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1 INTRODUCTION 
Pedestrian safety is of grave concern to traffic engineers. In the United States, 6,205 

pedestrians were killed, and approximately 76,000 were injured in 2019. More concerning 
is the fact that the relative proportion of pedestrian fatalities among all crash fatalities has 
been steadily increasing over the past ten years (National Center for Statistics and 
Analysis (NCSA), 2020, December). A pedestrian was estimated to be killed every 85 
minutes and injured every 7 minutes in traffic crashes in 2019. Therefore, targeted 
treatments for improving pedestrian safety at crucial locations such as urban intersections 
are needed.  

Leading Pedestrian Intervals (LPI) are an innovative signalized intersection 
treatment involving a pre-timed allocation to allow pedestrians to begin crossing the street 
in advance of the next cycle of vehicle movements (AASHTO, 2014). It helps reduce the 
“element of surprise” for right-turning vehicles. However, the evidence from the literature 
on the effectiveness of the LPI treatment is mixed.(King, 2000, Van Houten et al., 2000, 
Fayish and Gross, 2010, Sharma et al., 2017, Goughnour et al., 2021). 

Modern advancements in sensor technology offer an unprecedented opportunity to 
assess the effectiveness of safety treatments remotely and proactively using traffic 
conflict analysis (Tageldin et al., 2018, Zheng et al., 2018, Guo et al., 2020a, Guo et al., 
2020b). Therefore, this study undertook a traffic conflict-based before-after type safety 
evaluation of a 5-second LPI treatment implemented at three signalized intersections in 
the city of Bellevue, Washington. The  traffic conflicts were automatedly extracted from 
video-captured traffic movements using advanced Computer Vision and Deep Learning 
techniques. The study applied a bivariate peak-over threshold modelling approach to 
model the tail distributions of pedestrian-vehicle Time-to-collision (TTC) conflicts, with 
the objective of studying whether the LPI treatment leads to a reduction in such conflicts. 
Additionally, the study also modelled rear-end TTC conflicts between vehicles to 
investigate whether the LPI treatment, on the other hand, led to an increase in vehicular 
conflicts.  
2 METHODOLOGY 

 

Fig. 1: The study framework 
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The study framework is given in Fig. 1, which details the various steps and analyses 
performed to reach the study’s objectives. The traffic movements were video recorded 
and analyzed using Microsoft’s proprietary computer vision platform, Edge Video 
Service (EVS), to obtain road user trajectories. The extracted trajectories were then 
analyzed using Advanced Mobility Analytics Group’s (AMAG) proprietary SMART 
SafetyTM platform to automatically extract traffic conflicts based on a bevy of conflict 
indicators. This study analyzed Time-to-Collision (TTC) conflicts (TTC ≤ 3 s) for in-
depth before-and-after analysis.  

In the second step, the extreme quantiles (>=0.85) of the TTC values of the conflicts 
were modelled using Bayesian Quantile Regression (Zheng and Sayed, 2019a) to 
meaningfully include the effect of important covariates in conflict threshold selection. 
Thereafter, peak-over threshold extreme value analysis of the TTC conflicts was 
conducted using the Bayesian Hierarchical analysis framework (Zheng and Sayed, 2019a, 
Guo et al., 2020a) to get frequency estimates of extreme rear-end and vehicle-pedestrian 
conflicts. The risk of extreme conflicts can be estimated as the tail probability of the 
negated TTC extreme value distribution over the specified extreme conflict threshold. It 
is known that 𝑇𝑇𝐶 = 0 indicates the occurrence of a crash. Hence, the extreme conflict 
threshold must be near this value to indicate the most atypical interactions between the 
conflict participants. In this study, an extreme conflict threshold of 0.2s was adopted 
(Zheng and Sayed, 2019b, Guo et al., 2020a). Using extreme conflicts instead of the 
expected crash frequency helps overcome the zero denominator issue that can hamper 
odds ratio analysis.  

Finally, an odds ratio analysis (Zheng and Sayed, 2019b, Guo et al., 2020a) was 
conducted to investigate the two research questions mentioned earlier. The safety 
treatment effectiveness in before-and-after type studies using a control group may be 
assessed using the Odds Ratio method (Autey et al., 2012). An OR less than 1 is desirable 
as it indicates that the intended safety benefits have been achieved. Whereas an OR equal 
to 1 represents no effect of the safety treatment, and a value greater than 1 indicates an 
undesirable effect. The OR is strictly positive and is assumed to follow a lognormal 
distribution. Correspondingly, a test statistic 𝑧 is defined on OR that asymptotically 
follows a standard normal distribution. The statistical test consists of testing the null 
hypothesis that the safety treatment has no overall effect 𝐻0:	𝑂𝑅	 = 	1. The null 
hypothesis is rejected if the approximate tail probability of 𝑧 is smaller than the 
significance level, adopted as 95% level of significance, represented by the p-value. 
3 DATA 

The study locations included 10 pedestrian crossings on 3 signalized intersections 
in Bellevue, Washington. Fig. 2 illustrates the various treated and control pedestrian 
crosswalks (sites) on the study intersections.  
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Fig. 2: Study locations showing the treated and control pedestrian crossings 

The primary data used in the study consisted of video-recorded traffic movements, 
captured using cameras mounted on signal heads to capture the treated and control 
pedestrian crosswalks (Fig. 3).  

  
Fig. 3: An screenshot from the traffic movement captured by the video camera mounted 

on the signal head at the Bellevue Way – NE 4th St Intersection 

The data were collected for one full week (Monday – Sunday) in both before and 
after periods at each intersection. 12 hours of video data were recorded for each day. 
Table 1 summarizes the video data collection schedule to observe traffic movements. 

Table 1: Summary of traffic movement observations 

Intersection 
Name 

Treated 
Crosswalks 

Control 
Crosswalks 

Before 
Date After Date Before 

Duration 
After 
Duration 

Bellevue 
Way & NE 
4th St 

North, South East 9th-15th 
Oct 2020 

30th Oct-5th 
Nov 2020 

06:00-18:00 06:00-18:00 

106th Ave & 
NE 4th St 

East, West North 9th-15th 
Oct 2020 

30th Oct-5th 
Nov 2020 

06:00-18:00 06:00-18:00 

108th Ave & 
NE 4th St 

West, East North, South 9th-15th 
Oct 2020 

30th Oct-5th 
Nov 2020 

06:00-18:00 06:00-18:00 

 
Video analytics for the study was performed using Microsoft’s proprietary video 

platform, named Edge Video Service (EVS). EVS is a highly extensible software stack to 
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empower everyone to build practical real-world live video analytics applications for 
object detection and counting/alerting with cutting edge machine learning algorithms. 
Using a video pipeline built on C# .NET Core, EVS allows for model plug-ins from 
TensorFlow and PyTorch, GPU and VPU acceleration, and Docker containerization and 
Kubernetes orchestration. EVS pipelines are used to detect objects and their trajectories 
(e.g., of cars and people on the street), either on live videos in real-time or on stored 
videos. For this study, we used the Yolo V3 object detection model and the DeepSORT 
object tracker. EVS has been built upon years of research on video analytics by Microsoft 
in Project Rocket (http://aka.ms/rocket). EVS makes the analysis of videos to be efficient, 
low-cost, and amenable to edge compute deployments. 

The road user trajectories were then analyzed using Advanced Mobility Analytics 
Group’s (AMAG) SMART SafetyTM platform, which uses Deep Learning and advanced 
econometrics to handle Big Data and automatically extract conflicts (see Fig. 3) based on 
several conflict indicators, including Time-to-Collision (TTC). The system is developed 
based on extensive previous research conducted at the University of British Columbia, 
Canada, the Queensland University of Technology, Australia, and the University of 
Queensland, Australia (Autey et al., 2012, Zaki et al., 2016, Arun et al., 2021).  

  
Fig. 3: Example of a conflict detected using the SMART SafetyTM Platform 

Table 2 describes the various types of conflicts the SMART Safety platform 
extracted in the before-and-after periods at the study intersection. This study used only 
the rear-end and vehicle-pedestrian conflicts below the TTC screening threshold of 3.0 s 
for further analysis. 
Table 2: Descriptive statistics of traffic conflicts observed at the study intersections in 
the before and after periods 

Intersection 
Name Period Conflict Type Conflict Counts TTC (s) 

Mean SD Min Max 
Bellevue 
Way & NE 
4th St 
(Site_1) 

Before AA 329 1.61 0.55 0.32 2.55 
LTOD 201 1.19 0.51 0.10 2.13 
RE 2393 1.21 0.38 0.10 2.40 
LC 54 1.15 0.48 0.29 2.38 
P 99 0.91 0.41 0.32 1.65 
B 6 - - - - 

After AA 318 1.50 0.64 0.13 2.49 
LTOD 201 1.26 0.36 0.41 1.94 
RE 2613 1.19 0.37 0.11 2.45 
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Intersection 
Name Period Conflict Type Conflict Counts TTC (s) 

Mean SD Min Max 
LC 60 1.26 0.49 0.30 2.82 
P 57 1.19 0.54 0.48 2.29 
B 4 1.88 0.15 1.77 1.99 

106th Ave & 
NE 4th St 
(Site_2) 

Before AA 399 1.75 0.58 0.04 2.61 
LTOD 94 1.41 0.47 0.81 2.37 
RE 1075 1.75 0.48 0.00 2.79 
LC 2 1.04 0.32 0.81 1.26 
P 58 1.02 0.53 0.40 2.13 
B 1 1.05 - 1.05 1.05 

After AA 326 1.75 0.61 0.42 2.62 
LTOD 110 1.15 0.57 0.42 2.03 
RE 1043 1.76 0.44 0.11 2.65 
LC 2 0.95 0.41 0.66 1.24 
P 34 1.00 0.50 0.41 2.08 
B 4 0.90 0.62 0.46 1.33 

108th Ave & 
NE 4th St 
(Site_3) 

Before AA 167 1.50 0.63 0.58 2.58 
LTOD 48 0.92 0.46 0.39 1.55 
RE 1888 1.73 0.32 0.15 2.61 
P 11 1.63 0.37 1.37 1.89 
B 8 1.06 0.42 0.53 1.77 

After AA 138 1.66 0.77 0.30 2.45 
LTOD 54 0.89 0.45 0.34 1.67 
RE 1095 1.67 0.36 0.11 2.73 
LC 1 0.22 - 0.22 0.22 
P 14 1.10 0.37 0.83 1.36 
B 6 0.85 0.27 0.42 1.09 

Notations: 
AA: Angled conflict between vehicles from adjacent approaches; LTOD: Conflict between Left turning 
vehicles and thru travelling vehicles from opposite approaches; RE: Rear-end conflicts; LC: Lane 
changing conflicts between vehicles from the same approach; P: Pedestrian-vehicle conflicts; B: Bicycle-
vehicle conflicts 

 
4 RESULTS 
4.1 Quantile Regression analysis for threshold selection 

Only the models corresponding to the 90th and 95th quantile converged to a solution 
as reported in Table 3. From Table 3, the treatment indicator (1 = treated, 0 = control) 
was significant at both quantiles, with its effect increasing at the higher quantile 
representative of more extreme conflicts. The period indicator (1 = after, 0 = before) and 
the conflict-type indicator (1 = rear-end, 0 = vehicle-pedestrian) were not significant in 
both models. Importantly, the site-specific indicator for Site_1 was significant in both 
models (Site_3 was used as the base category), indicating that site-specific 
heterogeneities played a significant role in the occurrence of extreme conflicts. The non-
stationarity in conflict occurrence was addressed using the N_TTC variable, which gave 
a scaled value of the number of conflicts with TTC <= 1.5s and was found significant in 
both models. 

Table 3: Quantile regression results 

Variables Quantile = 0.9 Quantile = 0.95 
 Mean 2.5% 97.5% Mean 2.5% 97.5% 
(Intercept) -0.755 -1.082 -0.349 -0.610 -1.030 0.075 
Treat -0.317 -0.460 -0.181 -0.438 -0.611 -0.283 
Period 0.017 -0.033 0.067 0.036 -0.029 0.117 
Type -0.198 -0.611 0.132 -0.153 -0.837 0.264 
Site_1 0.263 0.179 0.344 0.337 0.229 0.437 
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Variables Quantile = 0.9 Quantile = 0.95 
Site_2 0.003 -0.055 0.061 0.052 -0.039 0.193 
N_TTC 0.323 0.278 0.369 0.353 0.294 0.416 
Notations: 
Treat – Treated site indicator (1 = treated, 0 = control) 
Period – Analysis period indicator (1 = after, 0 = before) 
Type – Conflict type indicator (1 = rear-end, 0 = vehicle-pedestrian) 
Site_1 – Site indicator (1 = Bellevue Way & NE 4th St, 0 = otherwise) 
Site_2 – Site indicator (1 = 106th Ave & NE 4th St, 0 = otherwise) 
N_TTC – No. of conflicts with TTC <= 1.5 s, standardised using the series mean and standard deviation 
Mean – Mean of the parameter posterior density estimates 
2.5% - Lower credible interval (95% sigificance level) 
 97.5% - Upper credible interval (95% sigificance level) 

 
4.2 Bayesian hierarchical extreme value analysis 

Only the best non-stationary (with covariates) models are reported for the 95th 
quantile in Table 4, which only included the conflict-type indicator (1 = rear-end, 0 = 
vehicle-pedestrian) as the significant predictor. 

Table 4: Extreme value model estimation results 

Parameter Covariates 
Quantile = 0.95 

Model-1 Model-2 
Mean 2.5% 97.5% Mean 2.5% 97.5% 

Conflict threshold (𝒖) -0.682 
Scale (𝝈*) 𝝈𝟎+ 0.424 0.379 0.473 -1.206 -1.351 -1.019 

𝝈𝑻𝒚𝒑𝒆,  - - - 0.376 0.185 0.472 
Shape (𝝃.) 𝝃𝟎/ -0.719 -0.809 -0.629 -0.743 -0.828 -0.661 
Exceedances 510 
Deviance Information Criterion (DIC) -1769.348 -1800.249 
Notations: 
Type - Conflict type indicator (1 = rear-end, 0 = vehicle-pedestrian) 
Model-1 – Stationary model 
Model-2 – Best non-stationary model 
Mean – Mean of the parameter posterior density estimates 
2.5% - Lower credible interval (95% sigificance level) 
 97.5% - Upper credible interval (95% sigificance level) 

 
4.3 Odds ratio analysis 

The odds ratio analysis was performed for the estimated 95th quantile of negated 
TTC. First, the 95th quantile threshold was estimated using the quantile regression model 
in Table 3. The extreme value distribution was obtained by substituting the corresponding 
values for the conflict type indicator in the Bayesian hierarchical model in Table 4. Thus, 
extreme conflict estimates were obtained for both vehicle-pedestrian (Table 5) and rear-
end conflicts (Table 6). The odds ratio analysis showed that while the LPI treatment 
effectively reduced the frequency of extreme vehicle-pedestrian conflicts at all the 
intersections (total Odds Ratio = 0.577, p-value<0.001), with a treatment effect of 42.3% 
(=(1-0.577)x100), it had no significant effect on the frequency of extreme rear-end 
conflicts (p-value>0.05). These results are discussed in detail in the next section. 
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Table 5: Odds ratio analysis results for extreme vehicle-pedestrian conflicts 

Intersection 
Name Period Treatment 

Type 

Annual 
Extreme 
Conflicts 
(TTC<=0.2 s) 
Estimate 

Site-wise 
Odds Ratio 

Total Odds 
Ratio (p-
value) 

Bellevue 
Way & NE 
4th St 

Before Treated 86.517 0.689  
Control 104.286 

After Treated 59.633 
Control 104.286 

106th Ave & 
NE 4th St 

Before Treated 104.286 0.398 
Control 51.955 

After Treated 58.904 
Control 73.646 

108th Ave & 
NE 4th St 

Before Treated 70.042 0.880 
Control 13.111 

After Treated 74.590 
Control 15.862 

Total Before Treated 260.845 - 0.577 (<0.001) 
Control 169.351 

After Treated 193.126 
Control 193.793 

 

Table 6: Odds ratio analysis results for extreme rear-end conflicts among vehicles 

Intersection 
Name Period Treatment 

Type 

Annual 
Extreme 
Conflicts 
(TTC<=0.2 s) 
Estimate 

Site-wise 
Odds Ratio 

Total Odds 
Ratio (p-
value) 

Bellevue 
Way & NE 
4th St 

Before Treated 89.264 0.997  
Control 100.709 

After Treated 89.380 
Control 101.135 

106th Ave & 
NE 4th St 

Before Treated 60.824 1.034 
Control 94.659 

After Treated 60.324 
Control 90.770 

108th Ave & 
NE 4th St 

Before Treated 61.105 1.019 
Control 87.800 

After Treated 61.300 
Control 86.415 

Total Before Treated 211.193 - 1.015 (0.55) 
Control 283.167 

After Treated 211.003 
Control 278.319 

 
5 DISCUSSION  

The Time-to-Collision (TTC) conflicts for rear-end and vehicle-pedestrian events 
were analyzed in this study. Through Bayesian quantile regression, this study showed that 
the treatment type, whether treated or control, had a significant effect on the 90th and 95th 
quantile negated TTC values, with a larger negative effect at the higher quantile. Zheng 
and Sayed (2019a) observed that negative values of predictors meant that the negated 
TTC values were further away from the crash zone (negated TTC ≥ 0). Thus, the LPI 
treatment reduced the probability of extreme conflicts and crashes by shifting the 
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Generalized Pareto distribution away from the crash area. The before or after periods did 
not significantly affect the modelled quantiles.  

The quantile regression and extreme value modelling were combined to estimate 
the frequencies of extreme rear-end and vehicle-pedestrian conflicts at the treated and 
control sites in the before and after periods. These estimates were then analyzed using the 
Odds Ratio analysis typically used in before-and-after type studies. The odds ratio 
analysis showed that the LPI treatment significantly reduced the occurrence of extreme 
vehicle-pedestrian conflicts at the treated locations. The treatment effect was computed 
as a reduction of 42.3%.  

Some important conclusions and recommendations from the findings of this study 
are: 
• Leading Pedestrian Intervals (LPI) are a low-cost safety treatment that can be quickly 

implemented at a site. This study further lends weight to the evidence mounting in 
support of the validity of this treatment in reducing vehicle-pedestrian crash 
probability. Moreover, this study categorically found that LPI implementation does 
not adversely affect (increase) the occurrence of vehicle-vehicle conflicts. 

• The long term effects of LPI treatment safety need to be investigated, particularly in 
light of assertion by certain researchers (Näätänen and Summala, 1974, Summala, 
1988, Wilde, 1998) that road users adapt to the safety treatments over time. The 
Computer Vision-based automated traffic conflict analysis method used in this study 
could be a game-changer in this regard. Conflict observation videos from a long 
enough time period (say, 1 or 2 years ceteris paribus) after the initial observations 
can again be analyzed through the system to gain insights into any behavioral 
adaptation by the users and whether that returns the treated site to the original level 
of crash risk.  
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