Asset Management for ADA Compliance Using Advanced Technologies

American Public Works Association
2009 International Public Works Congress

Franz Loewenherz
Senior Transportation Planner
City of Bellevue

September 14, 2009
Presentation Outline

1. ADA Culture of Compliance
2. ADA Sidewalk & Curb Ramp Self Evaluation
3. Data Collection
4. Quality Assurance/Quality Control
5. Roadway Grade Analysis
6. Driveway Cross Slope Analysis
7. ADA Viewer Interface
8. Barrier Ranking Analysis
9. Programming of Asset Improvements
ADA Culture of Compliance
Title II – Government Services: Must ensure that individuals with disabilities are not excluded from programs, services, and activities (pedestrian facilities are an example of a program).
Title II Elements

28 CFR 35.105
Self-Evaluation Report
- Data Collection
- Database Analysis
- Barrier Ranking

28 CFR 35.150(d)(3)
ADA Transition Plan
- Corrective Measures
- Implementation Schedule
- Financing Plan

Disability Community Participation
The City of Bellevue is a diverse community of 120,000 residents.

Approximately 15 percent of residents live with developmental, physical, and mental disabilities.
As the population continues to age, the number of people with mobility disabilities is expected to increase.
Policy Commitment

Policy TR-26: Address the special needs of physically challenged and disabled citizens in planning, designing, implementing, and maintaining transportation improvements, particularly non-motorized improvements, and other transportation facilities, and in delivering transportation services and programs, in accordance with the Americans with Disabilities Act (ADA).
Bellevue ADA Sidewalk & Curb Ramp Self Evaluation
Sidewalk & Curb Ramp Inventory Overview

Absence of level landing

Fixed Obstruction

Ramp cross slope

No Ramp

Tactile Warning

Moveable Obstruction

Top Landing

Ramp Transition

Bottom Landing

Heaving
Guidance for Conducting an ADA Inventory

Curb Ramp Measurements:

<table>
<thead>
<tr>
<th>CR Distance m</th>
<th>Number of Ramps</th>
<th>Approach Slope %</th>
<th>Ramp Slope %</th>
<th>Ramp Length cm</th>
<th>Landing Length cm</th>
<th>Detectable Warning y/n</th>
</tr>
</thead>
</table>

- CR: Curb Ramp
- Type: (D) Drop, (C) Curb, (B) Basic
Numerous Methodologies

Summer 2006. Bellevue conducted 2 week assessment with professional staff using equipment for land surveys. Estimated cost in excess of $1M.
Project Approach

1. Data Collection
2. Database Analysis
3. Barrier Ranking

Disability Community Participation
Data Collection
Inertial Profilers

Profiling systems originally developed by GM Labs in the 1970s.

Used in both the aerospace and roadway construction industries
Summer 2007. Research partnership agreement with FHWA led to 2 month assessment with student interns using a modified ultra-light, slow-speed inertial profiler (ULIP) mounted on a Segway HT.

Coordinated staffing & funding commitment from three agencies from three levels of government.
ULIP Technology

Sensor box includes:

1. a displacement laser (texture/profile/height),
2. three accelerometers (inertial profiling),
3. a gyroscope (pitch, roll, yaw),
4. optical trigger (reference),
5. GPS (general location), and
6. a DMI (travel distance system).

Computer and data acquisition card are used for data capture.

Starodub, Inc. developed R&D prototype ULIP
ULIP Relative to Surface

Distance Measurement Instrument (DMI) Calibration: Requires rider and tire pressure specific calibration.
ADA Sidewalk Compliance Criteria

Together, these devices enable the City to measure the sidewalk surface at a rate of 10,000 records per second capturing highly accurate information about slope and small surface variations that can make a sidewalk difficult to navigate.

Running Slope

1:20 (5%) max

ADAAG 4.8

Cross Slope

1:50 (2%) max

ADAAG 4.3.7

Change in Level

1/4 inch max

ADDAG 4.5.2
Movable Obstructions/Driveways/Protrusions

Key-press events: Time/distance coding of user defined features.
Curb Ramp Inventory Toolkit
Curb Ramp Documentation

Topcon GMS-2 handheld GPS receiver:

- Equipped with a digital camera, graphic interface, & data entry form.
- Positional accuracy of GPS receiver is 1-3 meters.
- Receiver can load and display ortho-photos enabling field staff to zoom in and create points on specific curb ramps.
- Spatial resolution of ortho-photos is 1 foot per pixel.
GMS-2 Curb Ramp Data Dictionary

Ramp type: Directional; Perpendicular; Diagonal; Construction; None (indicates no ramp where ramp is needed)

Gutter running slope: Standard (≤5%); Non-standard (>5%)

Gutter cross-slope: Standard (≤2%); Non-standard (>2%)

Transition: Free of heaves, gaps, and obstructions (yes/no)

Clear space at bottom: 4’ x 4’ of clear space at the bottom of a diagonal ramp, within marked crosswalk (yes/no)

Detectable warnings: 2’ x 4’ yellow panel of truncated domes adjacent to gutter transition (yes/no)

Marked crossings: Curb ramp wholly contained within crosswalk markings (yes/no)

Landing slope: Landing slope does not exceed 2% in any direction (yes/no)

Landing panel: None (non-standard; >= 48 in. (best practices); 36-47 in. (standard); < 36 in. (non-standard)

Ramp width: ≥48 in. (best practices); 36-47 in. (standard); < 36 in. (non-standard)

Ramp slope: <8.3% (standard); 8.3% - 10% (non-standard); >10% (non-standard)

Ramp cross-slope: <2% (standard); 2% - 4% (non-standard); >4% (non-standard)

Ramp flares: None; <=10% (standard); 10.1% - 12% (non-standard); >12% (non-standard)

Returned curbs: None (if no ramp flares); Standard (ramp is situated such that pedestrians will not walk across returned curbs); Non-standard (returned curbs may present tripping hazard)
GMS-2 Sidewalk Data Dictionary

Fixed Obstructions

Narrow Sidewalks
Quality Assurance/Quality Control
“Efforts such as those at the City of Bellevue, Washington, that rely on the collection of large datasets at extremely fine spatial and temporal disaggregation levels have the potential to significantly automate the identification of non-compliant locations in the field.”

- Texas Transportation Institute
Attribute Accuracy of Data

Field technicians check the slope and grade of sidewalk segment with smart level for QAQC validation of ULIP data.

Cross Slope Running Slope Data Acquisition
- ULIP data consistently follows with the Smart Level’s peaks and troughs at test sites.
- Rise versus Running Distance compared to ADAAG.
ULIP Path Repeatability for Grade

ULIP Grade (4 runs) vs Smart Level

Grade %

Feet

80 100 120 140 160 180 200

1024 1026 1027 1028

SL
ULIP Path Repeatability for Cross Slope

Site was a sidewalk with two successive driveway crossings.
Change in Level Output Reports

Field Validation Mode

ASCII text file

Data in City’s GIS

QA/QC
Positional Accuracy of Data

Streaming GPS

Streaming GPS

Bellevue testing with global navigation satellite system (GPS) found the accuracy of latitude/longitude data degraded in areas with tall buildings or thick tree canopies.

Sensor-based inertial navigation

Start/end points for each data collection run entered on an ortho-photo image on the ULIP’s notebook computer screen. The gyroscope and distance measurement instrument were used to compute path of travel.
Roadway Grade Analysis
Measurement of Grade

Maximum grade is defined as a limited section of path that exceeds the typical running grade.
Raw Data Allows for Infinite Re-analysis

Grade and Cross Slope Averaging Window Size:

- In the ULIP Geometry Equation, the user specifies the grade and cross slope window size in feet to be applied in a moving average computation.

- The graph illustrates the effect of moving average window size. The larger the value, the more dampened out the features.
FHWA guidance on grade and cross-slope: “should be measured over 2 ft intervals, the approximate length of a wheelchair wheelbase, or a single walking pace.”
Grade Compliance Criteria

An accessible route with a running slope greater than 1:20 (5%) is a ramp and shall comply with ADAAG 4.8. (ADAAG 4.3.7)

- Maximum slope 8.33%
- Maximum rise for any run shall be 30”
- Minimum clear width shall be 36”
- Level landings at bottom and top of each ramp

<table>
<thead>
<tr>
<th>Slope</th>
<th>Maximum Rise (inches)</th>
<th>Construction Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:20 to 1:16 (5% to 6.3%)</td>
<td>30</td>
<td>New const. & modifications</td>
</tr>
<tr>
<td>1:16 to 1:12 (6.3% to 8.3%)</td>
<td>30</td>
<td>New const. & modifications</td>
</tr>
<tr>
<td>1:12 to 1:10 (8.3% to 10%)</td>
<td>6</td>
<td>Modifications only</td>
</tr>
<tr>
<td>1:10 to 1:8 (10%- 12.5%)</td>
<td>3</td>
<td>Modifications only</td>
</tr>
</tbody>
</table>
Grade (Ramp Type) Classification

Ramp type 1 meets the definition of a ramp (\(\geq 5\% \)) but is not regarded as having a non-standard grade.

Ramp type 30 has a rise of 30 in and run between 30 to 50 ft. (\(5\% \geq x \leq 8.33\% \))

Ramp type 6 has a rise of 6 in and run between 6 & 5 ft. (\(8.33\% \geq x \leq 10\% \))

Ramp type 3 has a rise of 3 in and run between 2 & 2.5 ft. (\(10\% \geq x \leq 12.5 \% \))

Ramp type 99 has a rise greater than 1.5 over 1 ft. (\(> 12.5 \% \))

<table>
<thead>
<tr>
<th>Slope</th>
<th>Max Rise (in.)</th>
<th>Max Run (ft.)</th>
<th>Grade Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\geq 5%)</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(\geq 5%)</td>
<td>30</td>
<td>50</td>
<td>1:20</td>
</tr>
<tr>
<td>5.5%</td>
<td>30</td>
<td>45.5</td>
<td></td>
</tr>
<tr>
<td>6.0%</td>
<td>30</td>
<td>41.7</td>
<td></td>
</tr>
<tr>
<td>6.5%</td>
<td>30</td>
<td>38.5</td>
<td></td>
</tr>
<tr>
<td>7.0%</td>
<td>30</td>
<td>35.7</td>
<td></td>
</tr>
<tr>
<td>7.5%</td>
<td>30</td>
<td>33.3</td>
<td></td>
</tr>
<tr>
<td>8.0%</td>
<td>30</td>
<td>31.3</td>
<td></td>
</tr>
<tr>
<td>< 8.33%</td>
<td>30</td>
<td>30.0</td>
<td>1:12</td>
</tr>
<tr>
<td>8.33%</td>
<td>6</td>
<td>6.0</td>
<td>1:12</td>
</tr>
<tr>
<td>8.5%</td>
<td>6</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>9.0%</td>
<td>6</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>9.5%</td>
<td>6</td>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td>< 10.0%</td>
<td>6</td>
<td>5.0</td>
<td>1:10</td>
</tr>
<tr>
<td>> 10.0%</td>
<td>3</td>
<td>2.5</td>
<td>1:10</td>
</tr>
<tr>
<td>10.5%</td>
<td>3</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>11.0%</td>
<td>3</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>11.5%</td>
<td>3</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>12.0%</td>
<td>3</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td><= 12.5%</td>
<td>3</td>
<td>2.0</td>
<td>1:8</td>
</tr>
<tr>
<td>> 12.5%</td>
<td>>1.5</td>
<td>1.0</td>
<td>99</td>
</tr>
</tbody>
</table>
“Because of the constraints imposed by right-of-way width, the pedestrian access route (PAR) is relieved of the slope limits that would apply to an accessible route on a site provided it matches the general grade of the adjacent roadway.”

- Revised Draft Guidelines for Accessible Public Rights-of-Way; R301.4
DEM (Digital Elevation Model) data in GIS used to determine grade of streets for this analysis.

A DEM is a grid in which each cell represents an elevation. The City contracts with private vendors for updated DEM information approximately every 2 years.

For a given section of road, grade is calculated as Rise/Run. In this equation the length of the road section provides the Run. The DEM provides the Rise.
The GIS script loops through all non-standard sidewalk grade cases. For each location, the sidewalk grade is compared with the grade of the adjacent street (DEM), allowing for identification of sidewalks where high grade values are due to topographic factors. Once this information is recorded for each location, criteria can be defined to filter out locations which are considered “technically infeasible”.

Non-Standard Running Slope Location

Compliant due to technical infeasibility
Digital Elevation Model Calculation

134 miles
Digital Elevation Model Calculation

134 miles

95 miles
Digital Elevation Model Calculation

134 miles

95 miles

39 miles
The sidewalk slope does not conform to the roadway slope. The sidewalk is classified as a Ramp Type 30, which has a running slope between 5 and 8 percent over a distance of 30 feet or greater. The road adjacent to it, has a slope of 5 percent.
The road slope where it is greater than 5 percent (red) is deemed technically infeasible according to ADDAG documentation. Sidewalks with adjacent road slopes that are less than 5 percent are identified as non-standard.
Driveway Cross Slope Analysis
Driveway Standards

- Certain grades and slopes must be maintained.
- 2% cross-slope,
- 8.33% max ramp slopes if used.
Bellevue employs a number of accessible driveway designs to maintain an acceptable cross slope and facilitate wheelchair movement at driveways.

As reflected in DEV-7D above, securing additional right-of-way from the adjacent property is a good strategy for improving pedestrian access on narrow sidewalks. This design allows pedestrians to maintain a level path as they cross the driveway.
Project Approach

Driveway crossings without landings confront wheelchair users with severe and rapidly changing slopes at the driveway flare.

A series of driveway apron flares with 11% cross slope measurements at 130th Avenue SE & SE 26th Street.

The driveway analysis is based on ULIP recordings taken by field staff at the center points of driveways. Using GIS, any non-standard cross slope values within buffer are attributed to the driveway aprons.
1. Over 50% of Bellevue’s 8+ percent cross slope measurements are attributable to driveway aprons.

2. Number increases as cross slope values increase, with 70% of 10+ percent cross slope measurements attributable to driveway aprons.

3. Overall, 19% of all non-standard cross slope measurements are attributable to driveway aprons constructed like ramps, with steep, short side flares.
ADA Viewer Interface
Changes in level are defined as vertical height transitions between adjacent surfaces or along the surface of a path. The Federal accessibility standards (ADAAG 4.5.2) permit changes in level less than 0.25 in high to be vertical but require changes in level between 0.25 in and 0.50 in to have a maximum bevel of 50 percent. A ramp is required for changes in level that exceed 0.50 in.

Change in sidewalk level (2 inch) at 148th Avenue NE & NE 35th Street.
A curb ramp allows people who use wheelchairs and other wheeled devices to negotiate the elevation change between the roadway and the sidewalk without having to negotiate the curb. People with mobility impairments often have difficulty negotiating a grade and cross slope simultaneously. Since the grade of the ramp will be significant, the cross slope should be minimized. ADAAG 4.8.6 specifies that ramp panel cross slopes should not exceed 2%.
Compliance vs. Accessibility

ADA tells us which features are non-standard …

… But it doesn’t tell us which of these non-standard features should be replaced first.
Community Outreach Requirements

- Provide opportunity to interested persons and groups to participate in self-evaluation leading to transition plan. 28 C.F.R. 35.105(b).

- Make self-evaluation and plan available for public inspection. Specific time frames and information required. 28 C.F.R. 35.105(c).
Accessibility Evaluations

Bellevue Approach:

- Accessibility evaluations in the field with Bellevue residents who are Access para-transit customers.

- For each ramp, participants filled out an evaluation form.

- Assessed in a general fashion the impact of each curb ramp feature (panel size, ramp cross slope, etc) on accessibility.
Barrier Ranking Analysis

Activity Score + Impedance Score = Barrier Ranking
GIS-Based Prioritization Tool

Allows users to adjust the weights for each criteria and run the analysis iteratively for validation purposes.

This tool is designed to allow users to run sidewalk prioritization analysis using different weighting criteria, and then iteratively validating the model. Any weight can be adjusted, however, the sum of all weights must equal 100%. Also, users can adjust the maximum points allocated for all criteria.
Impedance Score
Programming of Asset Improvements
Implementation Schedule

Self-Evaluation Report
- Data Collection
- Database Analysis
- Barrier Ranking

ADA Transition Plan
- Corrective Measures
- Implementation Schedule
- Financing Plan

Disability Community Participation
Summer 2009 - A new sidewalk and curb ramps were built next to the new westbound lane.

Project enhanced pedestrian facilities by removing fixed obstructions and improving sidewalk surface conditions (both changes in level and slope variations).

Addressed barriers to accessibility in a downtown Bellevue location that has high volumes of pedestrian usage.
Corrective Measures

With proper pruning, two persons can comfortably and safely use the whole sidewalk.

Keep it Neighborly CLEAR THE WALKWAY!

In our northwest climate, trees and shrubs grow quickly. Overgrown plants and low-hanging branches can lead to head and eye injuries, or can force pedestrians to dodge into oncoming traffic. To improve the safety of your sidewalk, be sure to:

- Prune trees to a seven foot vertical clearance.
- Prune one foot back from the edge of the sidewalk. This extra space allows your neighbors to use all of the sidewalk space more effectively and safely.
- Sweep away fallen leaves and other debris.
- Trim vegetation obstructing driveways or intersections to increase visibility of pedestrians and street signs.

Be neighborly - keep your sidewalk clear (BCC 14.06.010).

For more information, call the City of Bellevue Transportation Department at (425) 452-6896.

For technical information on how to properly prune, contact Bellevue’s Parks and Community Services Department, Resource Management Division at (425) 452-6855.
Curb Ramp Improvements

From 2007 through 2009, Bellevue will have spent more than $2 million to upgrade nearly 300 curb ramps citywide.
For More Information

The ADA Sidewalk and Curb Ramp Self-Evaluation Report is located at: http://www.bellevuewa.gov/accessibility-reports.htm

The project manager, Franz Loewenherz, can be reached at 425-452-4077 or FLoewenherz@bellevuewa.gov