Video Analytics Towards Vision Zero Partnership

Microsoft

UNIVERSITY of WASHINGTON

WSDOT

SDOT

NEW YORK CITY DOT

City of Redmond

Snohomish County

Hamilton

King County METRO

SFMTA

LADOT

CITY OF VANCOUVER

Calgary

CITY OF GAINESVILLE

CITY OF PASADENA

THE UNIVERSITY OF BRITISH COLUMBIA

Lund University

McGill

POLYTECHNIQUE MONTREAL

Portland State UNIVERSITY

ITE

ITS AMERICA

VISION 4:0 NETWORK

METRO LAB NETWORK

cascade bicycle club

people for bikes

WALK FRIENDLY COMMUNITIES
Video Analytics towards Vision Zero

Worldwide problems demands bold action

- Worldwide 1.25 million people are killed annually in traffic accidents
- In 2016, road crashes resulted in 40,000 deaths and 4.6 million injuries in the United States.
- Crashes are preventable and we need not wait for someone to be killed or injured before we take action

Make a difference, teach computers to learn

- Unique opportunity to help prevent traffic crashes and save lives
- “Teach” our computers how to recognize vehicles, people walking and bicyclists
- Cities will be able to rapidly detect road conflicts and traffic engineers can then take preventative action to avoid crashes

Participate starting June
USA: Traffic Fatalities

2006: 42,708
2007: 41,259
2008: 37,423
2009: 33,883
2010: 32,999
2011: 32,479
2012: 33,561
2013: 32,719
2014: 32,675
2015: 35,092
2016: 40,200
Trajectory Detection & Turning Movement Counts
Volume Charts

VEHICLE DISTRIBUTION CHARTS BY TIME OF DAY

MONTH: May, 2016
DATE: 5.1.2016 - 5.1.2016

CARS
- 11pm: 30,000 cars/day
- 12pm: 30,000 cars/day
- 10pm: 30,000 cars/day

BUSES/TRUCKS
- 11pm: 400 buses & trucks/day
- 12pm: 400 buses & trucks/day
- 10pm: 400 buses & trucks/day

PEDESTRIANS
- 11pm: 1,000 pedestrians/day
- 12pm: 1,000 pedestrians/day
- 10pm: 1,000 pedestrians/day

BICYCLISTS
- 11pm: 100 bikes/day
- 12pm: 100 bikes/day
- 10pm: 100 bikes/day
Near-Miss Detection
Near-Miss Detection
Near-Miss Detection
Near-Miss Detection
Near-Miss Detection
Near-Miss Detection

05/19/2016
01:00/02:00

QUANTITY, LOCATION & SEVERITY OF NEAR MISS EVENTS

MONTH: MAY, 2016
DATE: 5.1.2016 - 5.31.2016

1

2

3
Near-Miss Detection
How Neural Networks Work

Training
- During the training phase, a neural network is fed thousands of labeled images of various objects, learning to classify them.

Input
- New image is shown to the pretrained network.

First Layer
- Neurons respond to simple shapes, like edges.

Higher Layer
- Neurons respond to complex shapes.

Top Layer
- Neurons respond to highly complex abstract concepts that we would identify as different objects.

Output
- The network predicts what the object most likely is based on its training.

- Example: Bicycle (90% ✓) vs. Running Person (10% ×)
Video Analytics towards Vision Zero

Worldwide problems demands bold action

- Worldwide 1.25 million people are killed annually in traffic accidents
- In 2016, road crashes resulted in 40,000 deaths and 4.6 million injuries in the United States.
- Crashes are preventable and we need not wait for someone to be killed or injured before we take action

Make a difference, teach computers to learn

- Unique opportunity to help prevent traffic crashes and save lives
- “Teach” our computers how to recognize vehicles, people walking and bicyclists
- Cities will be able to rapidly detect road conflicts and traffic engineers can then take preventative action to avoid crashes

Participate starting June