	66,100	103,600	154,000	-			
Sound09	75,900	119,500	176,100	-			
Sound10	-	-	-	-			
Sound11	7,300	21,400	30,100	-			
Sound12	5,800	15,600	-	-			
Sound13	125,000	135,000	109,000	118,000			
Sound14	13,600	31,400	51,000	-			
Sound15	-	-	-	-			
Sound16	55,800	86,100	115,200	-			
Sound17	61,600	92,300	117,700	-			
Sound18	76,400	101,200	-	-			
Sound19	9,700	20,300	24,500	-			
Sound20	12,600	13,600	-	-			

Table 3 – Shear Strengths from Model Analysis

		Gibson			
Test	Depth (feet)	Load Shear (psi)	Unload Shear * (psi)		
Sound01	10.0	133	103		
Sound02	8.5	58	-		
Sound03	24.5	-	-		
Sound04	24.5	145	105		
Sound05	23.0	-	-		
Sound06	33.0	-	-		
Sound07	31.0	325	238		
Sound08	59.1	265	165		
Sound09	57.5	353	247		
Sound10	64.3	-	-		
Sound11	73.0	135	95		
Sound12	71.5	96	70		
Sound13	80.0	265	200		
Sound14	25.0	230	200		
Sound15	23.5	-	-		
Sound16	55.0	330	260		
Sound17	53.5	285	210		
Sound18	65.0	320	225		
Sound19	85.0	114	90		
Sound20	83.5	81	73		

^{*} The Unload Shear Strengths have been halved.

 $Table\ 4-Frictional\ Strengths\ from\ Model\ Analysis$

Test	Depth (feet)	Friction Angle	Effective Lateral Stress (psi)
Sound01	10.0	50	3
Sound02	8.5	53	3
Sound03	24.5	-	-
Sound04	24.5	42	27
Sound05	23.0	<u>-</u>	-
Sound06	33.0	<u>-</u>	-
Sound07	31.0	44	37
Sound08	59.1	40	61
Sound09	57.5	41	60
Sound10	64.3	_	-
Sound11	73.0	41	42
Sound12	71.5	43	38
Sound13	80.0	35	85
Sound14	25.0	46	25
Sound15	23.5	-	-
Sound16	55.0	40	59
Sound17	53.5	40	59
Sound18	65.0	42	50
Sound19	85.0	36	47
Sound20	83.5	35	47

Table 5 – Balance Pressure Analysis

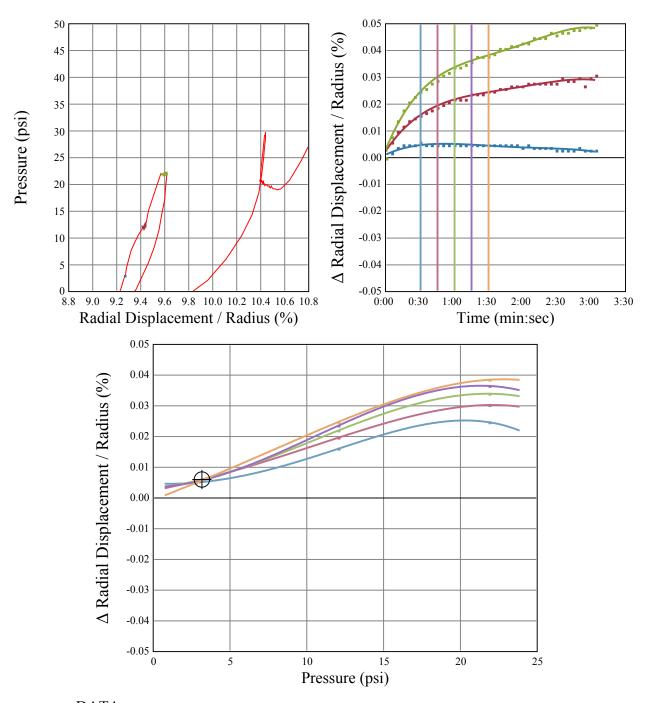
Test	Boring	Depth (ft)	Lateral Earth Pressure (psi)
Sound01	E330 - PMT - 03	10.0	3
Sound04	E330 - PMT - 03	24.5	27
Sound08	E330 – PMT – 01	59.1	92
Sound11	E330 - PMT - 03	73.0	50
Sound13	E330 – PMT – 01	80.0	84
Sound14	E330 - PMT - 02	25.0	25
Sound16	E330 - PMT - 02	55.0	60
Sound18	E330 - PMT - 02	65.0	49
Sound20	E330 - PMT - 02	83.5	48

Table 6 – Test Quality Evaluation

Test	Depth (ft)	Model Shift (% Strain)	Quality - Comments
Sound01	10.0	5	Fair – No consistent modulus values
Sound02	8.5	9.3	Poor – Considerable relaxation of material
Sound03	24.5	N/A	No useable test information
Sound04	24.5	7	Fair – Moduli becoming consistent
Sound05	23.0	N/A	Poor- Data unreliable due to extreme disturb.
Sound06	33.0	N/A	Poor- Data unreliable due to extreme disturb.
Sound07	31.0	2.8	Good – Good Friction and cohesive fits
Sound08	59.1	5	Fair – Good friction and cohesive fits
Sound09	57.5	5.5	Good – Good friction and fair cohesive fits
Sound10	64.3	N/A	No useable test information
Sound11	73.0	11	Fair – oversize hole, good friction and
Soundii	75.0		reasonable cohesive curve fits and balance
Sound12	71.5	10.2	Fair – No consistent modulus, poor cohesive
Soulid12	71.5		fit
Sound13	80.0	.1	Excellent – Best test! Excellent curve fits,
Soulid13			moduli all match well
Sound14	25.0	7	Poor – Poor model fits, inconsistent moduli
Sound15	23.5	N/A	No useable test information
Sound16	55.0	2.1	Good curve and modulus fits
Sound17	53.5	3.5	Fair curve fits, good moduli
Sound18	65.0	2.7	Fair – good curve and moduli values
Sound19	85.0	2.8	Good – Good curve and moduli
Sound20	83.5	4.1	Good – Good curve and moduli

Appendix II Pressuremeter Data Plots

In Situ Engineering - Balance Pressure

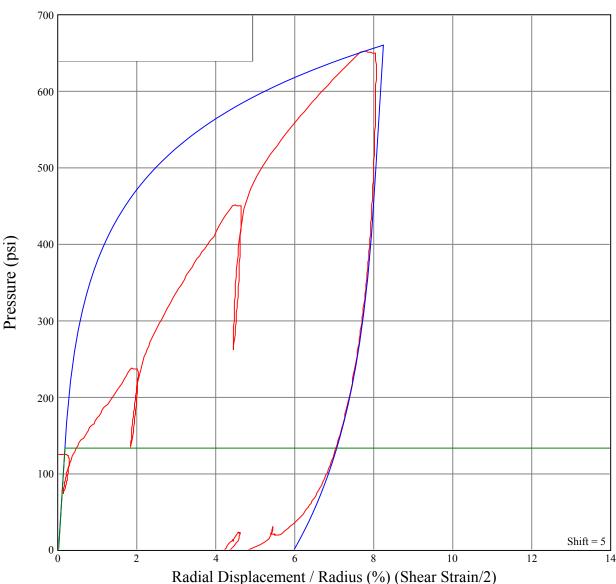


Golder Associates

Sound Transit

Boring: E330-PMT-03 Test: Sound01 Depth: 10FT Date: 02/28/2013

Oper: Gerdes Job # 1117 Inst: 06


In Situ Engineering - Gibson's Clay Model

Golder Associates

Sound Transit

Boring: E330-PMT-03 Test: Sound01 Depth: 10FT Date: 02/28/2013

Oper: Gerdes Job # 1117 Inst: 06

LOADING

– DATA —

Shear Strength = 133 psi

In Situ Stress = 3 psi

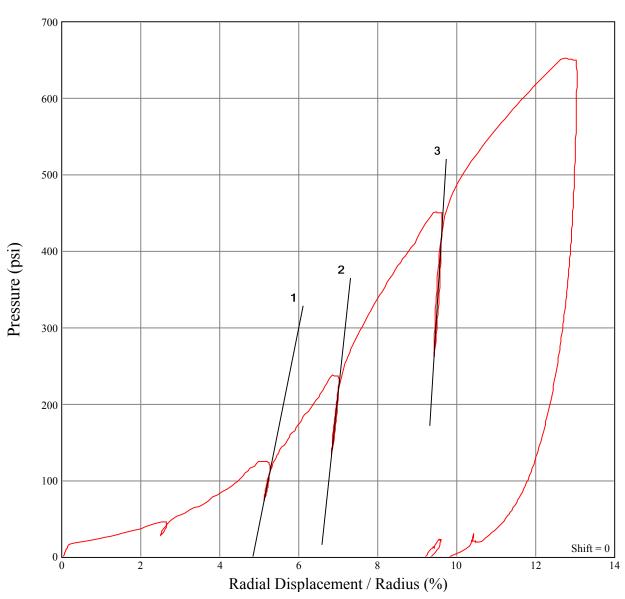
Shear Modulus = 41900 psi

UNLOADING

Shear Strength = 205 psi

Shear Modulus = 41900 psi

In Situ Engineering - Shear Modulus Plot



Golder Associates

Sound Transit

Boring: E330-PMT-03 Test: Sound01 Depth: 10FT Date: 02/28/2013

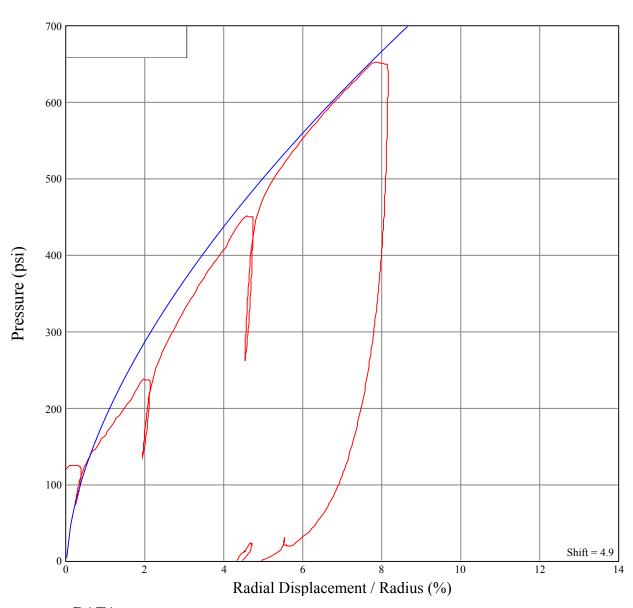
Oper: Gerdes Job # 1117 Inst: 06

– DATA –

#1 Shear Modulus = 12900 psi

#2 Shear Modulus = 24100 psi

#3 Shear Modulus = 41900 psi


In Situ Engineering - Hughes' Sand Model

Golder Associates

Sound Transit

Boring: E330-PMT-03 Test: Sound01 Depth: 10FT Date: 02/28/2013

Oper: Gerdes Job # 1117 Inst: 06

– DATA –

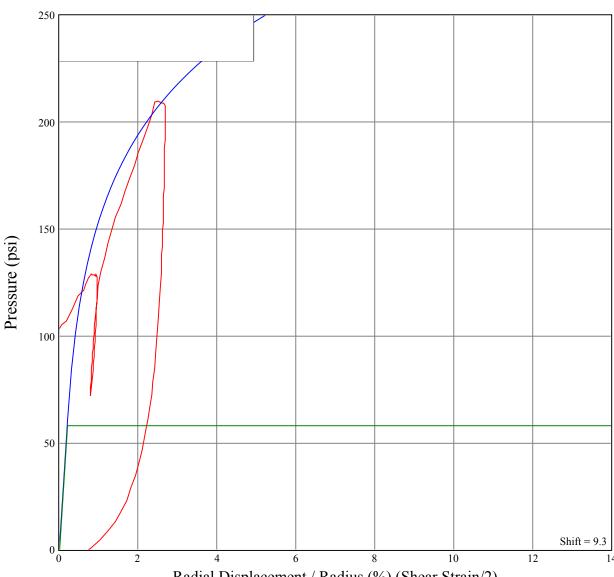
Water Pressure = 0 psi

Friction Angle = 50 deg

Critical Friction Angle = 32 deg

Lateral Stress = 3 psi

Shear Modulus = 41900 psi


In Situ Engineering - Gibson's Clay Model

Golder Associates

Sound Transit

Boring: E330-PMT-03 Test: Sound02 Depth: 8.5FT Date: 02/28/2013

Oper: Gerdes Job # 1117 Inst: 06

Radial Displacement / Radius (%) (Shear Strain/2)

– DATA —

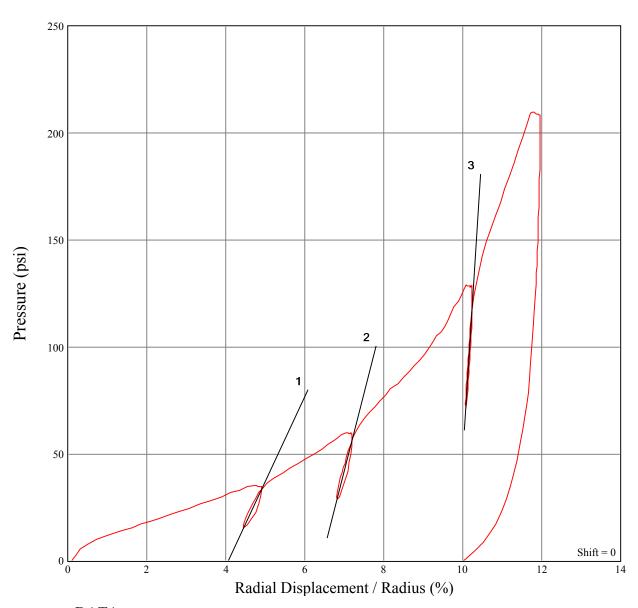
LOADING

Shear Strength = 58 psi

In Situ Stress = 3 psi

Shear Modulus = 14500 psi

In Situ Engineering - Shear Modulus Plot



Golder Associates

Sound Transit

Boring: E330-PMT-03 Test: Sound02 Depth: 8.5FT Date: 02/28/2013

Oper: Gerdes Job # 1117 Inst: 06

– DATA –

#1 Shear Modulus = 1980 psi

#2 Shear Modulus = 3620 psi

#3 Shear Modulus = 14500 psi

] E

In Situ Engineering - Hughes' Sand Model

Golder Associates

Sound Transit

Boring: E330-PMT-03 Test: Sound02 Depth: 8.5FT Date: 02/28/2013

Oper: Gerdes Job # 1117 Inst: 06

– DATA -

Water Pressure = 0 psi

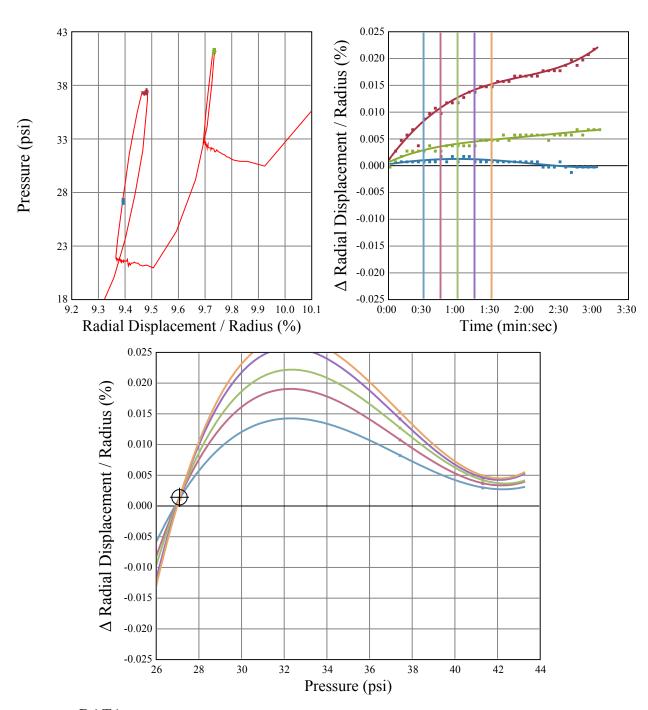
Lateral Stress = 3 psi

Friction Angle = 53 deg

Shear Modulus = 14000 psi

Critical Friction Angle = 32 deg

In Situ Engineering - Balance Pressure

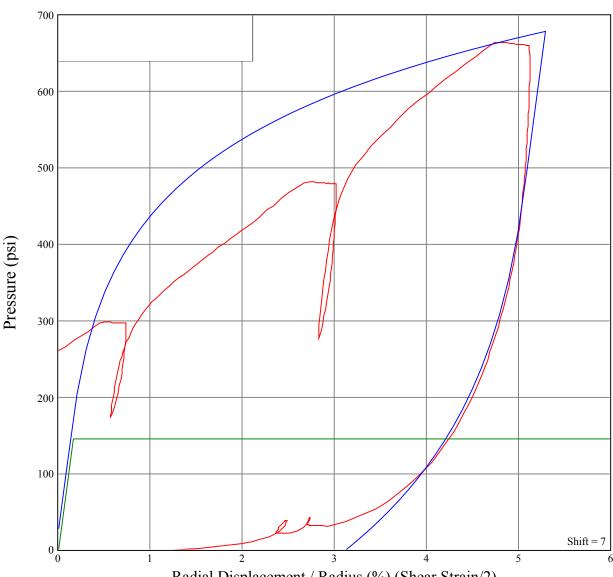


Golder Associates

Sound Transit

Boring: E330-PMT-03 Test: Sound04 Depth: 24.5FT Date: 02/28/2013

Oper: Gerdes Job # 1117 Inst: 06


In Situ Engineering - Gibson's Clay Model

Golder Associates

Sound Transit

Boring: E330-PMT-03 Test: Sound04 Depth: 24.5FT Date: 02/28/2013

Oper: Gerdes Job # 1117 Inst: 06

Radial Displacement / Radius (%) (Shear Strain/2)

– DATA —

LOADING

Shear Strength = 145 psi

In Situ Stress = 27 psi

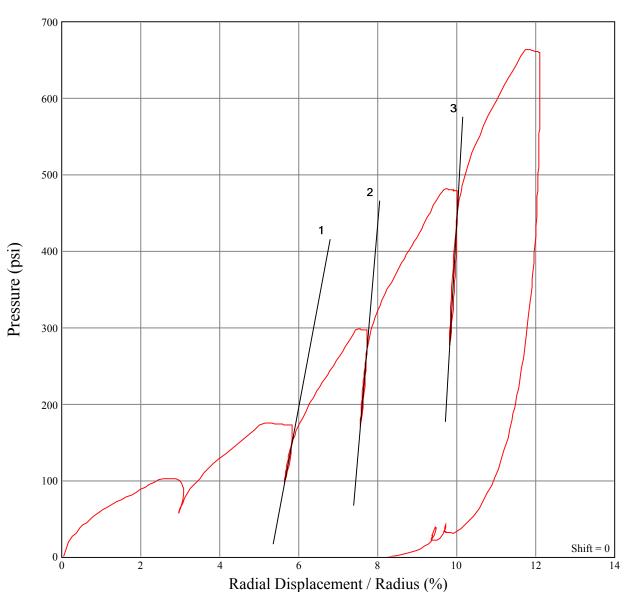
Shear Modulus = 45300 psi

UNLOADING

Shear Strength = 210 psi

Shear Modulus = 45300 psi

In Situ Engineering - Shear Modulus Plot



Golder Associates

Sound Transit

Boring: E330-PMT-03 Test: Sound04 Depth: 24.5FT Date: 02/28/2013

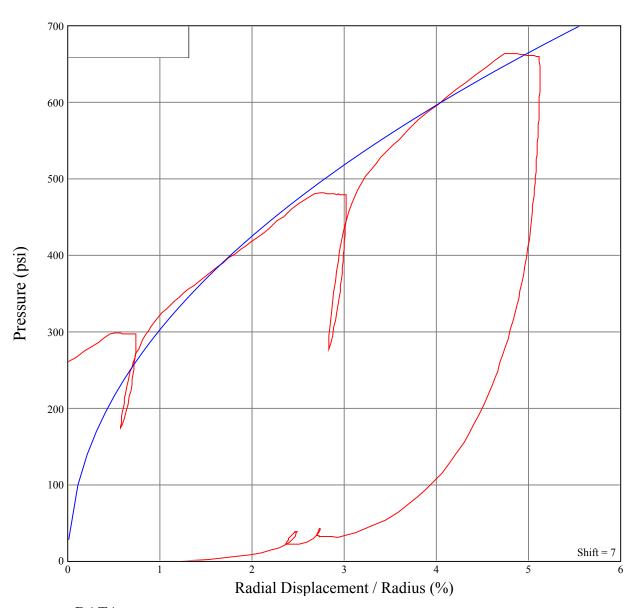
Oper: Gerdes Job # 1117 Inst: 06

– DATA –

#1 Shear Modulus = 13800 psi

#2 Shear Modulus = 30200 psi

#3 Shear Modulus = 45300 psi


In Situ Engineering - Hughes' Sand Model

Golder Associates

Sound Transit

Boring: E330-PMT-03 Test: Sound04 Depth: 24.5FT Date: 02/28/2013

Oper: Gerdes Job # 1117 Inst: 06

– DATA -

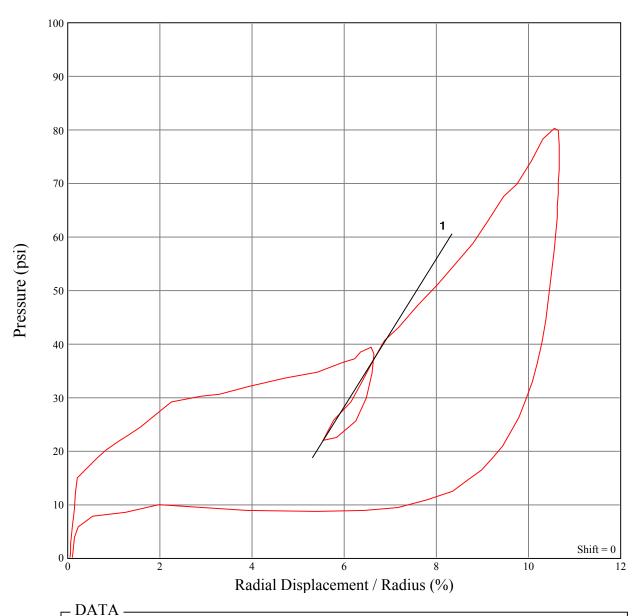
Water Pressure = 0 psi

Lateral Stress = 27 psi

Friction Angle = 42 deg

Shear Modulus = 45300 psi

Critical Friction Angle = 32 deg

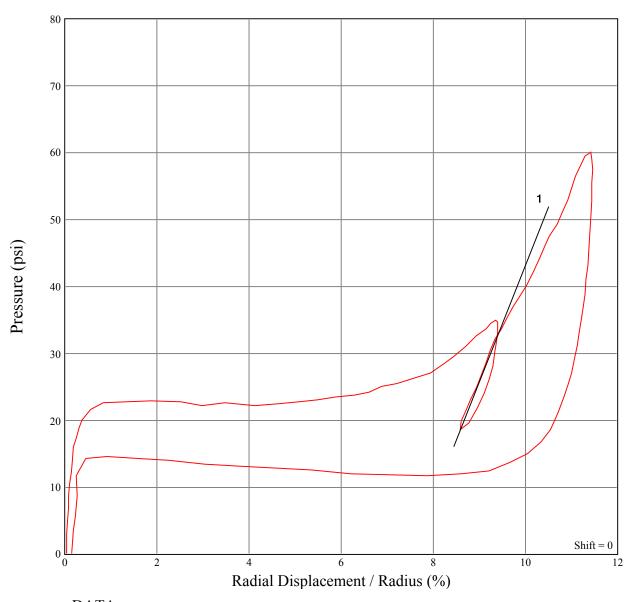

In Situ Engineering - Shear Modulus Plot

Golder Associates

Sound Transit

Boring: E330-PMT-03 Test: Sound05 Depth: 23FT Date: 02/28/2013

Oper: Gerdes Job # 1117 Inst: 06

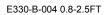

In Situ Engineering - Shear Modulus Plot

Golder Associates

Sound Transit

Boring: E330-PMT-03 Test: Sound06 Depth: 33FT Date: 03/01/2013

Oper: Gerdes Job # 1117 Inst: 06



#1 Shear Modulus = 870 psi

APPENDIX A.5

Photographs

E330-B-004 2.5-5.0FT

E330-B-004 5.0-7.5FT

E330-B-004 7.5-10.0FT

E330-B-004 10.0-12.5FT

D. FINDLEY

E330-B-004 12.5-15.0FT

						DESIGNED BY:	Г
						X.XXXXXX	
						DRAWN BY:	
						A. PARKIN	
						CHECKED BY:	
						X.XXXXXX	
						APPROVED BY:	
No.	DATE	DSN	CHK	APP	REVISION	X.XXXXXX	

D. FINDLEY

LINE IS 1" AT	FULL SCALE	SoundTran
		DATE:
		03/20/14

	SCALE:
	NOT TO SCALE
	FILENAME:
	11393533_0330_106.8
IT	CONTRACT No.:
••	RTA / AE 0143-11

EAST LINK EXTENSION
CONTRACT E330

BEL-RED SONIC CORE PHOTO LOGS E330-B-004 SOILS

DRAWING No.:
LOCATION ID:

FIGURE No:	REV:
H-4A	

E330-B-004 15.0-17.5FT E330-B-004 17.5-20.0FT E330-B-004 20.0-22.5FT

E330-B-004 22.5-24.5FT E330-B-004 24.5-27.0FT E330-B-004 27.0-30.0FT

						DESIGNED BY:	
						X.XXXXXX	
						DRAWN BY:	
						A. PARKIN	
						CHECKED BY:	
						X.XXXXXX	
						APPROVED BY:	
No.	DATE	DSN	СНК	APP	REVISION	X.XXXXXX	

D. FINDLEY

D. FINDLEY

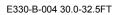
SCALE:
NOT TO SCALE
FILENAME:
11393533_0330_106.ai
CONTRACT No.:
RTA / AE 0143-11

03/20/14

EAST LINK EXTENSION				
CONTRACT E330				

BEL-RED SONIC CORE PHOTO LOGS E330-B-004 SOILS

LOCATION ID:	



E330-B-004 32.5-35.0FT

E330-B-004 35.0-37.5FT

E330-B-004 37.5-40.0FT

E330-B-004 40.0-42.5FT

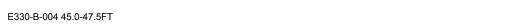
E330-B-004 42.5-45.0FT

						DESIGNED BY:	
						X.XXXXXX	
						DRAWN BY:	
						A. PARKIN	
						CHECKED BY:	
						X.XXXXXX	
						APPROVED BY:	
No.	DATE	DSN	CHK	APP	REVISION	X.XXXXXX	

D. FINDLEY

D. FINDLEY

SCALE:	
NOT TO SCALE	
FILENAME:	
11393533_0330_106.ai	
CONTRACT No.:	
RTA / AE 0143-11	


EAST LINK EXTENSION CONTRACT E330 BEL-RED

LOCATION ID:

SONIC CORE PHOTO LOGS E330-B-004 SOILS

.00,11101115.	
IGURE No:	REV:
H-4C	

E330-B-004 47.5-50.0FT

E330-B-004 50.0-52.0FT

E330-B-004 52.0-54.0FT

E330-B-004 54.0-56.0FT

E330-B-004 56.0-58.0FT

						DESIGNED BY:	
						X.XXXXXX	
						DRAWN BY:	1
						A. PARKIN	
						CHECKED BY:	1
						X.XXXXXX	
						APPROVED BY:	1
No.	DATE	DSN	CHK	APP	REVISION	X.XXXXXX	

D. FINDLEY

D. FINDLEY

|--|

SCALE:	Γ
NOT TO SCALE	
FILENAME:	
11393533_0330_106.ai	
CONTRACT No.:	
RTA / AE 0143-11	

03/20/14

EAST LINK EXTENSION	
CONTRACT E330	

BEL-RED SONIC CORE PHOTO LOGS E330-B-004 SOILS

DIVWING NO
LOCATION ID:
LUCATION ID:

FIGURE No:	REV:
H-4D	

E330-B-004 58.0-60.0FT

E330-B-004 60.0-62.0FT

E330-B-004 66.0-68.0FT

E330-B-004 68.0-70.0FT

E330-B-004 62.0-66.0FT NO PHOTO

E330-B-004 70.0-72.0FT

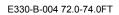
No	DATE	DSN	CHK	۸DD	DEVISION .	x xxxxxx	
						APPROVED BY:	
						X.XXXXXX	
						CHECKED BY:	
						A. PARKIN	
						DRAWN BY:	
						X.XXXXXX	
						DESIGNED BY:	

D. FINDLEY

D. FINDLEY

LINE IS 1" AT FULL SCALE	SoundTransi
	200112111211131

	SCALE:
	NOT TO SCALE
	FILENAME:
	11393533_0330_106.ai
Т	CONTRACT No.:
•	RTA / AE 0143-11


EAST LINK EXTENSION CONTRACT E330

BEL-RED SONIC CORE PHOTO LOGS E330-B-004 SOILS

LOCATION ID:

H-4E

E330-B-004 74.0-76.0FT

E330-B-004 76.0-78.0FT

E330-B-004 78.0-80.0FT

E330-B-004 80.0-82.0FT

E330-B-004 82.0-85.0FT (END OF BOREHOLE)

						DESIGNED BY:	
						X.XXXXXX	
						DRAWN BY:	
						A. PARKIN	i
						CHECKED BY:	i
						X.XXXXXX	İ
						APPROVED BY:	İ
Nο	DATE	DSN	CHK	APP	REVISION	x.xxxxxx	ĺ

D. FINDLEY

D. FINDLEY

	LINE IS 1" AT	FULL SCALE	SoundTrans
--	---------------	------------	------------

_	SCALE:
	NOT TO SCALE
•	FILENAME:
	11393533_0330_106.ai
SIT	CONTRACT No.:
	RTA / AE 0143-11

03/20/14

EAST LINK EXTENSION
CONTRACT E330

CONTRACT E330
BEL-RED
NIC CORE PHOTO LOGS
E330-B-004 SOILS

DRAWING No.:
LOCATION ID:

FIGURE No:	REV:
H-4F	

E330-B-001 0-8FT NO SAMPLE RUN E330-B-001 8-10FT E330-B-001 10-15FT

E330-B-001 15-20FT E330-B-001 20-25FT E330-B-001 25-30FT

						DESIGNED BY:
						X.XXXXXX
						DRAWN BY:
						A. PARKIN
						CHECKED BY:
						X.XXXXXX
						APPROVED BY:
No.	DATE	DSN	CHK	APP	REVISION	X.XXXXXX

D. FINDLEY

D. FINDLEY

LINE IS 1" AT FULL SCALE	SoundTransi

	SCALE:
	NOT TO SCALE
	FILENAME:
	11393533_0330_101.ai
г	CONTRACT No.:
'	RTA / AE 0143-11

EAST LINK EXTENSION	
CONTRACT E330	

ONIC CORE PHOTO LOGS	BEL-RED	
E330-B-001 SOILS	ONIC CORE PHOTO LOGS E330-B-001 SOILS	

LOCATION ID:	
	LOCATION ID:

H-1A

E330-B-001 30-35FT E330-B-001 35-40FT E330-B-001 40-45FT

E330-B-001 45-50FT E330-B-001 50-55FT E330-B-001 55-60FT

			X.XXXXXX
	_		A. PARKIN CHECKED BY:
			DRAWN BY:
			X.XXXXXX
			DESIGNED BY:

D. FINDLEY

D. FINDLEY

LINE IS 1" AT FULL SCALE	SoundTransi

	SCALE:
	NOT TO SCALE
	FILENAME:
	11393533_0330_101.ai
г	CONTRACT No.:
•	RTA / AE 0143-11

EAST LINK EXTENSION
CONTRACT E330

BEL-RED	
DNIC CORE PHOTO LOGS E330-B-001 SOILS	

LOCATION ID:	
FIGURE No:	REV:

E330-B-001 65-70FT (END OF BOREHOLE)

| DESIGNED BY: | X.XXXXXX | DRAWN BY: | A. PARKIN | CHECKED BY: | X.XXXXXX | DRAWN BY: | A. PARKIN | CHECKED BY: | X.XXXXXX | APPROVED BY: | X.XXXXXX | APPROVED BY: | X.XXXXXX | APPROVED BY: | X.XXXXXX | APPROVED BY: | X.XXXXXX | APPROVED BY: | X.XXXXXX | APPROVED BY: | X.XXXXXX | APPROVED BY: | X.XXXXXX | APPROVED BY: | X.XXXXXX | APPROVED BY: | X.XXXXXXX | APPROVED BY: | X.XXXXXX | X.XXXXXX | APPROVED BY: | X.XXXXXX | X.XXXXXX | APPROVED BY: | X.XXXXXX | X.XXXXX | X.XXXXX | X.XXXXXX | X.XXXXXX | X.XXXXXX | X.XXXXXX | X.XXXXXX | X.XXXXXX | X.XXXXXX | X.XXXXXX | X.XXXXXX | X.XXXXXX | X.XXXXXX | X.XXXXXX | X.XXXXXX | X.XXXXXX | X.XXXXXX | X.XXXXXX | X.XXXXXX | X.XXXXXX | X.XXXXX | X.XXXXXX | X.XXXXXX | X.XXXXXX | X.XXXXX | X.XXXXX | X.XXXXX | X.XXXXXXX | X.XXXXXX | X.XXXXXXX | X.XXXXXX | X.XXXXXX | X.XXXXXX | X.XXXXXX | X.XXX

Golder Associates

D. FINDLEY

D. FINDLEY

SCALE:
NOT TO SCALE
FILENAME:
11393533_0330_101.ai
CONTRACT No.:
RTA / AE 0143-11

EAST LINK EXTENSION CONTRACT E330 BEL-RED

LOCATION ID

SONIC CORE PHOTO LOGS E330-B-001 SOILS

LOCATION ID:	
FIGURE No:	REV:
H 1C	

E330-B-002 10-12.5FT

E330-B-002 0-5FT NO SAMPLE RUN E330-B-002 5-10FT

2.5 30-8-02-02/05/2013 11:50

E330-B-002 12.5-20FT NO PHOTO E330-B-002 20-25FT E330-B-002 25-30FT

No	DATE	DSN	CHK	۸DD	PEVISION	X XXXXXX	i
						APPROVED BY:	İ
						X.XXXXXX	
						CHECKED BY:	
						A. PARKIN	
						DRAWN BY:	
						X.XXXXXX	İ
						DESIGNED BY:	

D. FINDLEY

D. FINDLEY

LINE IS 1" AT	FULL SCALE	5
≝_	3	SoundTransi

	SCALE:
	NOT TO SCALE
	FILENAME:
	11393533_0330_102.8
IT	CONTRACT No.:
••	RTA / AE 0143-11

EAST LINK EXTENSION
CONTRACT E330

BEL-RED SONIC CORE PHOTO LOGS E330-B-002 SOILS

DRAWING No.:
LOCATION ID:

FIGURE No:	REV:
H-2A	

E330-B-002 30-35FT E330-B-002 35-40FT E330-B-002 40-45FT

E330-B-002 45-50FT E330-B-002 55-60FT

						DESIGNED BY:	i
						X.XXXXXX	İ
						DRAWN BY:	
						A. PARKIN	i
						CHECKED BY:	i
						X.XXXXXX	i
						APPROVED BY:	i
No.	DATE	DSN	CHK	APP	REVISION	X.XXXXXX	

D. FINDLEY

D. FINDLEY

. Т	_
SoundTrans	ISI

	SCALE:
	NOT TO SCALE
	FILENAME:
	11393533_0330_102.ai
г	CONTRACT No.:
•	RTA / AE 0143-11

03/20/14

EAST LINK EXTENSION
CONTRACT E330

BEL-RED	
ONIC CORE PHOTO LOGS E330-B-002 SOILS	

LOCATION ID:	
FIGURE No:	REV:
H-2B	

E330-B-002 65-67.5FT E330-B-002 67.5-70FT (END OF BOREHOLE)

						DESIGNED BY:
						X.XXXXXX
						DRAWN BY:
						A. PARKIN
						CHECKED BY:
						X.XXXXXX
						APPROVED BY:
Nο	DATE	DSN	CHK	APP	REVISION	x.xxxxxx

D. FINDLEY

D. FINDLEY

LINE IS 1" AT FULL SCALE	SoundTransit
FULL	SoundTransi

SCALE:
NOT TO SCALE
FILENAME:
11393533_0330_102.ai
CONTRACT No.:
RTA / AE 0143-11

EAST LINK EXTENSION
CONTRACT E330
REL-RED

LOCATION ID:

SONIC CORE PHOTO LOGS E330-B-002 SOILS

FIGURE No:	REV:
H-2C	

E330-B-003 5-10FT E330-B-003 10-12.5FT (1)

E330-B-003 0-5FT NO SAMPLE RUN

E330-B-003 10-12.5FT (2) E330-B-003 12.5-15FT (1) E330-B-003 12.5-15FT (2)

						DESIGNED BY:	
						X.XXXXX	
						DRAWN BY:	
						A. PARKIN	
						CHECKED BY:	
						X.XXXXXX	
						APPROVED BY:	
No	DATE	DSN	CHK	ADD	DEVISION	x xxxxxx	

D. FINDLEY

D. FINDLEY

_	
FULL SCALE	SoundTransi

	SCALE:
	NOT TO SCALE
	FILENAME:
	11393533_0330_103.ai
_	CONTRACT No.:
	RTA / AE 0143-11

03/20/14

EAST LINK EXTENSION				
CONTRACT E330				
BEL-RED				

LOCATION ID:
E. O D. E
FIGURE No:

SONIC CORE PHOTO LOGS E330-B-003 SOILS

E330-B-003 15-17.5FT (2)

E330-B-003 17.5-20FT (1)

E330-B-003 17.5-20FT (2)

E330-B-003 20-22.5FT (1)

D. FINDLEY

E330-B-003 20-22.5FT (2)

						DESIGNED BY:	
						X.XXXXXX	İ
						DRAWN BY:	
						A. PARKIN	
						CHECKED BY:	
						X.XXXXXX	
						APPROVED BY:	
No.	DATE	DSN	CHK	APP	REVISION	x.xxxxxx	1

D. FINDLEY

T	5
FULL SCALE	SoundTransit

	SCALE:
	NOT TO SCALE
	FILENAME:
	11393533_0330_103.ai
т	CONTRACT No.:
•	RTA / AE 0143-11

03/20/14

EAST LINK EXTENSION CONTRACT E330

BEL-RED SONIC CORE PHOTO LOGS E330-B-003 SOILS

LOCATION ID:	
FIGURE No:	REV:

H-3B

E330-B-003 22.5-25FT (2) E330-B-003 25-27.5FT (1)

E330-B-003 25-27.5FT (2) E330-B-003 27.5-30FT (1) E330-B-003 27.5-30FT (2)

						DESIGNED BY:	
						X.XXXXXX	
						DRAWN BY:	1
						A. PARKIN	
						CHECKED BY:	1
						X.XXXXXX	
						APPROVED BY:	1
Nο	DATE	DSN	CHK	APP	REVISION	Tx.xxxxxx	

D. FINDLEY

D. FINDLEY

FULL SCALE	SoundTransit

	SCALE:
	NOT TO SCALE
	FILENAME:
	11393533_0330_103.ai
_	CONTRACT No.:
	RTA / AE 0143-11

03/20/14

EAST LINK EXTENSION
CONTRACT E330
BEL-RED

CONTRACT ESSU	
BEL-RED	LOCATION ID:
SONIC CORE PHOTO LOGS	
E330-B-003 SOILS	FIGURE No:

FIGURE No:	REV:
H-3C	

E330-B-003 30-32.5FT (2) E330-B-003 32.5-35FT (1)

E330-B-003 32.5-35FT (2) E330-B-003 35-37FT (2)

No	DATE	DSN	CHK	۸DD	DEVISION	x xxxxxx	
						APPROVED BY:	1
						X.XXXXXX	1
						CHECKED BY:	1
						A. PARKIN	
						DRAWN BY:	1
						X.XXXXXX]
						DESIGNED BY:	

FULL SCALE	SoundTransit

	SCALE:
	NOT TO SCALE
	FILENAME:
	11393533_0330_103.ai
_	CONTRACT No.:
	RTA / AE 0143-11

EAST LINK EXTENSION CONTRACT E330 BEL-RED

LOCATION ID:	
FIGURE No:	REV:

H-3D

E330-B-003 37-40FT (2)

E330-B-003 40-42.5FT (1)

E330-B-003 40-42.5FT (2)

E330-B-003 42.5-45FT (1)

D. FINDLEY

E330-B-003 42.5-45FT (2)

						DESIGNED BY:	
						X.XXXXXX	
						DRAWN BY:	
						A. PARKIN	
						CHECKED BY:	
						X.XXXXXX	
						APPROVED BY:	
No	DATE	DSN	CHK	ΔPP	DEVISION	x xxxxxx	

D. FINDLEY

LINE IS 1" AT FULL SCALE	SoundTrans
	JOUND MAN.

	SCALE:
	NOT TO SCALE
	FILENAME:
	11393533_0330_103.ai
т	CONTRACT No.:
•	RTA / AE 0143-11

03/20/14

EAST LINK EXTENSION CONTRACT E330

BEL-RED SONIC CORE PHOTO LOGS E330-B-003 SOILS

LOCATION ID:	
FICURE No:	DE\/-

H-3E

E330-B-003 45-47.5FT (2) E330-B-003 47.5-50FT (1)

E330-B-003 47.5-50FT (2) E330-B-003 50-52.5FT (1) E330-B-003 50-52.5FT (2)

No	DATE	DSN	CHK	۸DD	DEVISION	X XXXXXX	
						APPROVED BY:	
						X.XXXXX	
						CHECKED BY:	
						A. PARKIN	
						DRAWN BY:	
						X.XXXXX	
						DESIGNED BY:	

D. FINDLEY

D. FINDLEY

FULL SCALE	SoundTransit

SCALE:	I
NOT TO SCALE	l
FILENAME:	ı
11393533_0330_103.ai	ı
CONTRACT No.:	ı
RTA / AF 0143-11	ı

EAST LINK EXTENSION
CONTRACT E330
BEL-RED

SONIC CORE PHOTO LOGS

E330-B-003 SOILS

LOCATION ID:	
FIGURE No:	REV:
H-3F	

E330-B-003 52.5-55FT (2) E330-B-003 55-57.5FT (1)

E330-B-003 57.5-60FT (2) E330-B-003 57.5-60FT (2)

						DESIGNED BY:	
						X.XXXXXX	
						DRAWN BY:	
						A. PARKIN	i
						CHECKED BY:	i
						X.XXXXXX	İ
						APPROVED BY:	İ
Nο	DATE	DSN	CHK	APP	REVISION	x.xxxxxx	ĺ

D. FINDLEY

FULL SCALE	SoundTransit

03/20/14

SCALE:	
NOT TO SCALE	
FILENAME:	
11393533_0330_103.ai	
CONTRACT No.:	
RTA / AE 0143-11	

EAST LINK EXTENSION CONTRACT E330 BEL-RED

BEL-RED LOCATION ID:

SONIC CORE PHOTO LOGS
E330-B-003 SOILS
FIGURE No:
H-3G

E330-B-003 60-62FT (2) E330-B-003 62.5-65FT (1)

E330-B-003 62.5-65FT (2) E330-B-003 65-67.5FT (1) E330-B-003 65-67.5FT (2)

No	DATE	DSN	CHK	۸DD	DEVISION	x xxxxxx	
						APPROVED BY:	1
						X.XXXXXX	
						CHECKED BY:	
						A. PARKIN	
						DRAWN BY:	
						X.XXXXXX	
						DESIGNED BY:	

D. FINDLEY

D. FINDLEY

LINE IS 1" AT FULL SCALE	SoundTransi

SCALE:
NOT TO SCALE
FILENAME:
11393533_0330_103.ai
CONTRACT No.:
RTΔ / ΔΕ 0143-11

AST LINK EXTENSION								

LOCATION ID:	
FIGURE No:	REV:
LI 2LI	

E330-B-003 67.5-70FT (2)

E330-B-003 70-72.5FT (1)

E330-B-003 70-72.5FT (2)

E330-B-003 72.5-75FT (1)

E330-B-003 72.5-75FT (2)

	l					DESIGNED BY:	
						X.XXXXX	
						DRAWN BY:	
						A. PARKIN	
						CHECKED BY:	1
						X.XXXXXX	
						APPROVED BY:	1
No.	DATE	DSN	CHK	APP	REVISION	X.XXXXXX	

D. FINDLEY

D. FINDLEY

	SCALE:
	NOT TO SCALE
	FILENAME:
	11393533_0330_103.ai
г	CONTRACT No.:
	RTA / AE 0143-11

03/20/14

EAST LINK EXTENSION								
CONTRACT E330								

BEL-RED SONIC CORE PHOTO LOGS E330-B-003 SOILS

LOCATION ID:	
FIGURE No:	REV:

H-3I

E330-B-003 75-77.5FT (2)

E330-B-003 77.5-80FT (1)

E330-B-003 77.5-80FT (2)

E330-B-003 80-83.5FT (1)

E330-B-003 80-83.5FT (2)

						DESIGNED BY:	
						X.XXXXXX	İ
						DRAWN BY:	
						A. PARKIN	
						CHECKED BY:	
						X.XXXXXX	
						APPROVED BY:	
No.	DATE	DSN	CHK	APP	REVISION	x.xxxxxx	1

D. FINDLEY

D. FINDLEY

FULL SCALE	SoundTransit

	SCALE:
	NOT TO SCALE
	FILENAME:
	11393533_0330_103.ai
г	CONTRACT No.:
'	RTA / AE 0143-11

EAST LINK EXTENSION CONTRACT E330 BEL-RED

LOCATION ID:
FIGURE Na.

SONIC CORE PHOTO LOGS E330-B-003 SOILS

H-3J

E330-B-003 83.5-87FT (2) E330-B-003 87-90FT (1)

7/B/2013 - 14:24

E330-B-003 87-90FT (2) (END OF BOREHOLE)

						DESIGNED BY: X.XXXXXX DRAWN BY: A. PARKIN CHECKED BY:		Golder Associates	G-	J-H	LINE IS 1" AT FULL SCALE	SoundTransit	NOT TO SCALE FILENAME: 11393533_0330_ CONTRACT No.:
						X.XXXXX			FINAL DESI	GN FARTNERS.			RTA / AE 0143-1
						APPROVED BY:	1	SUBMITTED BY:	DATE:	REVIEWED BY:		DATE:	DATE:
No.	DATE	DSN	СНК	APP	REVISION	X.XXXXX		D. FINDLEY	03/20/14	D. FINDLEY		03/20/14	03/20/14

EAST LINK EXTENSION
CONTRACT E330
BEL-RED

SONIC CORE PHOTO LOGS E330-B-003 SOILS LOCATION ID:

FIGURE No: REV:

E330-B-005 6-7.5FT E330-B-005 7.5-10FT

E330-B-005 0-6FT NO SAMPLE RUN

E330-B-005 10-12.5FT E330-B-005 15-22.5FT

				-		X.XXXXXX DRAWN BY:	ł
						1	
						A. PARKIN	
						CHECKED BY:	
						X.XXXXXX	
						APPROVED BY:	
No	DATE	DSN	CHK	ΔPP	REVISION	x xxxxxx	

D. FINDLEY

D. FINDLEY

SCALE:
NOT TO SCALE
FILENAME:
11393533_0330_104.ai
CONTRACT No.:
RTA / AE 0143-11

03/20/14

EAST LINK EXTENSION	
CONTRACT E330	
סבו סבס	

LOCATION ID:

H-5A

SONIC CORE PHOTO LOGS E330-B-005 SOILS

E330-B-005 30-32.5FT E330-B-005 30-35FT

VE330-B-001 0-8FT NO SAMPLE RUN

E330-B-005 35-42.5FT E330-B-005 42.5-47.5FT E330-B-005 47.5-52.5FT

						DESIGNED BY:	
						X.XXXXX	
						DRAWN BY:	
						A. PARKIN	
						CHECKED BY:	
						X.XXXXXX	
						APPROVED BY:	
No.	DATE	DSN	CHK	APP	REVISION	X.XXXXXX	

D. FINDLEY

D. FINDLEY

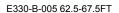
	SCALE:
	NOT TO SCALE
	FILENAME:
	11393533_0330_104.ai
-	CONTRACT No.:
	RTA / AE 0143-11

EAST LINK EXTENSION CONTRACT E330

LOCATION ID:
FIGURE N.

BEL-RED SONIC CORE PHOTO LOGS E330-B-005 SOILS

H-5B



E330-B-005 55-57.5FT E330-B-005 57.5-62.5FT

VE330-B-001 0-8FT NO SAMPLE RUN

E330-B-005 67.5-76FT (END OF BOREHOLE)

						DESIGNED BY:	
						X.XXXXX	
						DRAWN BY:	1
						A. PARKIN	
						CHECKED BY:	1
						X.XXXXX	
						APPROVED BY:	1
No.	DATE	DSN	CHK	APP	REVISION	X.XXXXXX	

D. FINDLEY

D. FINDLEY

LINE IS 1" AT FULL SCALE	SoundTransit
FULL	SoundTransi

SCALE:
NOT TO SCALE
FILENAME:
11393533_0330_104.ai
CONTRACT No.:
RTA / AE 0143-11

EAST LINK EXTENSION CONTRACT E330

BEL-RED SONIC CORE PHOTO LOGS E330-B-005 SOILS

LOCATION ID:	

H-5C

E335-AN-001 10-18.5FT

E335-AN-001 18-25FT

E335-AN-001 25-30FT

E335-AN-001 30-39FT

E335-AN-001 39-40FT

	l					DESIGNED BY:	
						X.XXXXXX	
						DRAWN BY:	
						A. PARKIN	
						CHECKED BY:	
						X.XXXXXX	
						APPROVED BY:	
No.	DATE	DSN	CHK	APP	REVISION	X.XXXXXX	

Golder Associates

D. FINDLEY

D. FINDLEY

LINE IS 1" AT FULL SCALE	SoundTrain

	SCALE:		
=	NOT TO SCALE		
_	FILENAME:		
	11393533_0335_101.ai		
NSIT	CONTRACT No.:		
	RTA / AE 0143-11		

EAST LINK EXTENSION CONTRACT E335 BEL-RED

LOCATION ID:	
	LOCATION ID:

SONIC CORE PHOTO LOGS E335-AN-001 SOILS

FIGURE No: REV:

E335-AN-001 40-48FT

E335-AN-001 48-50FT E335-AN-001 50-60FT

E335-AN-001 60-70FT E335-AN-001 70-80FT E335-AN-001 80-90FT

						DESIGNED BY:	
						X.XXXXXX	
						DRAWN BY:	
						A. PARKIN	
						CHECKED BY:	
						X.XXXXXX	
						APPROVED BY:	
No.	DATE	DSN	CHK	APP	REVISION	X.XXXXXX	

D. FINDLEY

D. FINDLEY

∃⊥¤ SoundTransi

	SCALE:
	NOT TO SCALE
	FILENAME:
	11393533_0335_101.ai
г	CONTRACT No.:
	RTA / AE 0143-11

EAST LINK EXTENSION CONTRACT E335 BEL-RED

=:0::==::	
LOCATION ID:	

H-7B

SONIC CORE PHOTO LOGS E335-AN-001 SOILS

E335-AN-001 100-110FT E335-AN-001 110-120FT

E335-AN-001 120-130FT (END OF BOREHOLE)

						DESIGNED BY:	
						X.XXXXX	İ
						DRAWN BY:	
						A. PARKIN	
						CHECKED BY:	
						X.XXXXXX	
						APPROVED BY:	
No.	DATE	DSN	CHK	APP	REVISION	X.XXXXXX	

D. FINDLEY

D. FINDLEY

SCALE:
NOT TO SCALE
FILENAME:
11393533_0335_101.ai
CONTRACT No.:
DTA / AE 01/2 11

EAST LINK EXTENSION CONTRACT E335 BEL-RED

LOCATION ID:

SONIC CORE PHOTO LOGS E335-AN-001 SOILS

FIGURE No:	REV:
H-7C	

E335-AN-002 12-17FT

E335-AN-002 17-20FT

E335-AN-002 20-25FT

E335-AN-002 25-30FT

E335-AN-002 30-35FT

	1					DESIGNED BY:	
						X.XXXXXX	
						DRAWN BY:	1
						A. PARKIN	
						CHECKED BY:	1
						X.XXXXXX	
						APPROVED BY:	1
No.	DATE	DSN	CHK	APP	REVISION	X.XXXXXX	

Golder Associates

D. FINDLEY

D. FINDLEY

FULL SCALE	SoundTrans
FULL SCA	SoundTrans

	SCALE:
	NOT TO SCALE
	FILENAME:
	11393533_0335_102.ai
Г	CONTRACT No.:
'	RTA / AF 0143-11

EAST LINK EXTENSION
CONTRACT E335
BEL-RED

SONIC CORE PHOTO LOGS E335-AN-002 SOILS

OCATION ID:	
GURE No:	REV:
⊔ о∧	

E335-AN-002 40-45FT

E335-AN-002 45-50FT

E335-AN-002 50-60FT

E335-AN-002 60-70FT

E335-AN-002 70-80FT

						DESIGNED BY:	
						X.XXXXX	
						DRAWN BY:	
						A. PARKIN	
						CHECKED BY:	
						X.XXXXXX	
						APPROVED BY:	
No.	DATE	DSN	CHK	APP	REVISION	X.XXXXXX	

Golder Associates

D. FINDLEY

D. FINDLEY

SOUNDTRANSIT

SCALE:
NOT TO SCALE
FILENAME:
11393533_0335_102.ai
CONTRACT No.:
RTA / AE 0143-11

EAST LINK EXTENSION CONTRACT E335 BEL-RED

LOCATION ID:

SONIC CORE PHOTO LOGS E335-AN-002 SOILS

E335-AN-002 100-110FT (END OF BOREHOLE)

						DESIGNED BY:
						X.XXXXXX
						DRAWN BY:
						A. PARKIN
						CHECKED BY:
						X.XXXXX
						APPROVED BY:
No.	DATE	DSN	CHK	APP	REVISION	X.XXXXXX

D. FINDLEY

D. FINDLEY

	SCALE:
	NOT TO SCALE
	FILENAME:
	11393533_0335_102.ai
г	CONTRACT No.:
	RTA / AE 0143-11

EAST LINK EXTER	
CONTRACT E3	ან
BEL-RED	
SONIC CORE PHOTO I	OGS

ı	DRAWING No.:
ı	
ı	
ŀ	LOCATION ID

SONIC CORE PHOTO LOGS E335-AN-002 SOILS

GURE No:	REV:
H-8C	

E335-AN-003 15-17.5FT

E335-AN-003 17.5-20FT E335-AN-003 20-22.5FT E335-AN-003 20-525FT

E335-AN-003 10-15FT

	1					DESIGNED BY:	
						X.XXXXXX	
						DRAWN BY:	
						A. PARKIN	
						CHECKED BY:	1
						X.XXXXXX	
						APPROVED BY:	
No.	DATE	DSN	CHK	APP	REVISION	X.XXXXXX	

D. FINDLEY

LINE IS 1" AT FULL SCALE

	SCALE:
	NOT TO SCALE
	FILENAME:
	11393533_0335_103.ai
г	CONTRACT No.:
'	DTA / AE 01/2 11

EAST LINK EXTENSION CONTRACT E335 BEL-RED SONIC CORE PHOTO LOGS E335-AN-003 SOILS

LOCATION ID:	
FIGURE No:	RE\

H-9A

FINAL DESIGN PARTNERS.

SOUNDTRANSIT	CONTRACT No.:	RTA / AE 0143-11		
DATE:	REVIEWED BY:	DATE:	DATE:	DATE:
03/20/14	D. FINDLEY	03/20/14	03/20/14	

E335-AN-003 25-27.5'

E335-AN-003 27.5-30FT

E335-AN-003 30-32.5FT

E335-AN-003 32.5-35FT

E335-AN-003 35-37.5FT

D. FINDLEY

E335-AN-003 37.5-40FT

	l					DESIGNED BY:	
						X.XXXXX	
						DRAWN BY:	
						A. PARKIN	
						CHECKED BY:	1
						X.XXXXXX	
						APPROVED BY:	1
No.	DATE	DSN	CHK	APP	REVISION	X.XXXXXX	

Golder Associates

D. FINDLEY

SCALE:
NOT TO SCALE
FILENAME:
11393533_0335_103.ai
CONTRACT No.:
DTA / AE 01/2 11

EAST LINK EXTENSION CONTRACT E335 BEL-RED

SONIC CORE PHOTO LOGS

E335-AN-003 SOILS

L		
Ī	LOCATION ID:	
Ī	FIGURE No:	REV:
	H-9B	

						DESIGNED BY:	
						X.XXXXXX	
						DRAWN BY:	1
						A. PARKIN	
						CHECKED BY:	1
						X.XXXXXX	
						APPROVED BY:	1
No	DATE	DSN	CHK	۸DD	DEVISION	x xxxxxx	

D. FINDLEY

D. FINDLEY

SoundTransit

DATE: 03/20/14

SCALE:
NOT TO SCALE
FILENAME:
11393533_0335_103.ai
CONTRACT No.:
DTA / AE 01/3 11

EAST LINK EXTENSION
CONTRACT E335

BEL-RED SONIC CORE PHOTO LOGS E335-AN-003 SOILS

LOCATION ID:	

H-9C

Grand Connection Crossing Sturtevant Creek Alternatives

Date: March 12, 2024

Subject: Bellevue Grand Connection: I-405 Crossing – Downtown to Eastrail

Meeting with WSDOT on Sturtevant Creek Alternatives

INTRODUCTION

The City of Bellevue is completing preliminary engineering and environmental analysis for the Bellevue Grand Connection: I-405 Crossing – Downtown to Eastrail project, also referred to as the Grand Connection Crossing. The project will provide an active transportation crossing over I-405 just south of the new Sound Transit 2 Line (East Link), located on the south side of NE 6th Street. The proposed active transportation crossing would extend from Bellevue City Hall to Eastrail (former railroad right-of-way trail). The proposed active transportation crossing will cross above Sturtevant Creek, which is currently conveyed within a storm drain pipe which crosses the proposed project corridor just east of I-405. See project area map below.

During prior discussions between WSDOT and the City, it is understood that WSDOT may be considering "daylighting" Sturtevant Creek through the project area as part of the I-405 Master Plan. It is further understood that the creek daylighting, if it occurs, would be a WSDOT project rather than a City of Bellevue project; however, it is important that the City plan for the creek "daylighting" in terms of alignment and width (assuming WSDOT continues to pursue it).

The City requested a meeting with WSDOT to present some of its initial findings on the existing creek as well as to discuss potential alternatives for two daylighting options and an optional alternative of water quality retrofits that could be potential preferable to the "daylighting" options. The intent of this discussion is to consider the alternatives and confirm whether or not the City needs to further examine all three alternative options.

The following section provides a review of the creek conditions based on a review of available planning information developed by the City of Bellevue and one site visit (jointly by WSP and WSDOT staff). The existing condition section is followed by a high-level alternative comparison.

¹ Active transportation refers to person-powered ways of getting around, such as walking, bicycling, or rolling a wheelchair.

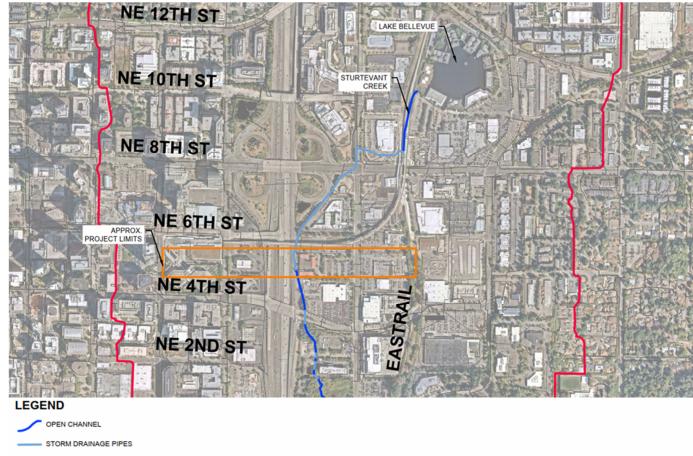


Figure 1: Approximate project limits relative to Sturtevant Creek

EXISTING STREAM CONDITIONS

What follows is a description of the Sturtevant Creek basin followed by brief summaries of existing environmental documents that have information on creek conditions. Following the summary of these documents is a summary of the site visit conducted by WSP staff and WSDOT representatives (Alex Strom – WSDOT consultant).

The Sturtevant Creek basin encompasses 772 acres in northwest Bellevue. The basin is bisected by I-405. The headwaters of the creek form at Lake Bellevue which receives runoff from primarily piped storm drain systems. Lake Bellevue outlets to a restored open channel section of creek.

Sturtevant Creek – Open Streams Condition Assessment (City of Bellevue, 2019)

The City of Bellevue conducted a city-wide stream habitat assessment from 2018 to 2020, referred to as the Open Streams Condition Assessment (OSCA), to help characterized the City's streams and provide a solid foundation for watershed management planning efforts. For the OSCA of Sturtevant Creek, the City defined seven main reaches from its confluence with Kelsey Creek upstream to its source at Lake Bellevue. The OSCA includes summaries of the characteristics of each reach, including habitat composition, streambank conditions, streambed substrate composition, large woody material frequency and channel measurements. In addition, the OSCA provides descriptions of the habitat conditions, fish passage barriers and preferred priorities for future work within each reach.

The document describes the entire 772-acre Sturtevant Creek basin as primarily consisting of commercial and office land use and public/WSDOT right-of-way (ROW), including I-405. As a result, the creek is fragmented and constrained and alternates between open channel and piped reaches, with a total of only one mile of open channel and about 23 miles of storm drain pipes. Reaches 1 and 2 are the downstream-most reaches, respectively, on the west side of I-405 and downstream of the I-405 culvert. Reaches 3 through 7 are on the east side of I-405, between the I-405 culvert and Lake Bellevue (see Figure 2 below).

The active transportation improvements will be within the downstream section of Reach 6, just upstream of Reach 5. Reach 5 is defined as the open channel segment from the Hampton Inn and Suites parking lot culvert (at approximately river mile 0.8) and upstream to the outlet of the piped channel as the stream runs along the I-405 on-ramp. The upper half of Reach 5 includes the NE 4th Street box culvert and the channel upstream which is characterized as being confined, overgrown and in poor condition, with invasive species. The lower half of Reach 5 has been restored by WSDOT as part of a mitigation project and now includes moderate canopy cover of native vegetation (estimated to be 25% for the entire reach). Because the creek is piped immediately upstream of this reach, Reach 5 is starved for sediment and has pronounced channel incision. Generally, the habitat conditions are considered variable with some instream habitat complexity in the area that has been restored; however, no fish were observed. The City has identified two potential barriers to fish passage within Reach 5: the City-owned culvert under NE 2nd Place and the WSDOT box culvert under NE 4th Street as it is shallow with no streambed substrate. The OSCA recommends that future work affecting this reach should prioritize stormwater treatment before considering instream improvements.

Reach 6 is defined as the segment immediately north of Reach 5, the segment of the piped system that outfalls to Reach 5 and upstream to just north of NE 8th Street. The upstream-most end of Reach 6 meets with Reach 7, which is the segment of open channel that has recently been daylighted by Sound Transit and conveys the creek from Lake Bellevue.

Two reaches span privately-owned wetland parcels: Reaches 1 and 4. Reach 1 is the downstream-most reach that is an open channel that outfalls to Kelsey Creek, just upstream of where Kelsey Creek transitions to Mercer Slough. Reach 1 extends upstream to SE 6th Street. Downstream of Sturtevant Creek, Mercer Slough flows south for about two and a half miles before discharging to Lake Washington. Reach 4 extends from Main Street to a culvert under the Hampton Inn and Suites hotel in the vicinity of NE 2nd Street and at the downstream end of Reach 5.

Reach 2 is defined as the open channel between SE 6th Street and upstream to the I-405 culvert and has been observed as having sloughing banks, which has been attributed to flashy hydrology and streamflow in the creek.

For the open channel stream reaches downstream of the project area, i.e., Reaches 2, 4 and 5, the OSCA prioritizes the capturing and treating stormwater runoff before the consideration of instream improvements.

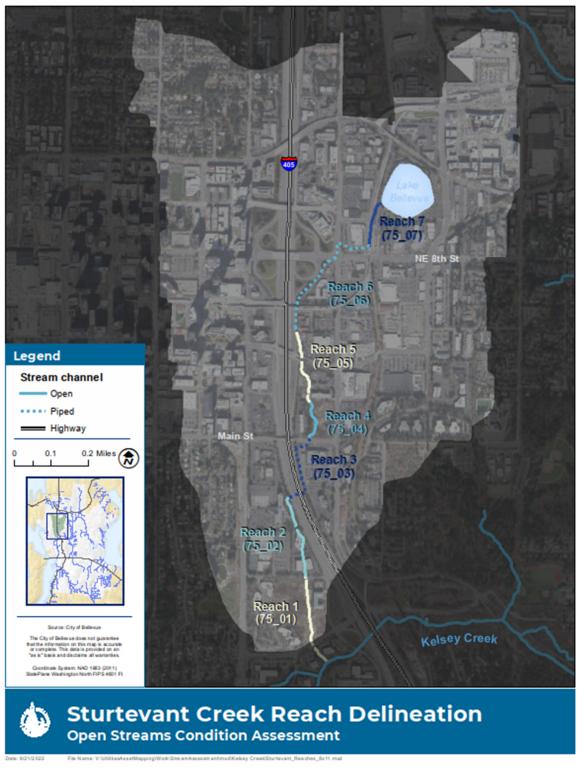


Figure 2: Sturtevant Creek Reach Delineation from the City's OSCA

Greater Kelsey Creek Watershed Assessment Report (Jacobs Engineering, Inc. and Herrera Environmental Consultants, Inc., 2021)

Jacobs and Herrera developed this assessment report (AR) of the Greater Kelsey Creek watershed, including Kelsey Creek and all its tributaries and the Sturtevant Creek subbasin, for the City to aid in the development of the associated watershed improvement plan, which will ultimately provide the basis for the recommended actions in the city-wide Watershed Management Plan. The main purpose of the AR was to evaluate the conditions within the watershed that are limiting the health of its streams, specifically the effects of stormwater runoff from urban areas. The AR also includes identified opportunities for improving in-stream watershed conditions and is based on information from the OSCA, existing data from past projects and monitoring, and existing project and environmental monitoring data.

The geomorphic characterization of the Sturtevant Creek subbasin includes the following:

- Most highly urbanized subbasin, lacking in riparian buffer and subject to flashy flows and resulting incision.
- Most confined stream due to entrenchment and modifications.
- Streambed material is mostly gravel and streambank armoring is above average for the subbasin, at 32%.
- Large woody material (LWM) is largely absent with minimal recruitment potential.
- Relatively good riffle/pool ratio, of 2, but pools are generally shallow and concentrated in Reach 4, where incision is very evident.
- Glide habitat percentage is high.

According to the AR, the wetlands in the various subbasins, including Sturtevant Creek, likely provide valuable fish habitat. Additionally, there are four known locations of partial fish passage barriers and one location of a complete fish passage barrier that have been documented by the Washington Department of Fish and Wildlife (WDFW).

The AR also discusses potential factors limiting stream health in the watershed, which were discussed and determined with City staff. A conceptual model of the impacts of urbanization on stream health was developed and used to help evaluate the limiting factors. For the Sturtevant Creek subbasin, the document identifies the primary limiting factors as stormwater runoff from effective impervious surfaces, loss of floodplain and riparian function and pollutant loading. The one secondary limiting factor includes road culverts and other physical barriers.

Regarding potential opportunities for improving the overall health of the watershed, in addition to stream restoration and instream maintenance activities, upland projects are also recommended (i.e. retrofits of existing stormwater facilities or installation of new stormwater facilities of flow control and/or water quality). The following were instream opportunities identified for Sturtevant Creek (using the OSCA reach designation convention):

Reaches 1 and 2 – Investigate potential oil water separator on I-405.

Reach 2 – Enhance instream fish habitat, restore riparian buffer and place LWM.

Reach 2 – Improve fish passage at I-405.

Reach 4 – Investigate actions to mitigate impacts of stormwater.

Following the City's 2019 OSCA, an updated 2021 OSCA Subbasin Summary for the Greater Kelsey Creek Watershed was produced (included as an attachment to the AR). The document contains more detailed information regarding the overall Sturtevant Creek subbasin than the 2019 survey. In the 2021 document, there is a more detailed description of the channel morphology and riparian corridor, habitat unit composition and off-channel habitat, large woody material, streambed substrate, streambank conditions and fish habitat and passage barriers.

According to the 2021 OSCA for the Kelsey Creek watershed, in Sturtevant Creek fish are now rather sparse. During the 2019 OSCA survey, trout were only observed in the lower portion of Reach 2 and the only other fish observed was a goldfish in Reach 4. The document notes that good spawning gravels are present and the pool habitats throughout the reaches could allow for resident fish. However, the lack of fish in the creek is likely because of poor water quality and flashy streamflow.

It documents the City's recommendations that to sustain ecosystem function and stream health, efforts should be focused on stormwater impacts, particularly on streamflow and pollutant/nutrient loading. Also, upland stormwater detention and runoff treatment would benefit the area as many oil spills have been documented along the I-405 off-ramps and regularly require instream cleanup efforts.

Assessment of Sturtevant Creek for Eligibility for the Washington State Department of Ecology Flow Control Standards for Highly Urbanized Drainage Basins (R.W. Beck, 2010)

R.W. Beck, under contract with the City, completed a study which determined that all of the Sturtevant Creek basin was eligible for an alternative stormwater detention standard for highly urbanized areas. This standard, which is allowable by the Washington State Department of Ecology as a part of their National Pollutant Discharge Elimination System (NPDES) Phase II Municipal Stormwater Permit, states that development or redevelopment projects is allowed to detain to existing land use conditions rather than historic, forested conditions. Ecology recognized that under some circumstances, streams with heavily urbanized basins can, overtime, become equilibrated to a new hydrologic regime (and are not experiencing significant erosion or sedimentation). Ecology established the standard as basins having had at least 40% total impervious area for at least 20-years and showing no significant erosion or sedimentation. The R.W. Beck report conducted historical mapping of impervious areas and to demonstrate this. The City has adopted this standard for the basin. It is also noted that WSDOT has a similar policy that allows detention to existing conditions for basins that met the 40% impervious standard (HRM Section 3-3.6.4).

WSP/WSDOT Site Visit

WSP staff met a WSDOT representative/consultant onsite in January 2024 to collect information on Sturtevant Creek and to inform the feasibility of daylighting and/or restoration alternatives. The team took measurements and made qualitative observations of the creek at the WSDOT restoration site along Reach 5, south of NE 4th Street and the box culvert. The bankfull widths and maximum depths were measured at 11 locations, with an average width of 12.1 feet and an average depth of 1.5 feet.

The team observed that the stream restoration is holding up well, with LWM anchored in place (although some of the cable had become detached and was tangled in bushes). Some incision was observed but in general the channel appeared to be stable with a well-defined bankfull channel.

This section of Reach 5 was observed as having a plane-bed channel with gravel to cobble sized sediment (less than 10% sand/fines), and few pools. The section of reach had a moderate floodplain on the left bank composed of sand and fines with mature trees and established vegetation.

Approximately 200 feet downstream of the NE 4th Street culvert, Sturtevant Creek turns to the left, with riprap reinforcement of the banks.

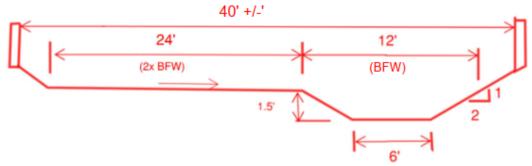
The reach upstream of NE 4th Street is highly channelized (the upper portion of Reach 5 just downstream of the project area), confined by riprap banks and overgrown with reed canary grass. No natural channel formation was evident. Reach 6, the piped section of creek discharges to this section of channel approximately 200 feet upstream of NE 4th Street via a 48-inch to 50-inch concrete pipe.

ALTERNATIVE DISCUSSION

As part of the Grand Connection Crossing scope of work pertaining to Sturtevant Creek, WSP was tasked with identifying and evaluating up to three options for daylighting and/or managing the creek. This section of the memo describes three preliminary options that could be considered and discusses some high-level advantages and disadvantages of each. At this point, no detailed modeling, concept design, or cost estimates have been developed. Rather, these options are being presented to City staff and WSDOT to solicit input on moving forward for further consideration of the alternatives. That is, some or all of the alternatives may be refined and/or removed from consideration following input. Following the meeting with the City and WSDOT, the team will also reach out to agencies (including WDFW and regional Tribes).

Three alternatives were identified for this high-level assessment: two "daylighting" alternatives and one off-site stormwater quality retrofit option. The third option was identified because of the conclusion of the City's forthcoming Watershed Management Plan that the most significant need for Sturtevant Creek is to reduce stormwater impacts. Following is a brief description of each alternative and Table 1, an alternative comparison matrix.

Alternative 1 – Daylighting Creek with Unconfined Channel


Alternative 1 assumes that the creek will be completely daylighted in the future and would be restored as a natural and unconfined channel. Unconfined streams are those with a floodplain width of at least three times the bankfull width. This is to allow the channel to laterally migrate and engage the floodplain during high flows. A conceptual sketch of the anticipated required typical cross-section is shown in Figure 3. This section is based on an average bankfull width of 12 feet as measured by the joint WSP/WSDOT site visit. Overall, the minimum daylighted section width, not including the grading needed for construction, is about 40 feet. A key factor in determining whether this alternative is feasible will be based on land acquisition.

Alternative 2 – Daylighting Creek with Confined Channel

Alternative 2 assumes that the creek will be completely daylighted in the future, confined and restored to a minimum width permissible to regulatory agencies. A stream confined between two walls can be considered analogous to a culvert crossing, so a preliminary width was estimated based on the WDFW Water Crossing Design Guidelines following the stream simulation method. The stream simulation method requires a minimum width of 1.2 times the bankfull width plus two feet. As the walled channel would have a length to width ratio of greater than 10, it could be considered a long culvert. For long culverts, WDFW recommends adding an additional 30% to the width. The added 30% allows the channel to migrate between the two structure walls. A preliminary sketch of the anticipated required typical cross-section is shown below in Figure 3. Following this methodology, the minimum daylighted section width, not including the grading need for construction, is approximately 22 feet.

Alternative 1 - Natural Channel (unconfined)

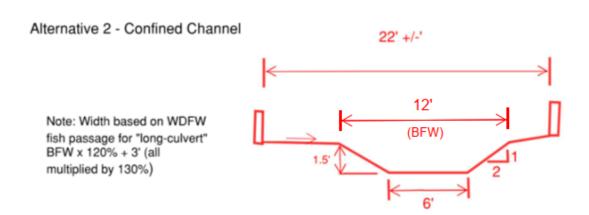


Figure 3 – Daylighting Alternative Cross-sections

Alternative 3 – Off-site Water Quality Retrofits

Alternative 3 focuses on stormwater retrofits to improve stream water quality rather than a "daylighting" option. Daylighting Sturtevant Creek under Alternatives 1 and 2 may in fact introduce the opportunity of new and/or additional pollutants to directly or indirectly outfall to the narrow stream corridor from I-405. Under this scenario, the City anticipates moving forward with the project with the assumption that the reaches of Sturtevant Creek within the project corridor will not be daylighted in the future. A key factor in determining whether this alternative is feasible is getting concurrence from regulatory agencies, namely WDFW and regional tribal interests.

Three potential off-site mitigation options were identified, primarily by reviewing recent City documents pertaining to the health and needs of the Sturtevant Creek subbasin and Kelsey Creek watershed and with input from City water resource planning staff. The three offsite water quality retrofit options are briefly described below and are referred to as Alternatives 3A, 3B and 3C.

Alternative 3A – Sturtevant Creek Channel Restoration and Water Quality Retrofits Downstream of I-405

Alternative 3A includes off-site channel restoration and water quality retrofits along Sturtevant Creek (and/or adjacent tributary) between the outlet of the I-405 crossing to north of SE 6th Street (see Figure 4). The alternative could include the following elements:

- Bioretention for I-405 runoff within WSDOT ROW just north of SE 6th Street (proposed as a part of the document: WSDOT Funding Implementation Assessment and Recommendations (recommendation document), prepared for the City by Parametrix and Osborn Consulting—see Figure 4 below for a graphic provided by the City showing potential locations for water quality enhancements based on the recommendation document). This element of the opportunity has been on the City's CIP list but has been stalled due to questions about easements and property ownership.
- Water quality treatment, including spill control, for the WSDOT outfalls along the north half of Reach 2.
- Channel restoration from the outlet of the I-405 culvert to the south about 400 feet. Restoration could include adding LWM, channel regrading, native plant restoration and conifer cover. It is expected that Tribes and agencies will appreciate inclusion of instream channel improvements that will result in near-term benefits to fish resources. Some of the channel is on private property but the entire stretch that is considered for improvements as part of this alternative is adjacent to WSDOT ROW.

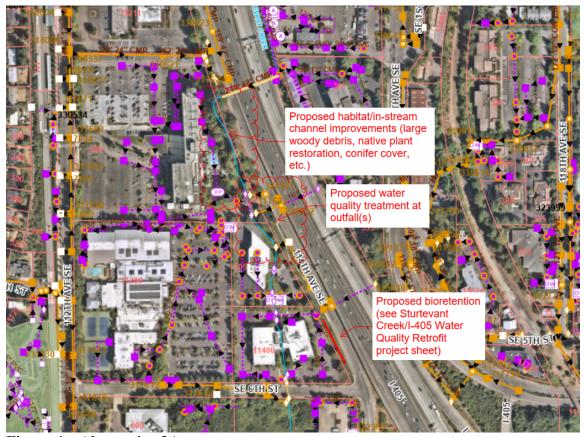


Figure 4 – Alternative 3A

Alternative 3B - West Tributary/SR-520 Water Quality Retrofit

Alternative 3B includes water quality treatment for the runoff from SR 520 at 124th Avenue NE. The improvements would treat runoff from both WSDOT and City ROW. The potential improvements were identified in the recommendation document by Parametrix and Osborn Consulting (Project number 216-1537-024) and include treatment at a city-owned property just upstream of the inlet to an existing City West Tributary (Kelsey Creek) regional detention pond. The pond currently collects untreated runoff from WSDOT and City impervious surfaces. Parametrix and Osborn Consulting identified proprietary filter media (Filterra or similar system) to provide basic treatment upstream of the pond. The document identified an order of magnitude cost of 10 million dollars. It was also noted a potential alternative within this area/subbasin would be to focus on treatment upstream within WSDOT's SR 520 ROW and focus on treatment of WSDOT runoff. See Figure 5 below.

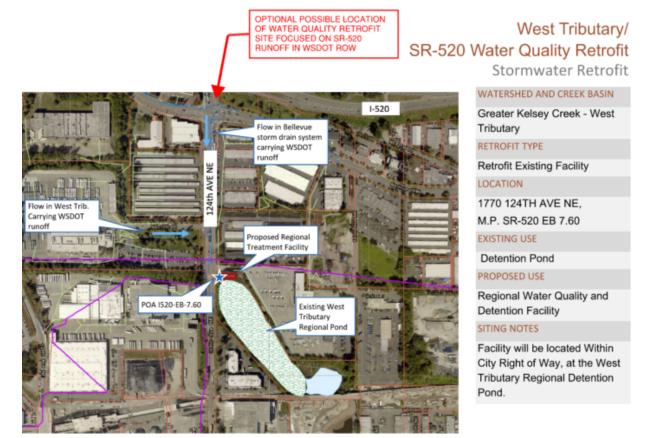


Figure 5 – Alternative 3B

Alternative 3C – West Tributary (Kelsey Creek)/Bel-Red Regional Facility

Alternative 3C includes a regional treatment facility on a parcel in the Bel-Red area that is adjacent to the East Link Extension of Sound Transit's light rail. The parcel is currently privately owned but is a candidate for redevelopment and/or sale. This project would require acquisition of this parcel to build a facility that could incorporate public amenity elements such as stormwater park features upstream of the West Tributary. This project was identified in the City's draft Watershed Improvement Strategy (Project number GKC-CIP-122) with an order of magnitude cost estimate including property acquisition of 66 million dollars. Due to the high cost, this alternative was considered more of a regional effort beyond this project's off-site mitigation contribution alone. For example, this alternative could be considered as part of a potential solution to provide mitigation for the cumulative stream impacts created by multiple projects (i.e. impacts created by SR 520 and I-405 projects to Sturtevant Creek and other subbasins within the watershed).

Table 1 on the next page provides a summary of the alternative comparison.

Alternative	Description	Pros	Cons	Relative Cost
1	Daylighting with Unconfined Channel	Consistent with general intent of agencies to restore stream channels.	 Very limited habitat upstream and likely will not be fully restored as viable fish habitat. Provides habitat but use by salmonids is unlikely due to downstream fish passage barriers and poor water quality. Property acquisition will be required. Creates potential for new required setbacks for adjacent properties if areas develop or redevelop near stream after creek daylighted (50-foot setback plus 50-foot buffer beyond setback). May introduce the opportunity of new and/or additional pollutants to directly or indirectly outfall to the narrow stream corridor from I-405. Greatest area needs (private land purchase) of usable commercial space. Future LID over I-405 could impact planting in daylighted section. 	\$\$
2	Daylighting with Confined Channel	 Generally consistent with general intent of agencies to provide fish passage. Minimizes impact to properties. 	 Provides fish passage through project corridor, but there is little to no viable habitat upstream. Downstream fish barriers and poor water quality have resulted in no native salmonids currently inhabiting the stream. Confined channel provides minimal habitat within the restored reach. Provides habitat but use by salmonids may be limited by downstream fish passage barriers and poor water quality. Creates potential for new required setbacks for adjacent properties if areas develop or redevelop near stream after creek daylighted (50-foot setback plus 50-foot buffer beyond setback. May introduce the opportunity of new and/or additional pollutants to directly or indirectly outfall to the narrow stream corridor from I-405. Reduced area needs (private land purchase) compared to Alternative 1. Future LID over I-405 could impact planting in daylighted section. 	\$
3A	Sturtevant Creek Channel Restoration and Water Quality Retrofits	 Helps to address poor water quality, a primary limiting factor in the watershed. Benefits are realized sooner than Alternatives 1 and 2 (because reaches west of I-405 are currently accessible to fish). Most of work can be within WSDOT's I-405 ROW. 	 Does not follow typical guidance to restore on-site fish passage. Will need WDFW and Tribal buy-in. 	\$
3B	West Tributary/SR 520 Water Quality Retrofit	 Helps to address poor water quality, which is a primary limiting factor in the watershed. Benefits are realized sooner than Alternatives 1 and 2 (because reaches west of I-405 are currently accessible to fish). 	 Does not follow typical guidance to restore on-site fish passage. Will need WDFW and Tribal buy-in. Not in Sturtevant Creek subbasin (but within the Greater Kelsey Creek watershed). 	\$\$
3C	West Tributary (Kelsey Creek)/Bel- Red Regional Facility	 Helps to address poor water quality, which is a primary limiting factor in the watershed. Regional water quality benefits for stormwater and salmon recovery. Potential for non-traditional mitigation banking. 	 Does not follow typical guidance to restore on-site fish passage. Will need WDFW and Tribal buy-in. Significant property acquisition will be required. Likely long-term project due to high cost and needed property acquisition. 	\$\$\$

Table 1. Alternative Summary Comparison