

Making Great Communities Happen

City of Bellevue Mobility Implementation Plan and Multimodal Concurrency

CM# 9213062

March 23, 2021

Kevin McDonald, AICP

Chris Breiland, PE

Mobility Implementation Plan and Multimodal Concurrency

Discussion Outline

- Part 1. Overview of Mobility Implementation Plan Scope of Work Kevin
- Part 2. Details of Multimodal Concurrency Chris
- Staff Recommendation
- Transportation Commission Review
- Part 3. Comments and Questions Kevin and Chris

Evolving Bellevue Multimodal Level Of Service Policy

Comprehensive Plan 1989

Traveling on arterials should not be too inconvenient, time consuming, or unsafe

Comprehensive Plan 1993

Establish (vehicle) LOS standards in each area of the city in light of growth management objectives

Comprehensive Plan 2015

Establish Multimodal Level of Service measures, standards and targets

Evolving Bellevue Concurrency Policy

For 30+ years, concurrency standards for vehicles created the complete arterial network that supports Bellevue growth

- 2013 Transportation Commission engaged in conversations to evolve concurrency toward a multimodal approach
- 2015 multimodal concurrency policies added to Comprehensive Plan, with direction to prepare multimodal metrics
- 2017 TC prepared MMLOS Metrics, Standards and Guidelines to describe multimodal performance and land use relationships
- 2021 Council approved MIP scope of work, including a request for a recommendation from the Transportation Commission on multimodal concurrency

CITY OF BELLEVUE COMPREHENSIVE PLAN

Map TR-1. Mobility Management Areas and

System Intersections

Mobility Implementation Plan Scope of Work

Phase I - 2021

- Transportation system completeness layered network, complete and connected networks, project prioritization, multimodal long-range planning
- Refresh project descriptions as needed
- Establish performance metrics and monitoring
- Embed equity and sustainability considerations to prioritize and evaluate
- Multimodal Transportation Concurrency

Phase II topics that may emerge from Phase I - 2022

- Transportation Impact Fees all modes
- Transportation Demand Management refresh if needed

The "Layered Network"

- Transportation system planning and projects based on the mode of travel
- Overlap occurs
- Prioritization issues emerge

Transportation Commission's Multimodal Level-of-Service report recommends a "layered network" approach to help reconcile competing priorities using the land use layer.

Multimodal Concurrency

A multimodal approach to ensure the travel demand from land use is supported with an adequate supply of transportation capacity – all modes

Multimodal Approach to Long-Range Transportation Planning

- Long-range planning creates the inventory of transportation projects for all modes:
 - Modal Plans
 - Subarea Plans
 - Arterial Corridor Plans
- Projects informed by the Transportation Commission's report on MMLOS Metrics, Standards and Guidelines (2017)
- Project inventory used to update the 12year Transportation Facilities Plan and the 7year Capital Investment Program

Define, Document and Display Performance Outcomes

Performance metrics are critical to understanding the effectiveness of projects, utilization, connectedness, and completeness of the system.

Transportation Commission will advise:

- What to measure informed by MMLOS
- Standard/quantitative measures or guideline/qualitative measures
- Sustainability, equity measures
- How to display and share data

Public Involvement

Transportation Commission is the advisory body

Study Sessions, Workshops – all Virtual for now

Public involvement

- Virtual engagement
- Input to Transportation Commission
- Outreach and engagement
 - Invite input from a diversity of Bellevue stakeholders
 - Seek equity in the means and methods of outreach
 - Reach out to typically underrepresented members of the community

Multimodal Concurrency

Staff Recommendation

- Builds from policy and Transportation Commission prior work on concurrency and Multimodal Level-of-Service
- Introduced to the Transportation Commission January 14, 2021
- Study Sessions Q1 Q2, 2021
- Q2 2021 Recommendation
 - Comprehensive Plan policy

Multimodal Concurrency - Overview

Foundations

• GMA, Best Practices in Washington, Bellevue Policy and MMLOS

Transportation Concurrency Standard

Mobility Units Supply > Mobility Units of Demand

Mobility Units of Supply

Supply is capacity projects of all modes

- Supply is planned in the TFP
- Supply is created in the CIP

Mobility Units of Demand

Demand is person trips in all modes

- Demand is forecast in the TFP
- Demand is **generated** by land use permit applications

Multimodal Concurrency Foundations

Washington Growth Management Act (1990)

- Local jurisdictions must establish concurrency level-of-service metrics to ensure the capacity of the transportation system is available to support demand for travel from new development
- Multimodal concurrency encouraged

Best Practices

- To effectively implement a multimodal approach:
 - Related to adopted mobility plans
 - Robust performance monitoring
 - City controls transportation investments
 - Straightforward to implement

Mobility Units of Supply

Long-Range Planning

- Describes the 20+ Year Vision for Transportation and Land Use
- Subarea Plans. ie) BelRed, Wilburton
 Commercial Area, East Main, Downtown
- Corridor Plans. ie) Eastgate
 Transportation Study
- Modal Plans. ie) Pedestrian and Bicycle Transportation Plan, Transit Master Plan
- Builds Inventory of Transportation Projects

Mobility Units of Supply

Supply is Forecast in the Transportation Facilities Plan (TFP)

- Projects evaluated and prioritized for a 12-year period
- Updated every 2-3 years
- Evaluation examines how well a project would achieve transportation vision

Supply is **Created** in the Capital Investment Program (CIP)

- Projects are funded for construction within a 7-year period
- Fully-funded projects count toward concurrency supply
- Existing supply available from recent projects may provide a "Running Start"

Supply may be Created by Private Development

Frontage improvements (projects identified in the TFP)

Mobility Units of Demand

Demand is Forecast for 12-Years in each update of the TFP

- Travel demand is identified and documented in the 12-year land use forecast
 - Obtained from PSRC
 - Distributed in the city by Bellevue Community Development

Demand is Generated by Development Projects

- Travel demand is expressed as "person-trips" regardless of mode
- A person trip occurs when a person leaves a development site/building by any mode on the transportation system
- Person trips for each development project are determined in a traffic impact analysis at time of land use permitting
- Demand for vehicle trips can be further reduced through exceptional Transportation Demand Management measures

Multimodal Concurrency Equation

Multimodal Performance Monitoring

- A performance monitoring dashboard will document multimodal concurrency compliance for defined metrics
- Basic performance metrics for all modes will be extracted from the Transportation Commission's 2017 MMLOS report
 - BKRCast travel demand model for quantitative metrics
 - TC may recommend additional performance metrics
- Performance metrics of all modes
 - Confirm concurrency: Supply > Demand
 - Track progress across multiple metrics toward system completeness
 - Inform need for new projects in long-range planning
 - Project evaluation and prioritization for updates to the TFP
 - Project funding in the CIP

A Step-by-Step Sequence Toward Multimodal Concurrency

 \rightarrow 4 \rightarrow 5 \rightleftarrows 6

Forecast Demand

BKR Cast Model TFP Baseline Network

- Vehicle
- Transit
- Walk
- Bike
- Intersection V/C
- Corridor Speed
- Bus Speed
- Transit Access
- Capacity by others
- Exceptional TDM

Apply Performance Metrics to TFP

- Transit
- Walk
- Bike

Available funding for 12-year TFP

Test Performance of Candidate **Projects**

- Vehicles
- Transit
- Walk
- Bike

BKR Cast Model TFP Updated Network

- Intersection V/C
- Corridor Speed
- Bus Speed
- Transit Access
- Ped Network Completeness
- Bike Network Completeness

Implement Supply

Supply of mobility units is greater than demand

Step 1 – Forecast Demand

- Bellevue staff forecasts the increase in person trips by all modes using growth forecasts from the PSRC
- 12-year growth forecast aligns with the TFP analysis horizon
- Specific increase in person trips (mobility units of demand) calculated by the BKRCast travel demand model

Step 2 – Use BKRCast Model To Understand Growth
Impacts

Growth in Attractions between 2018 and 2035 - BKR Model

Growth in Attractions between 2018 and 2035 - BKR Model

Growth in Attractions between 2018 and 2035 - BKR Model

Growth in Attractions between 2018 and 2035 - BKR Model

Growth in Attractions between 2018 and 2035 - BKR Model

Growth in Attractions between 2018 and 2035 - BKR Model

Growth in Attractions between 2018 and 2035 - BKR Model

Growth in Attractions between 2018 and 2035 - BKR Model

Growth in Attractions between 2018 and 2035 - BKR Model

Growth in Attractions between 2018 and 2035 - BKR Model

Growth in Attractions between 2018 and 2035 - BKR Model

Growth in Attractions between 2018 and 2035 - BKR Model

Growth in Attractions between 2018 and 2035 - BKR Model

Growth in Attractions between 2018 and 2035 - BKR Model

Growth in Attractions between 2018 and 2035 - BKR Model

Growth in Attractions between 2018 and 2035 - BKR Model

Growth in Attractions between 2018 and 2035 - BKR Model

Growth in Attractions between 2018 and 2035 - BKR Model

Growth in Attractions between 2018 and 2035 - BKR Model

Growth in Attractions between 2018 and 2035 - BKR Model

Growth in Attractions between 2018 and 2035 - BKR Model

Growth in Attractions between 2018 and 2035 - BKR Model

Growth in Attractions between 2018 and 2035 - BKR Model

Growth in Attractions between 2018 and 2035 - BKR Model

Growth in Attractions between 2018 and 2035 - BKR Model

Growth in Attractions between 2018 and 2035 - BKR Model

Growth in Attractions between 2018 and 2035 - BKR Model

Growth in Attractions between 2018 and 2035 - BKR Model

Growth in Attractions between 2018 and 2035 - BKR Model

Growth in Attractions between 2018 and 2035 - BKR Model

Growth in Attractions between 2018 - BKR Model

Growth in Attraction between 2018 - BKR Model

Growth in Attraction between 2018 - BKR

 How many new person trips (mobility units of demand) are generated?

- Where is the growth in person trips occurring?
- What is the mode share of trips and how did that change?
- Understand the impacts of other agency investments in Bellevue's transportation network (WSDOT, Sound Transit, Metro)
- Consider Transportation Demand Management strategies

Step 3 – Evaluate "Baseline" Performance

- Includes TFP baseline without additional projects
 - Projects in the existing TFP –baseline projects
- Performance evaluation based on MMLOS metrics
- Other performance metrics could also be considered to identify gaps in performance and areas of emphasis – environmental, societal

Step 3 – Vehicle Performance

- Vehicle performance options from MMLOS
 - Corridor travel speed
 - v/c ratio
- Focused on vehicle volume/capacity and congestion measures

LOS	Typical Urban Travel Time/Travel Speed on Corridors Based on 40% of the Posted Speed Limit
	Less than 90% of Typical Urban Travel Time Faster than 1.1 times the Typical Urban Travel Speed
	90-110% of Typical Urban Travel Time Between 1.1 and .9 times the Typical Urban Travel Speed
	110-155% of Typical Urban Travel Time Between .9 and .75 times the Typical Urban Travel Speed
	155-200% of Typical Urban Travel Time Between .75 and .5 times the Typical Urban Travel Speed
	More than 200% of Typical Urban Travel Time Slower than .5 times the Typical Urban Travel Speed

Step 3 – Transit Performance

- Transit performance options from MMLOS, Transit Master Plan
 - Frequent transit network speed
 - Bus stop amenities
- Consider the transit travel time to destinations
- Focus on bus stop facilities for passenger comfort, access, and information
- Infrastructure elements within Bellevue's control

Step 3 – Pedestrian Facility Performance

- Pedestrian LOS from MMLOS
 - Sidewalk and landscape buffer
 - Intersection treatments
 - Mid-block crossing frequency
- Focus on arterial streets in growing areas of the city
- Focus on pedestrian access, comfort, and safety

Step 3 – Bicycle Facility Performance

- Bicycle LTS from MMLOS
 - Considers adjacent arterial traffic speed and traffic volume
 - Different bicycle facility types for different types of bicyclists (commuters to casual cyclists)
 - Consider both arterial corridors and intersections – LTS continuity
- Focus on Bicycle Priority Network
- Access within and between major growth areas (Growth Corridor High Comfort Bicycle Network)

Bicycle Level of Traffic Stress (LTS)

Roadway Characteristics		Bicycle Facility Components: Guideline to Achieve Intended Level of Service/Level of Traffic Stress						
Speed Limit (MPH)	Arterial Traffic Volume	No Marking	Sharrow Lane Marking	Striped Bike Lane	Buffered Bike Lane (Horizontal)	Protected Bike Lane (Vertical)	Physically Separated Bikeway	
	<3k	1	1	1	1	1	1	
= 25</th <th>3-7k</th> <th>3</th> <th>2</th> <th>2</th> <th>2</th> <th>1</th> <th>1</th>	3-7k	3	2	2	2	1	1	
	>/=7k	3	3	2	2	1	1	
	<15k	3	3	2	2	1	1	
30	15-25k	4	4	3	3	3	1	
	>/=25k	4	4	3	3	3	1	
35	<25k	4	4	3	3	3	1	
	>/=25k	4	4	4	3	3	1	
>35	Any	4	4	4	4	3	1	

Step 3 – Summary of MMLOS Performance Measures

Mode	Level of Service Metric				
Mahiala	Volume/Capacity Ratio at System Intersections				
Vehicle	Typical Urban Travel Speed on Arterials				
Pedestrian	Sidewalk Width plus Landscape Width				
reuestriaii	Pedestrian Comfort, Access and Safety at Intersections				
Bicycle	Level of Traffic Stress, or Level of Bicyclist Comfort on Arterials				
	Level of Traffic Stress, or Level of Bicyclist Comfort at Intersections				
Transit	Passenger Comfort, Access and Safety				
Iransit	Transit Travel Speed on Corridors between Activity Centers				

Step 4 – Identify Available Funding to Improve the Transportation System

- Bellevue Department of Finance and Asset Management provides TFP revenue forecast
- Accounts for continuation of ongoing TFP projects
- Only a portion of revenue is available to fund new projects

<u> Fable 2: Summary of 2019–2030 Transportation Funding Alle</u>	<u>ocations</u>
Total Projected Revenue	(Millions) \$628.8
Less Committed Revenue	\$143.9
-Allocations to Non-TFP CIP Projects and Ongoing Programs	
Less Constrained Revenue	\$96.8
-Continuation of Ongoing CIP Programs (2026-2030)	
-Continuation of Safety and Connectivity Levy Projects (2026-2030)	
Balance: Allocation to 2019-2030 TFP Projects- Includes:	<u>\$388.1</u>
 Committed to CIP TFP projects - \$279.4M 	

Unconstrained Funding (not part of adopted CIP) - \$108.7M

Step 5 – Test Projects to Improve Performance to Support Growth

Identify projects to improve MMLOS performance outcomes

- Traffic congestion
- Transit speed and access
- Pedestrian access and comfort
- Bicycle access and comfort

Step 6 – Document Results

Steps 5 and 6 – Iterate to Identify Projects

- As part of the TFP development, the City tests and models candidate projects
- Transportation
 Commission evaluates
 projects to balance
 performance goals and
 priorities

Step 7 – Implement

Step 7 – Implement

Key Process Steps

Track Progress and Adjust Over Time

Track Progress and Adjust Over Time

MIP / Multimodal Concurrency Timeline

Thank You! CM# 9213062

Kevin McDonald

kmcdonald@bellevuewa.gov

425-452-4558

Chris Breiland

cbreiland@fehrandpeers.com

206-576-4217

Mobility Implementation Plan Web Site